Solidification of Binary Melts

GRAE WORSTER

DAMTP University of Cambridge




Evolution of Sea Ice
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Binary Mixtures: Equilibrium Phase Diagram
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Freezing temperature (liquidus) is a function of composition 7} (C )

Solid that forms has a different composition (given by the solidus) than the liquid



Ice Growth from a Salt Solution
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Ice Growth from a Salt Solution
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The growth rate of a planar solid—liquid interface is limited by the rate of removal of solute.



Melting versus Dissolving
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Evolution of Under-ice Melt Ponds
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Constitutional Supercooling
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Slow salt diffusion relative to heat diffusion causes constitutional supercooling
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Segregation

Single ice lens Mushy layer

Water plus impurity

30 minutes real time 10 minutes real time

Solute expelled from continuous solid phase Solute concentrated in interstices



Sea Ice 1s a Mushy Layer

Two phase (solid + liquid)
Two component (water + salt)

Reactive porous medium

We seek an averaged description of local
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Zero-Layer Semtner Model
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Thermodynamic Models of (quiescent) Sea Ice
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The thermal inertia (specific heat capacity) of sea ice is dominated by
the internal release of latent heat.



“Sea Ice”
with no convection

Cp = C, (constant and uniform)
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Thickness of a Mushy Layer — Experiments versus Theory
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Summary

Thermal-diffusion-controlled solidification has length scales proportional to+/xz

Rate of solidification of a mixture at a planar solid-liquid interface is limited by rate of
transport of rejected solute with length scales proportional to v Dt

But rejected solute causes local constitutional supercooling and morphological instability ...
... leading to the development of a mushy layer, with length scales again proportional to Jit
Sea ice is a mushy layer.

Mathematical models of mushy layers give accurate predictions of their evolution once
their salinity is known,

What determines the salinity of sea ice?



Desalination Processes of Sea Ice

Interfacial fractionation
Brine expulsion

Brine pocket migration
Brine drainage

Flushing



Marginal equilibrium EX

Interfacial Fractionation
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Brine Expulsion
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Redistributes brine and thickens mushy layer but doesn’t cause brine to leave layer



Brine Pocket Migration
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Temperature Gradient Zone Migration

Salt conservation
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Migration of Climate Signals
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Summary

D
Interfacial fractionation is negligible O (E)
Brine ‘expulsion’ (velocity induced by density change) doesn’t expel
. L . D .
Brine-pocket migration is negligible O (—) during growth

K

Bulk-salinity signal does not diffuse but is advected by thermal gradients



Migration of Climate Signals
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