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Sea Ice as an Interface

Atmosphere FA Atmosphere scale ~ 104 m
Sea ice I T Sea-ice scale ~ 1 m
Fo
Ocean Fs Ocean scale ~ 103 m

Simplest thermodynamic model
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Brine Drainage from Sea Ice




Fundamentals of Convection in Mushy Layers

sea ice
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Convection in a Mushy Layer
(Sea Ice)

Conservation of heat

Conservation of salt

Liquidus constraint

Darcy’s equation
for flow in a porous medium

Incompressibility

Constitutive relation
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Scaling
Suppose that system is solidifying at rate V and scale

velocities with V' lengths with k /V  time with k / V2 pressure with with Apgk /V
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Indicative Stability Analysis

To 6=0 .4 Q(@+u-ve)=vze
ot
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Substitute, linearize and look for marginal (steady) states with o =0
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Marginal Stability Results

No flow, constant temperature w=0 é =)= Dzy/{; =()
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Marginal Stability Results

No flow, constant temperature w =20 0=0
0 =1—2z+0(z)eirtot
W = ,UA)(Z)eioz:I:+at
Constant pressure and heat flux Dw =10 Dé =0
{ %2 . oﬂr A
QR,, = 5
Q
Unstable
>0 Instability if
OR,, > R.=n% =10
R == — — —
Stable 0 <0
>
a a

C



Directional Solidification
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Dynamic Control of Brine Rejection

_ BAC g (k/V)

1

R, V=2ums ' —=05ums ' —2ums"

A%




MRI study of structure and flow in convecting sea ice

Aussillous, Sederman, Gladden, Huppert & Worster

Vertical cross-section through
an evolving brine channel

Horizontal cross-section of
platelets and brine channels




Evolution of Solid Fraction
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Van Mijen Fjord, Svalbard 2001




Field Experiments

John Wettlaufer

Dirk Notz



Platinum Wire
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Field Measurements of Porosity and Salinity

Notz, Wettlaufer & Worster

Impedance measurement of solid fraction
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Derived Measurements of Local Rayleigh Number
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2D Numerical Modelling

Chung & Worster 2002




CAP Model of Convection with Brine Channels

Rees Jones & Worster
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Determine channel spacing by optimising the buoyancy flux (Wells & Wettlaufer)
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One-Dimensional Model of Convecting Sea Ice
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Depth of convecting region set by critical Rayleigh number
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One-dimensional modelling of convecting mushy layer
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Evolution of Convecting Sea Ice




Evolution of Convecting Sea Ice




Capabilities and Characteristics of
1-D Convection Schemes

Buoyancy flux determined dynamically — not thermodynamically
tied to growth rate.

Capture delay in onset of convection seen in some experiments.

Predict enhancement or re-initiation of brine drainage during
periods of warming.

Straightforwardly adjust to different ocean salinities.



Summary

Convection begins at a critical value of the Rayleigh number

Convective fluxes (eg brine fluxes) are best parameterized in terms of a Rayleigh number

The Rayleigh number for a mushy layer (sea ice) depends on permeability and solutal
buoyancy but thermal diffusivity

Convection in sea ice causes formation of brine channels by dissolution

Convection in a mushy layer is confined to a region near the ice—ocean interface.



