
Scaling laws in turbulence
Christophe Josserand,1 Martine Le Berre,1, a) and Yves Pomeau1

Ladhyx (CNRS UMR 7646), Ecole Polytechnique, 91128 Palaiseau, France

(Dated: 7 July 2020)

Following the idea that dissipation in turbulence at high Reynolds number is dominated by singular events in space-
time and described by solutions of the inviscid Euler equations, we draw the conclusion that in such flows scaling
laws should depend only on quantities appearing in the Euler equations. This excludes viscosity or a turbulent length as
scaling parameters and constrains drastically possible analytical pictures of this limit. We focus on the drag law deduced
by Newton for a projectile moving quickly in a fluid at rest. Inspired by this Newton’s drag force law (proportional
to the square of the speed of the moving object in the limit of large Reynolds numbers), which is well verified in
experiments when the location of the detachment of the boundary layer is defined, we propose an explicit relationship
between Reynolds stress in the turbulent wake and quantities depending on the velocity field (averaged in time but
depending on space). This model takes the form of an integro-differential equation for the velocity which is eventually
solved for a Poiseuille flow in a circular pipe.

This article should have been published in the special
issue of Chaos dedicated to the eightieth birthday of Pro-
fessor Enrique Tirapegui, a friend and a pioneer of nonlin-
ear science. Enrique did pass away before this special is-
sue was completed. So we dedicate this paper to his mem-
ory in the hope that the great tradition he initiated in this
fascinating field of science in Chile and elsewhere will be
kept alive with the high level of quality of his outstanding
research.

One long standing problem in turbulence
and chaos theory is the understanding of New-
ton’s drag law according to which the drag
force on fast moving objects is proportional to
the square of its velocity, with a factor of pro-
portionality depending on the Reynolds num-
bers in the range of moderate values and tend-
ing to a constant in the highly turbulent regime
at large Reynolds number. We argue here that
this follows from the property that dissipation
in fully developed turbulence (which is ulti-
mately due to effects induced by the molecular
structure of fluids), takes place at events de-
scribed by singular solutions of the Euler in-
viscid equations.

I. INTRODUCTION

Turbulent flows at large Reynolds number display such a
complex behavior in space and time that it is impossible to
obtain a general solution of the fluid equations representing
well the flow field in these situations. As recognized early by
Reynolds this makes necessary a statistical description of the

a)Electronic mail: martine.le-berre@u-psud.fr; Also at ISMO (CNRS UMR
8214), Université de Paris-Saclay, 91405 Orsay, France

fluctuations in those flows1–3. A major issue met when devel-
oping this statistical picture is the choice of physical parame-
ters that should enter in such a theory. Kolmogorov suggested
(see section 33 in1) to use ε , the dissipated power per unit
mass on average, as a scaling parameter for the statistics of
turbulence, assumed to be homogeneous and isotropic. In this
picture, ε is independent of the viscosity (see below) and the
energy of the fluid motion is dissipated homogeneously and
isotropically. Even though this last assumption is done very
often in theoretical works, the kind of physical situations to
which it applies is far from obvious. Specifically most tur-
bulent flows, if not all of them, have a geometrical structure
making them non homogeneous and non isotropic.

This obvious remark is behind the developments presented
below leading to an expression of the Reynolds stress tensor
in terms of the time averaged velocity field u(X) depending
on space only. This expression does not contain any small in-
trinsic length (like the mean free path in Maxwell kinetic the-
ory). Indeed, contrary to the case of kinetic theory, there is no
length scale in turbulence defined independently of the turbu-
lence itself. Therefore an Enskog-like theory cannot be used
because it yields a local relation between fluxes of conserved
quantities (like mass, energy, impulse and eventually electric
charge) and their gradients and higher derivatives. This leads
naturally to look for a nonlinear and nonlocal relation between
the Reynolds stress tensor and the strain tensor (gradient of the
mean velocity, a tensor called sometimes rate of strain tensor).
This relation contradicts the Boussinesq assumption made in
1875, which states that the two tensors are aligned, the propor-
tionality coefficient being defined as the turbulent viscosity.
Even though Boussinesq did not quote Maxwell, his theory
could have been inspired by Maxwell theory of the viscosity
of gases, going back to 1867. Boussinesq assumption has been
proved since to be incorrect4 because the proportionality (or
alignment of the two tensors) is observed neither in numerical
studies nor in experiments. However, it is at the heart of most
of the numerical schemes used practically, of course in more
sophisticated versions, but still using the parallelism between
the Reynolds stress and the strain tensors5. The reasons are
firstly because of the simplicity of its numerical implemen-
tation and the numerical efficiency of the method; but also
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2

because the determination of numerous adjustable parameters
in these models eventually allows for a good approximation of
the pertinent quantities needed for application. Let us eventu-
ally notice that the non proportionality of Reynolds stress and
rate of strain tensors is one of the poorly understood phenom-
ena observed in turbulence. Among the others are

i) Newton’s law of proportionality between the turbulent
drag force and the square of the velocity on a blunt body mov-
ing swiftly in a fluid (at large Reynolds number in modern
terms),

ii) the intermittency of the velocity fluctuations in the same
range of large Reynolds numbers,

iii) the splitting of the flow around fastly moving blunt bod-
ies into an upstream non-turbulent potential flow and a down-
stream turbulent wake with vorticity.

We argue in this paper that those observations can be ex-
plained by the occurrence of finite time singularities in solu-
tions of the inviscid Euler equation. Thanks to that one can
derive an integral (in space) equation relating Reynolds stress
and the average velocity field. The irreversibility in the dy-
namics of the Euler velocity is the result of finite time singu-
larities of this Eulerian dynamics. In such singularities energy
is likely dissipated not by viscosity but instead by effects in
the Enskog expansion at the order following the regular vis-
cous term. However the amount of energy dissipated is the
one present initially in the collapsing domain and so is given
by the inviscid dynamics only.

The existence of singularities, a very hard problem initi-
ated by Leray in 19346, is the key point of our study. It con-
cerns the dynamics of the Euler equations with initial con-
ditions of finite energy. Let us recall briefly some points in
favor of their existence in turbulent flows. By analyzing time
records of the velocity in the big wind tunnel of Modane, it
has been found7,8, we believe, convincing evidence that the
occurrence of such singularities explains well the observed in-
termittency of the signal. Our proof is based on the following
arguments. Kolmogorov scaling assumption agrees with the
von Karman-Howarth relation1 for the triple velocity corre-
lation. It amounts to assume that, by neglecting the term of
viscosity in the Navier-Stokes (NS) equations, a velocity fluc-
tuation δu evolves at typical distance δ r like the cubic root of
this distance, namely that δu ∼ (εδ r)1/3. Taking the cube of
both sides of this scaling relation, one gets the von Karman-
Howarth relation. However this scaling law does not seem to
be consistent with the Euler equations for an incompressible
flow. This follows from a simple estimate of the local acceler-
ation, this acceleration having the same order of magnitude as
u∇u. Using the Kolmogorov scaling one finds ∇u ∼ δu/δ r,
which gives a local acceleration of order ūε1/3δ r−2/3, where
ū is the local value of the velocity. This is inconsistent with
the fact that the acceleration is the time derivative of the ve-
locity because at short times ∆t the increment of the velocity
derived from the acceleration is of order ∆t times the time
derivative of u just estimated. This adds to the velocity u a
quantity of order ∆tūε1/3δ r−2/3, far bigger as δ r tends to zero
than the estimate δ r1/3 one started from, which was consis-
tent with a continuous function of Hölder exponent 1/3: the
new Hölder-like exponent is negative now. This large fluc-

tuation of the acceleration is more than a mathematical bug
evidenced by this calculation, it is also something that is seen,
although quite indirectly, in records of velocity fluctuations
in a high speed wind tunnel. There, contrary to what is im-
plied by the estimate δu ∼ (εδ r)1/3, the large fluctuations of
acceleration do not happen all the time, but are strongly corre-
lated to sparse large velocity fluctuations7. Such a correlation
contradicts Kolmogorov scaling law because in this scaling
law the parameter ε is just the product of the velocity and of
the acceleration. Had this parameter a fixed value, or at least
without too large fluctuations, large velocities should be corre-
lated to small accelerations and conversely large accelerations
correlated to small velocities, exactly the opposite of what is
observed.

Therefore it seems meaningful to reconsider the scalings
laws for turbulence. It is important here to notice that, by
itself, large gradients of the velocity field are not proofs of
the existence of singular or quasi singular events. Consistent
with the scaling law δu∼ (εδ r)1/3, a possibility could be that
the velocity field is a Weierstrass-like function of the position
with Hölder exponent 1/39. This would make the velocity
field continuous but not derivable, whence it does not show a
priori the observed correlations between large gradients of the
velocity and large acceleration in singular points in space and
time. The correlations between large velocities and large ac-
celerations instead is a witness of the existence of point-like
singularities. Another possibility for the dependence of the
velocity field as a function of position and time was consid-
ered in 1934 by Leray6. It assumes that the solutions of the
fluid equations display finite time singularities that are also
localized in space points. Here we start from this assumption,
supported by our recent investigations of turbulent flows. The
strong correlation between large values of the velocity u and
of the acceleration γ = ∂tu, at the same point in space-time
are explained by the occurrence of Leray like singularities of
the velocity filed in the form:

u(r, t) = (t∗− t)−aU(r(t∗− t)a−1), (1)

where t∗ is the time of the singularity, and a is a positive ex-
ponent smaller than unity. We have shown7 that a can take the
values 1/2 and 3/5 corresponding respectively to self-similar
solutions which conserve the circulation and the energy in the
singular domain.

For such solutions the space domain of large fluctuations
shrinks with a (positive) power of (t∗− t), the time difference
between the time of measurement and the time of blow-up.
Moreover the amplitudes of velocity and of the acceleration
diverge with respect to this time difference according to power
laws. Another element in favor of the occurrence of finite time
singularities is the behavior of the structure function for the
Eulerian acceleration,

Sn(r) =< δγ
n > (2)

where δγ = γ(r + r0)− γ(r0). When the order n in Sn(r)
changes, the behavior of this function of r changes dramat-
ically8. At small order the structure function built with the
acceleration tends smoothly to zero as the distance r between
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3

its two arguments tends to zero whereas it diverges at small
distances when the order is larger than a critical value. This
change of behavior of Sn(r) (with respect to n) is a straight
consequence of the existence of singularities. This prop-
erty results from the calculation of Sn(r) as an integral over
the space-time volume of δγ

n weighted by the probability of
recording a singularity at a given point of space-time, which is
small at small distance. We showed that the structure function
itself depends on r at small values like rp(n), with the struc-
ture exponent p(n) = a1− a2n on n with a positive constant
a1 added to a linear term of negative coefficient −a2. When n
is less than a critical value the result of the integration defin-
ing the structure function tends to zero at small distances, but
when the exponent of the structure function becomes bigger
than a critical value, the divergence of amplitude of the sin-
gularity overcomes the small probability of observing a sin-
gularity so that the structure functions become divergent at
small distances. The same non trivial behavior of the struc-
ture function is observed in a nonlinear-Schrödinger model
equation which displays numerically turbulent solutions and
quasi-singular events, in a limit equivalent to the one of zero
viscosity10. Furthermore the structure functions of accelera-
tion recorded in wind tunnels at large distances r tend to a
constant because they represent contributions of quasi inde-
pendent singularities. Of course a very significant question
is the mathematical proof of existence or absence of singu-
lar solutions of the equations of Leray-like singularities for
the dynamical Euler equations (what we call the Euler-Leray
equations). This has been the matter of many investigations
since the time of Leray publication. We can only mention
some progress made recently8 toward an explicit construction
by perturbation of a solution of the Euler-Leray equations, not
yet complete. The idea is to start from a family of explicit non
trivial solutions of the steady Euler equations in an axisym-
metric geometry with swirl. This makes a solution of part
of the Euler-Leray equations. The remaining of those Euler-
Leray equations can be treated in some limit as a small pertur-
bation. This leads to solutions of the Euler equations slowly
collapsing to a singularity. What remains to be solved is a pair
of solvability conditions in the expansion. Those conditions
constrain the choice of the base solution of the Euler equation
one starts from. This step is non trivial because it depends on
kernels of non symmetrical linear operators, a priori unknown
and hard to find numerically. On the positive side this leads
to two solvability conditions whereas there is a continuum of
different steady solution of the Euler equation, which depend
on an arbitrary polynomial, so that one can hope that with a
right choice of the arbitrary coefficients of this polynomial the
two solvability conditions (implying the cancelation of scalar
products of functions) can be satisfied.

There remains another non trivial question in fluid mechan-
ics, which is the effect of a small viscosity on those singular
events. It is widely believed that at small scales of turbulence
viscosity becomes dominant. As a self-similar solution col-
lapses, the space scale tends to zero at this point, that makes
the viscous stress bigger and bigger as the singularity time
is neared, but at the same time the velocity fluctuation be-
comes larger and larger. So it may happen that this velocity

increase overcomes the increase of viscous stress due to the
shrinking of length scales. This is exactly what happens in the
Leray equations in the case a = 3/5 which corresponds to fi-
nite energy conserved in the shrinking domain until viscosity
(or Burnett coefficients) become effective. We showed that in
this case the perturbation of Euler dynamics due to viscosity
diverges less strongly than the non linear terms as one ap-
proaches the singularity, so that the viscous pressure becomes
a negligible perturbation near the blow-up time. Therefore,
at least in this case, there is no guarantee that viscosity reg-
ularizes the solution at the singularity time. We refer the in-
terested reader to the original publication on this question8,
the conclusion being that dissipation takes place always near
the singularity time but not necessarily because of the effect
of viscosity. To summarize this discussion, the "natural" evo-
lution of solutions of the fluid equations is toward finite time
singularities where velocity gradients are cancelled, that ul-
timately explains Newton’s drag on fast moving bodies. As
shown below this helps to derive an explicit and closed set of
equations for the average velocity field, that finally yields a
dissipation term independent of the viscosity.

II. EXPRESSION OF REYNOLDS STRESS

From what was concluded at the end of previous section,
dissipation in highly turbulent flows takes place in Leray-like
singularities of solutions of the Euler dynamical equations. In
fact, they cannot be real singularities in continuous media like
fluids and those singularities are smoothed out by some sort
of correction to the Euler equations taking into account the
molecular structure of the fluid. Usually the role of this reg-
ularizing effect is played by viscosity, but as just said and re-
considered in the next subsection in the light of drag forces, it
is not necessarily true that viscosity cuts the singularity be-
fore blow-up. As shown in reference8, higher order terms
in the Enskog expansion- in an extended form- do smoothen
the singularity in the case a = 3/5. The precise way they
do it is not relevant here. It relies on higher order terms in
the Enskog expansion, the so-called hyper viscosity Burnett
terms, or more accurately the "renormalized Burnett terms",
since the coefficients of those terms are given by diverging
Green-Kubo integrals. Then the hyper viscosity contributions
to stress in the fluid equations have to be renormalized in or-
der to include non-local integrals (or if one prefers non integer
Liouville space derivatives). The next step in this theory is to
find what is the effect of such singularities on the global fluid
dynamics averaged over time. In this section, we investigate
the role of singular events on the drag felt by objects moving
at large Reynolds number, the singular events being the main
source of dissipation.

A. Drag force

At the very beginning of fluid mechanics, as we know it,
was the law of drag by Newton for fast moving projectiles
in air. By a very clever reasoning Newton showed that the
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4

drag force on an object moving at speed U in a fluid at rest at
infinity is of order

F(N) =
1
2

CxρU2S, (3)

where ρ is the mass density of the fluid and S the area of the
cross section of the moving object in the direction perpendic-
ular to the velocity. Lastly Cx is a numerical coefficient which,
to Newton’s surprise, depends on the shape of the object in a
complex way that he was unable to explain. As well known
too, d’Alembert showed that in a perfect inviscid fluid there
is a steady flow around a moving object exerting no drag on
it (see sections 9 and 11 in ref1). In the familiar example of
a sphere moving at constant speed, Euler’s equations can be
solved explicitly and d’Alembert paradox applies so that no
drag should be exerted on the sphere. Neither Newton nor
d’Alembert refer to turbulence, a concept unknown at their
time. The resolution of d’Alembert paradox is that dissipa-
tion takes place in the wake of the moving object and yields
ultimately a drag in agreement with Newton’s insight. In ret-
rospect Newton’s law for the drag is an early version of what is
called sometimes the zeroth law of turbulence, namely that, in
the limit of high Reynolds number, dissipation tends to a value
that does not depend on viscosity (this amounts to say that, in
the limit of large Reynolds number, Newton’s Cx coefficient
tends to a constant, something in full agreement with obser-
vations3). A perhaps less well known law of turbulent friction
(in modern terms) in high velocity fluids is due to Chézy11. It
goes back to the mid eighteenth Century and relates the ve-
locity of a river flow to the slope and the cross section of this
river. It relies on a friction proportional to the velocity square
and is in fair agreement with field data, up to a coefficient (the
Chézy coefficient of order one) depending on the roughness
of the river bottom. Similar friction laws were written down
later for pipe flows by Prandtl and his school, with particu-
lar consideration of the dependence of the friction coefficient
with respect to the roughness of the pipe wall12.

The connection between the drag law of Newton and our
search of scaling laws for fully developed turbulence comes
from the fact that, physically, Newton’s drag represents the
dissipation by turbulence in the wake of a fast moving body.
Let us first note that the dissipation by viscosity in the viscous
sublayer in front of a moving body is much less than the dissi-
pation given by Newton’s drag law, since the ratio of these two
quantities is of order Re−1/2, Re being the Reynolds number,
as it follows from Prandtl scaling for boundary layer theory.
Moreover let us also show that the drag force due to the lami-
nar boundary is proportional to the power 3/2 of the velocity
whereas the one due to the turbulent wake (Newton’s drag) is
proportional to the velocity square, that makes it dominant at
large Reynolds number. Therefore dissipation in the laminar
boundary layer is relatively negligible at large Reynolds num-
ber. Because this remark is hard to find in the literature of
fluid mechanics, we are going to compare Newton’s drag and
drag in the laminar boundary layer.

Newton’s drag law can be derived as follows. Suppose a
body of cross section S moving at velocity U in a fluid at rest
of mass density ρ . Per unit time the body crosses a cylinder

of fluid of mass ρSU and gives it the velocity U . Therefore
the momentum given to the fluid per unit time is this mass
multiplied by the velocity U , and this is also the drag force
because of the conservation of momentum, the second law of
Newtonian dynamics. This yields a drag force proportional to
ρSU2, as just stated. Newton specifies that this law is correct
for fluids "without tenacity", which may include perfect fluids.
A possible understanding of "tenacity" is that adjacent layers
of fluid tend to move at the same speed, which makes tenac-
ity more or less equivalent to the property typical of viscous
fluids. .

The derivation of the drag due to dissipation in the laminar
boundary layer is less direct than the one of Newton’s law.
This derivation considers the contribution of the viscous fric-
tion force to the drag force in a laminar boundary layer close
to the body. Let L be the typical length of this layer along
the surface of the body. In the boundary layer the tangen-
tial velocity is of order U . Over a length L along the surface,
viscosity makes diffuse the vorticity on a length scale δ , the
thickness of the boundary layer. The constant of diffusion is
ν = µ

ρ
, therefore the thickness is δ = (νL/U)1/2 where the

equal sign is to be understood as meaning same order of mag-
nitude. This thickness enters into the estimate of the viscous
stress as σ = µU/δ . From its meaning this stress yields a to-
tal force of friction equal to σL2, assuming that the size of the
boundary layer is about the same in the directions parallel and
perpendicular to the speed.

Combining those estimates one finds that the friction Fbl
due to the boundary layer is

Fbl = DU3/2
ρ

1/2
µ

1/2L3/2.

where D is a dimensionless coefficient, presumably of order
one.

Comparing this with Newton’s law of drag one sees that
Newton’s drag is about Fbl times the square root of the
Reynolds number ρUL/µ . Therefore this contribution of the
laminar boundary layer is relatively negligible in the limit of
a large Reynolds number. It could be argued that in the limit
of large Reynolds number this boundary layer becomes turbu-
lent so that the order of magnitude of the friction there is much
bigger than what is predicted by the above estimate. It is cer-
tainly correct that at very large Reynolds number the boundary
layer becomes turbulent but, in this case, is seems hard to dis-
tinguish between the contribution of the turbulent wake and
the one of this turbulent boundary layer to the total drag, the
later being part of the contribution of the turbulent wake.

B. Beyond Boussinesq relation for the stress tensor

Let us start from the Reynolds-averaged Navier-Stokes
equations for a statistically stationary flow of a Newtonian in-
compressible fluid which can be written in Einstein notation
and Cartesian coordinates as

ρ ū j
∂ ūi

∂x j
=

∂

∂x j

[
−p̄δi j +µ

(
∂ ūi

∂x j
+

∂ ū j

∂xi

)
−ρu′iu

′
j

]
, (4)

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/1.

51
44

14
7



5

where ū and u′ represent the time averaged and fluctuating part
of the velocity field respectively, ρ the density and µ the shear
(or dynamical) viscosity of the fluid. Moreover the pressure
p is derived from the condition that the velocity field is di-
vergenceless. In equation (4) the change in mean momentum
of fluid element (left term) is balanced by the isotropic stress
owing to the mean pressure field p̄ and the viscous stress

σ
v
i j =−µ(u j,i +ui, j), (5)

where ui, j =
∂ui
∂x j

, and the nonlinear Reynolds stress

σ
Re
i j = ρu′iu

′
j (6)

which requires additional modeling to close (4) for solving,
and has led to many different turbulence models5,12.

Almost all of them start with the empirical Boussinesq
hypothesis which amounts to assume that the turbulent or
Reynolds stress tensor σRe

i j is aligned with the strain or vis-
cous tensor σ v

i j, namely that

u′iu
′
j =−νt(u j,i +ui, j) (7)

where νt , called turbulent kinematic viscosity has the dimen-
sion of a velocity times a length. The Boussinesq relation (7)
with constant νt is truly not adapted to describe wakes be-
hind an obstacle or in the vicinity of frontiers like the bottom
of a river or the boundary of a pipe. Boussinesq proposes to
express the turbulent viscosity by an (implicit) analogy to ki-
netic gas theory (but for velocity), that precludes the relation
formalized in 1925 by Prandtl for the turbulent viscosity as the
product of a mixing length lm by a characteristic velocity de-
fined by the ratio of this length with a time which is the square
root of the trace of the strain tensor, (uk,l ul,k)

1/2, leading to
the following expression for the Reynolds stress

u′iu
′
j =−l2

m|ul,k uk,l |1/2(ui, j +u j,i). (8)

This is the so-called mixing length model where the mixing
length lm has to be adjusted to the geometry of the flow. In
this approach, the square-root term in the turbulent viscosity
is often explained by an analogy between the turbulent fluctu-
ations and the thermal fluctuations responsible of the micro-
scopic viscosity. This model is able for instance to reproduce
the Moody diagram for the friction coefficient Cx in (3) for a
parallel flow channelling along a wall (note that in this deriva-
tion the friction is assumed to occur in the boundary layer and
the velocity U is not the velocity of the flow, but its average
in the boundary layer, perpendicularly to the wall). However
this model, based on nonlinear polynomial local equations
like (8) fails to reproduce more complex turbulence behav-
iors, as for instance in annular flows fro which both the strain
and vorticity tensors vanish near the central position, whereas
the Reynolds stress does not.

The scaling laws for the representation of the turbulent
wake, which is the matter of this study, should be consistent
with the final result, namely that the drag is independent of
the viscosity. Therefore this drag must depend only on quan-
tities occurring in the inviscid equations. This is fully con-
sistent with the idea of dissipation by finite time singularities,

because the amount of energy in such a singularity is indepen-
dent of viscous phenomena and is dissipated at the singularity
time. This leaves few parameters to model the turbulent flow
responsible of the drag. As we are looking for time-averaged
quantities one needs to look at equations for averaged quanti-
ties only, without time dependence. Compared to the standard
fluid equations, there is no obvious constraint imposing that
the equations we are looking for are local in space, namely
written with space derivatives of finite order at a given point.
This allows to write equations with integral terms, in agree-
ment with the idea that singular events occurs here and there
in the flow. Let us look at the possibility of a new term with
an integral kernel and the same physical dimension as the u∇u
term in Euler equation for momentum. Because this term
should be the gradient of Reynolds turbulent stress, this stress
has to be quadratic with respect to the velocity (see section 15
in1), as in (8).

In the following, we shall drop the bar over the time-
averaged velocity because we only consider products of ū, not
averages of products. The simplest integral relation could be
to insert into the integral the term (ui, j + u j,i) times |u| by
analogy with Maxwell expression for the shear viscosity of
gases, the absolute value of the fluid velocity playing there
the role of the thermal velocity of particles. Inded, a funda-
mental result of kinetic theory is that the shear viscosity of a
gas is proportional to a quantity with the physical dimension
|u|` , where |u| is the typical thermal speed of a particle, and
` the typical mean free path. The mean free path is the dis-
tance over which the momentum difference between two par-
ticles is carried, ending with the annihilation of this momen-
tum difference by their collision and to the release of thermal
energy. By analogy one could expect that in a singular Leray-
like event, an initial difference of momentum between parts
of fluid participating to the collapse is cancelled when the ve-
locity field of the domain shrinks to zero, which erases the
initial momentum difference, and so participate to the transfer
of momentum in space. The role of those parts of the fluid
with different velocities is played in Maxwell’s theory of a di-
lute gas, by the two particles on their path towards a collision
(which explains ultimately the shear viscosity of a dilute gas).
Here, if the square root of the turbulent fluctuations |u| can
be invoked by analogy with Maxwell arguments, we have to
explain how such non analytic behavior can arise from the Eu-
ler dynamics. While for explaining viscosity it comes either
from kinetic theory for dilute gases or from the Green-Kubo
relations for arbitrary densities, we want to argue below that
such non analytic expression could be a consequence of the
singularity dynamics of the Euler equation.

To somehow "multiply" the combination |u|(ui, j + u j,i) by
a length one has to integrate it with respect to the position
variable but by keeping the requested invariance of the result
under rotation of the system of coordinates. This excludes
for instance to carry an integration with respect to only one
space variable because the choice of one coordinate obviously
breaks the symmetry under rotation of the system of coordi-
nates. A straightforward convenient expression is found by
integrating |u|(ui, j + u j,i) computed at X ′ (capital letters be-
ing for position in space, X = (x,y,z)) over the whole space

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/1.

51
44

14
7



6

with the integrand 1
|X−X ′|2 , the power of the denominator be-

ing chosen to give the whole transformation the scaling of a
length. The final result is

σ
Re
i j (X) = Kρ

∫
dX ′
|u(X ′)|(ui, j +u j,i)(X ′)

|X−X ′|2
, (9)

where K is a pure number, independent on the chosen sys-
tem of units. In this expression the velocity has to be mea-
sured with respect to a frame of reference, which can only be
the one of the object moving in such a way that it makes the
flow turbulent. However the relation (9) for Reynolds stress
does not satisfy the principle of Galilean invariance, although
it is compatible with the requirement that no parameter other
than what appears in Euler equation is introduced in the phe-
nomenological relation between the average velocity field and
Reynolds stress. The expression (9) applied to the case of a
Poiseuille flow in a circular pipe allows to get a solution for
u(r)2 up to a constant, that is different from the expected re-
sult (u(r) up to a constant velocity)13. It appears therefore that
the Reynolds stress must contains space derivatives only, as in
the Prandtl model (8).

Within the same constraints another choice can be made. It
is based upon the idea that out of the velocity field u(X) one
can build another vector field, the vorticity ∇× u. This vec-
tor field can be substituted to the one appearing in this equa-
tion inside the modulus, which amounts to replace |u(X ′)| by
|∇× u(X ′)| in this equation. Of course this change needs to
be compensated by a multiplication by |(X ′−X)| to keep the
property that the contribution to the Reynolds stress tensor (di-
vided by ρ) has the physical dimension of a velocity square
without dependence with respect to the unit length. The final
result amounts to the following form of the Reynolds stress

σ
Re
i j (X) = Kρ

∫
dX ′
(
|∇×u(X ′)|
|X−X ′|

)
(ui, j +u j,i)(X ′). (10)

Another possible formulation the Reynolds stress should
be an expression more symmetrical with respect to the co-
ordinates X and X ′. Such a symmetry is obtained by putting
|∇×u(X ′)|1/2|∇×u(X)|1/2 instead of |∇×u(X ′)|. More gen-
erally we will eventually propose a Reynolds stress based on
this product but using dexponents α and 1−α for the different
vorticity terms (see formula 13). This balanced dependence
of the vorticity in X and X ′ could fulfill the requirement that
vorticity must be re-amplified, a fundamental property of tur-
bulent flows. Let us recall that Reynolds saw turbulence as
this mechanism of amplification of vorticity, which has to be
included in the tools used for its description, if one wants to
go beyond the d’Alembert paradox.

A point of interest is the assumption behind the occurrence
of the absolute value |u| and |∇×u| in the expressions (9) and
(10) of the Reynolds stress tensor. Indeed this is not analytical
with respect to the velocity field and so cannot be derived from
Euler’s equation by simple operations on Euler’s equation
which preserve the analyticity of the result with respect to the
velocity. Reynolds stress tensor is derived as a time average
of the product of velocities. This time average extends itself
to all kind of events occurring in the fluid dynamics. In our

view of turbulence we include finite time Leray-singularites
of Euler equation. When the time average includes such sin-
gular events, there is no reason to impose the result to depend
analytically on the velocity field. This explains the origin of
this non analyticity of our form of Reynolds stress tensor with
respect to the velocity field because of the absolute value ap-
pearing in it. This shows also that it cannot be derived from
Euler equation by a calculation using standard algebra. The
physics of this law is that finite-time singularities dissipate
energy and so introduce a fundamental irreversibility in so-
lutions of equations (the Euler equations) which are formally
reversible with respect to time. Deriving irreversible equa-
tions from reversible dynamics is fairly standard in theoreti-
cal physics, the most famous example being the derivation of
Boltzmann kinetic theory from the reversible Newtonian dy-
namics of particles. In the present case, the irreversibility is a
consequence of the dissipation taking place at the time of the
singularity of the self-similar solution of Leray-like equations.
As shown in reference7 in the case of a turbulent Poiseuille
flow, the irreversibility of the equation is tightly linked to the
absolute value in the equation for the turbulent stress because
thanks to it, the average flow in a pipe is reversed as the pres-
sure gradient is reversed. The absolute value is a consequence,
although slightly hidden, of the existence of dissipation in sin-
gular events. Otherwise (if the equation for the turbulent stress
does not contain absolute value of the velocity) there is no dis-
sipation by the Euler equation. This explains, hopefully, why
equations (9)-(10) cannot be derived directly from Euler equa-
tion by assuming their solution to be smooth. An added infor-
mation is necessary, namely that solutions of Euler equations
have finite time singularities where energy is dissipated.

A last important remark is about the question of how gen-
eral is equation (10). This equation for Reynolds turbulent
stress was derived under the constraint that this stress may de-
pend only on parameters of the average velocity field, without
introducing any new quantity with a physical dimension like
a length or a time scale. This is compatible with a change of
the equation preserving the physical dimension of the stress.
Such a change could be made by multiplying the stress by a
non trivial dimensionless combination built with the average
velocity field and its derivatives. Such a dimensionless com-
bination is the ratio

Ra =
ui, ju j,i

|∇×u(X)|2
. (11)

This ratio is invariant under the elementary change of refer-
ence frame by rotation, translation and Galilean transform, as
well as by arbitrary dilation of u and of length scale. Moreover
Ra takes different values according to the type of the velocity
field (assumed to be divergenceless) , for instance an uniform
rotation yields Ra= 0 because the numerator cancels, whereas
a uniform shear field yields a non zero constant Ra. It is not
too hard to write the general expression of Ra as a function of
the first derivatives of the incompressible velocity field at one
point. Because Ra is a dimensionless ratio (depending on X),
any numerical function of it may multiply the right hand side
of the equation for the Reynolds stress as a function of the av-
erage velocity field by keeping the constraints of Galilean and
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7

frame-invariance together with the independence with respect
to an a priori defined length scale.

Other combinations than Ra may also be built from the ve-
locity field by keeping the same symmetries. One can re-
place the numerator ui, ju j,i by the higher order polynomial
ui, ju j,kuk,i or its extensions to any power of the gradient of the
velocity field. Once divided by the right power of the modulus
of the curl of u one obtains a scalar depending in a dimension-
less way of the average velocity field and its derivatives

Rb =
ui, ju j,kuk,i

|∇×u(X)|3
.

Moreover, because Ra, Rb and their higher order kins are di-
mensionless scalars one can put them in the argument of nu-
merical functions substituting the numerical constant K with
a result that is a quantity keeping the invariance properties of
Ra, Rb, etc. Multiplying equations (10) for Reynolds stress by
such functions leaves a lot of freedom for modeling turbulent
flows with a more or less complex structures.

The equation for the average velocity in the turbulent flow
is a time-independent equation derived by adding Reynolds
stress to the term uiu j in the equation for the time averaged
Euler equation for the momentum. This yields

∂i(ρuiu j +σ
(Re)
i j )+∂ j p = 0, (12)

The condition of incompressibility ∂ui
∂xi

= 0 is to be added to
equations (10) and (12) in order to derive the spatial depen-
dance of the time averaged velocity u(X). The applicability
of equation (10) to given situations like the turbulent flow in
a pipe is dealt with in next section. It shows that in the case
of pipe flows as well as in other cases like flows in 2d geome-
tries the integral in this equation diverge logarithmically. The
convergence of this integral is looked at in the following sec-
tion, and a solution is proposed in subsection III D to bypass
this difficulty without introducing an arbitrary cut-off at large
distance.

III. POISEUILLE FLOW IN A PIPE

An example showing how to use these equations for spe-
cific problems of fluid mechanics, is the case of Poiseuille
flow in a pipe with the axis along the coordinate x. For plane
or circular Poiseuille flow, the x-component of the velocity is
the only one which is non-zero and it depends on (y,z) only.
Therefore the only non-vanishing components of σRe

i j in (13)
are σRe

xy (y,z) and σRe
xz (y,z). From the symmetry of the stress

tensor, two other components are non zero, one has σRe
xy = σRe

yx
and σRe

xz = σRe
zx .

For a pipe of circular section, the various quantities in-
volved depend on the radial distance only, r = (y2 + z2)1/2

and the non vanishing component of the Reynolds stress writ-
ten with the cylindrical coordinates (x,r) is σRe

xr (r). Our aim
is to derive the mean velocity profile u(r) testing the different
expressions of σRe

i j introduced above.
An obvious remark about the above expression of the

Reynolds stress is that it is Galilean invariant, which means

that by adding an arbitrary constant velocity to a solution one
gets the same value of the stress tensor. For a flow around a
blunt body this Galilean transform does not yield another solu-
tion, because it is not compatible with the boundary condition
on the surface of the body, namely that the normal velocity is
zero on this surface. This is clearly different for a pipe flow
without viscosity where addition of a constant velocity paral-
lel to the axis of the pipe is permitted and is compatible with
the boundary condition for an inviscid fluid since the tangen-
tial velocity is arbitrary on a solid. But this is not the case
anymore for a viscous fluid, which ultimately explains why
turbulence in pipe flows is special, because of the existence of
boundary layers on the walls. This is discussed at the end of
this section.

A. flow in finite length pipe

In the turbulent regime with strong vorticity, dropping the
potential term in (10), and balancing the vorticity between the
space points X and X ′, that is more general than in (10), we
assume that the Reynolds stress is of the form

σ
Re
i j (X)=Kρ|∇×u(X)|1−α

∫
dX ′
|∇×u(X ′)|α

|X−X ′|
(ui, j+u j,i)(X ′),

(13)
where the exponent α is such that |α| < 1. We consider a
pipe with circular cross section of radius R, aligned along
the x-direction. Let u be the x-component of the velocity.
The various quantities involved depend on the radial distance
only, r = (y2 + z2)1/2 and the non vanishing component of the
Reynolds stress written with the cylindrical coordinates (x,r)
is

σ
Re
xr (r) =Kρ|u,r(r)|1−α

∫ R

0
dr′r′|u,r′(r′)|α u,r′(r

′)
∫ +∞

−∞

dx′

×
∫ 2π

0
dϕ

1
(r2 + r′2−2rr′ cos(ϕ)+ x′2)1/2 . (14)

In the simple case of a long pipe of length 2L, with L >>
R, the calculation at x = 0 (in the middle of the pipe) can
be performed analytically. Defining a2(r,r′,ϕ) = r2 + r′2−
2rr′ cosϕ . the integral over x′ is

I(ϕ,r,r′) =
∫ +L

−L
dx′

1
(r2 + r′2−2rr′ cos(ϕ)+ x′2)1/2

= ln
1+
√
(a/L)2 +1

−1+
√

(a/L)2 +1
, (15)

The integral over ϕ of I(ϕ,r,r′) gives a function depending on
r and r′,

I (r,r′) = 2
∫

π

0
dϕI(ϕ,r,r′). (16)

Numerically we find that as r/R approaches unity, the curves
I (r,r′), as functions of r′, get the asymptotic constant value

cϕ = 4π ln(2L/R) (17)
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FIG. 1. Set of functions r′I (r,r′) versus r′, for several values of
r, the radial variables being scaled to the pipe radius. The insert
displays the functions I (r,r′) versus r′, for given r. The r values
increase monotonically from the upper curve to the lower one (r = 0
for the upper curve). L/R = 50.

This relation can be derived by expanding (15) with respect
to a/L, which gives I(ϕ,r,r′) = 2ln2− ln(a/L)2 +O(a2/L2).
As r decreases towards zero, the curves I (r,r′) versus r′ do
not remain constant, while keeping the asymptotic value cϕ

at r′/R = 1, see the insert in Fig.(1). However we have ob-
served that approximating I (r,r′) by the constant cϕ , for any
r values, yields a velocity profile which agrees very well with
the exact calculation. This can be understood from the follow-
ing argument. Ignoring the radial dependence of ur′ , we note
that the integrand of (14) contains the factor r′. By looking at
the curves r′I (r,r′) versus r′ (for different r values), one ob-
serves that they roughly merge with the linear function cϕ r′,
see the main curves in Fig.(b).

The next step to derive the radial profile, is to identify the
solution of (14) with the solution of (12) for a circular pipe
submitted to uniform pressure gradient in the x-direction. In
cylindrical coordinates (12) becomes

1
r

d(rσRe
xr (r))
dr

+C = 0, (18)

where C = p,x/ρ is a constant, which will be taken positive
in the following, and where the function σRe

xr (r) is given by
equation (14). A solution of (18) is

σ
Re
xr (r) =−

C
2

r+
A
r

, (19)

where A is a constant. On the axis of the pipe this solution
diverges except for A=0. However let us notice that the stress
tensor must vanish at the surface of the pipe r = R, where
the fluctuations normal to the surfaces vanish. Therefore the
solution σRe

xr (r) = −C
2 r is not valid close to the pipe surface,

where (18) has to include the viscous term ν
∂ 2u
∂ r2 which was

neglected above whereas it becomes of leading order in the
inner boundary layer. In this domain (18) has to be replaced
by

1
r

∂

∂ r
r(σRe

xr (r)−ρν
∂u
∂ r

)+C = 0. (20)

Escaping this boundary problem for the moment, the velocity
profile of the flow has to obey the following equation in terms

of the scaled variables r/R = r̂ and r′/R = r̂′

C
2

r̂ = Kρ|u,r̂|1−α

∫ 1

0
dr̂′|u,r̂′ |1+α r̂′ I (r̂, r̂′). (21)

At zero order with respect to the approximation mentioned
above, namely that I (r,r′) ≈ cϕ is independent of r, the so-
lution of (21) is u(0),r̂ (r̂) = kα r̂1/(1−α) with

k2
α =

3−α

1−α

C
2Kρcϕ

. (22)

Assuming u(1) = 0 at the boundary of the pipe, the velocity
field is given by

u(0)(r̂) = ku (1− r̂ξ ), (23)

where

ku = kα

1−α

2−α
ξ =

2−α

1−α
. (24)

The profile is flatter and flatter as the exponent α approaches
unity, see Fig.2(a). The good agreement between the zero or-
der solution and the first order one is illustrated in Fig.2(b)
where the first order solution is obtained by solving (21) with
the correct functions I (r̂, r̂′) and taking for u,r̂′ (in the in-
tegrand) the r̂′-derivative of u(0)(r̂′). This result proves that
although the expression of the Reynolds stress depends for-
mally on the average velocity in a non local way, the non lo-
cality only changes the amplitude of the solution , since the
approximation made above and justified by fig.(b), amounts
to change (14) into σRe

xr (r) = K′ρ|u,r(r)|1−α , where the con-
stant K′ is equal to K times an integral independent of r.

B. Velocity profile close to the boundary

Let us now return to the boundary condition for the aver-
aged velocity field u(r). From the way this stress was built
one may guess that the boundary condition is the same as for
a viscous fluid, namely that the velocity on the surface of the
solid is the local velocity of this solid, which amounts to im-
pose u = 0 at the radius r = R of the pipe. To take a physical
case where the boundary condition on the bounding surface
plays an important role, we recall the experimental work by
Nikuradse14 in the nineteen thirties who reported a significant
sensitivity of the turbulent friction with respect to a controlled
roughness of the pipe wall. This is hard to explain if one as-
sumes that turbulence is generated by large scale motion in-
flows decaying to small dissipative scales by non linear inter-
action. We note τ the tangential constraint,

τ(r) = ρν
∂ ū
∂ r
−σ

Re
xr (r), (25)

which has to satisfy (20), or

∂

∂ r
(r τ(r)) =C r, (26)
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FIG. 2. (a)Profiles of the velocity along the diameter of the pipe for
α = 1/4 in blue dashed line, α = 1/2 in purple dotted line, α =
3/4 in red solid line, L/R = 50 and the velocity is scaled to γ =

( C
2Kρcϕ

)1/2. (b) Solution of (21), derivative of the velocity versus r/R
for α = 3/4. The solid blue line displays the leading order solution
(23) obtained with the approximation I (r,r′) ≈ cϕ , the points are
obtained by iteration at first order, only few of them are reported for
clarity.

in the whole profile.
In the viscous domain, of width δ assumed to be much

smaller than the radius, the solution of (26) at distance z from
the boundary, is τ(R− z) = τ∗−Cz, where τ∗ = τ(R) is un-
known for the moment. Let us precise that we consider the
case of smooth surface, namely with roughness smaller than
δ . The tangential stress is supposed to be constant in the vis-
cous layer, that implies δ << τ∗/C. It follows that the solution
for z < δ is

uvis(z) = τ∗z/(ρν), (27)

which has to be linked for z > δ to the turbulent solution,
of the form (23) up to a constant (see below). Note that the
connection consists in relying two pieces of u(r) with very
different slopes, the linear solution of slope uvis

,z = τ∗/(ρν)
and the turbulent solution of slope of order U/R, with U the
mean velocity in the turbulent domain. The ratio of these two
slopes is equal to the Reynolds number. This is the familiar
phenomenon of boundary layer: in the present case the so-
called outer flow field is given by the solution of the integral
equation. Near the wall, in the inner domain, viscosity comes
into play and another approximation should be used. The two
domains, inner and outer, should overlap in a common range
of radii. In the present formulation of this question and con-
trary to other approaches to this question, we have at our dis-
posal an explicit equation for the turbulent stress which yields
therefore an also explicit boundary layer analysis whereas this

problem is usually dealt within Prandtl or Prandtl-like approx-
imation of the turbulent averages, which does not extend to the
flow far from the wall (see recent work on this idea15). This
outer region, which is in fact a transitory domain separating
the inner viscous region from the flow far from the wall (of-
ten behaving like a plug flow), has been often described to
obey a logarithmic law12, although its experimental observa-
tion remains a challenge due to the high Reynolds numbers
needed16. So far, in our analytical results using the approxi-
mations explained above, we do not obtain clearly such loga-
rithmic evolution. However, we want to argue that such tran-
sient behavior can mimic easily a logarithmic law as already
discussed in turbulent channel flow models, so that the log-
arithmic behavior could be present in our model17. We plan
in fact to publish a detailed analysis of the way the viscous
boundary layer can be matched with the turbulent core of the
pipe flow and to compare it with existing models and experi-
mental results, particularly concerning the matching between
the boundary layer and the solution in the core.

Specifically it is highly significant there to use the degree
of freedom provided by the possible addition of an arbitrary
uniform velocity field along the axis and outside of the viscous
boundary layer.

C. Navier condition

In the theory presented here the sensitivity to surface rough-
ness could follow from the substitution to the regular bound-
ary condition of continuity of tangential velocity along a
smooth wall by a so-called mixed condition of the Navier type
like

ut +λ
∂ut

∂n
= 0, (28)

where ut is the component of u tangent to the surface , ut = u
here and n the coordinate locally normal to this surface, n = z
here. The quantity denoted as λ has the physical dimension
of a length. It represents, for a rough surface the r.m.s. of the
fluctuations of height of the rough surface. With such a bound-
ary condition, the solution of equation (18) for the Reynolds
stress depends on λ . Because there is no length parameter in
the problem besides geometrical parameter of the flow, like
the diameter of pipes in Poiseuille flows, it could be that the
final result, namely the drag per unit length of the pipe, de-
pends sensitively on the length λ , as observed. This contrasts
with the predictions of a theory based on the idea that large
scale motion dominates dissipation by transfer of energy to-
ward small scales: if one follows this idea it seems very hard
to understand the sensitivity of observed dissipation to rough-
ness of the boundaries, a roughness that changes small scales
of the Euler dynamics only.

Let us point out that, contrary to the viscous case, all terms
in the equation (12) for the balance of longitudinal momen-
tum are quadratic with respect to the velocity. It is also im-
portant to point out that the mean velocity in equation (12)
changes sign, as it should, when the pressure gradient driv-
ing the flow changes sign. In the case of a parallel flow in

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/1.

51
44

14
7



10

a pipe, the inertial stress uiu j doesn’t contribute to equation
(12). By changing the sign of the velocity, Reynolds stress
σ
(Re)
i j changes sign.

D. Divergence of integral in equation (10)

As shown by equation (17) the integral over X ′ in equation
(10) diverges logarithmically at large values of the coordinate
x′ along the direction of the pipe. Such a divergence is not un-
expected because the integrand in this equation is proportional
to the inverse of |X ′−X | and so, if a component of X ′ does
appear only there in the integrand, as is the case for x′, the in-
tegral diverges. The same divergence would appear in any 2D
geometry where the dimension perpendicular to the one of the
flow is large. For instance in the case of a velocity flow in the
x direction bounded by a half plane y = z = 0, y and z being
the two other coordinates besides x. Therefore this logarith-
mic divergence seems to be quite common in situations where
equation (13) could be pertinent. Indeed, as done in the pre-
vious section, one can avoid the divergence of the integral by
considering a pipe with finite length L. However there is an-
other way to get rid of this divergence by borrowing somehow
ideas from quantum field theory, known to face logarithmic
divergences and to get rid of them. This is done by "renor-
malizing" the coefficients of the bare theory. Without making
a too close link between the two theories, one could view this
"renormalization" (in the sense of Dirac and Heisenberg) as a
way to get rid of the divergence by considering a coefficient K
tending to zero as L diverges. Without being too accurate, this
could amount to subtract from the right-hand side of equation
(13) the same integral, but with |X ′| instead of |X ′−X |. This
is permitted according to the two principles lead out to derive
this equation, (a) no arbitrary length scale is introduced in this
way and (b) the basic symmetries, Galilean and rotational, are
preserved. The result is the following integral equation for the
renormalized Reynolds stress,

σ
Re
i j (X) =Kρ|∇×u(X)|1−α

∫
dX ′|∇×u(X ′)|α

×( 1
|(X−X ′|

− 1
|X ′|

)(ui, j +u j,i)(X ′), (29)

This expression of the turbulent Reynolds stress can be used
also for the turbulent Poiseuille flow, but now an upper length
scale is not necessary. In this case the solution is still given by
(21) but equation (15) is replaced by

I(ϕ,r,r′) =
∫ +∞

−∞

dx′(
1

(r2 + r′2−2rr′ cos(ϕ)+ x′2)1/2

− 1
(r′2 + x′2)1/2 ) = ln

(
a(r,r′,ϕ)
a(0,r′,ϕ)

)2

(30)

which is independant of the pipe length. The integral in this
expression converges, as expected. The integration over ϕ of
(30) is easier by using the variable x = cosϕ , it gives

I (r,r′) =
∫ 1

0
dx

1√
1− x2

ln
(
(1+

r
r′
)2 +4

r
r′

x2
)

(31)

0.2 0.4 0.6 0.8 1.0
r'
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r'I((r,r')

FIG. 3. Functions r′I (r,r′) versus r′ for values of r =
1/4, 1/2, 3/4, 1, from bottom to top. The radial variables are r̂, r̂′

in the text, they are scaled to the pipe radius R.

The term r′ I (r,r′) which is under the integral in equation
(21) is plotted versus r′ in Fig. 3, for several values of r,
see captions. For a given value of r, this kernel is the differ-
ence between the top curve and the lower curve corresponding
to the selected r value in Fig.1. Note that the new function
I (r,r′) depends now on the variable r, although it was quite
independent on r in section III A (cf the approximation made
there).

Actually the new kernel corresponds to the term which have
been neglected above when we derived the approximate ex-
pression (23) for the velocity profile u(r). Nevertheless the
numerical solution for this renormalized model of the stress
tensor leads also (as in in section III A) to profiles u(r) get-
ting flatter and flatter as the exponent α approaches unity, as
shown in Fig. 4. The solutions are obtained by iteration. Us-
ing the scaled velocity u→ u/γ2 with γ2 = ( C

2Kρ
)1/2, equation

(21) becomes

|u,r̂|1−α

∫ 1

0
dr̂′|u,r̂′ |α u,r̂′ r̂

′ I (r̂, r̂′).=−r̂. (32)

At order zero we assume u(0),r̂′ = −r̂′β , where β is an ad-
justable exponent, see below. Inserting this expression inside
the integral I in the l.h.s. of (32), we get the first order so-
lution [u(1),r̂ ]1−α = −r̂ I(0)(1)/I(0)(r̂), where the factor I(0)(1)

ensures that u(1),r̂ (1) =−1. Then we repeat this procedure un-
til the solution converges. We observed that the convergence
arises very rapidly when using u(0),r̂ = −r̂ for α of order 1/2,

and using u(0),r̂ =−r̂3 for α close to unity, something obvious
when looking at the profiles in Fig.4.

We plan to use this model (29) for the Reynolds tensor to
solve other problems of turbulent flows.

IV. CONCLUSION AND PERSPECTIVES

This work intended to explain how the centuries-old (ex-
actly 333 years this year) law of drag by Newton can be
used to illustrate that the dissipation occurs in fully developed
turbulence by singular events, which are local in space and
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FIG. 4. Profiles of the velocity along the diameter of the pipe, for
α = 1/2, 3/4, 0.82, 0.9 from top curves to lower ones. The curves
display u(r)− u(1), with velocity scaled to γ2 = ( C

2Kρ
)1/2 and z

scaled to the pipe radius R.

time and described, until the time of blow-up, by solutions of
the 3D Euler equations for incompressible fluids. A conse-
quence of that is an explicit equation for the space dependent
(but time averaged) velocity, resulting from an expression of
Reynolds stress as a function of this average fluid velocity.
Our approach differs from the classical approaches initiated
by Boussinesq and Prandtl since no explicit turbulent viscos-
ity is introduced12. The Reynolds stress tensor is therefore
only determined by the mean flow field and witnesses the sin-
gularity of the inviscid flows because no extrinsic lengthscale
is needed. This opens new perspectives. To take an example,
the equation for the average velocity has a fairly nontrivial
structure, being non linear, non local and non analytic. There-
fore it could well be that, with given boundary conditions, it
has more than one solution (a property not found in the ex-
emple of Sec.III), as has its simpler counterpart for viscous
fluid equations. This would fit well with the observation that
turbulent flows may show bifurcations as reported by Coles18

in the case of circular Couette flows.
Another unexplained mystery in experimental turbulence is

Toms effect19. This fairly spectacular phenomenon has long
been observed. It displays an important drag reduction in tur-
bulent flows (usually pipe flows) by the addition of minute
amount of polymers in a concentration that does not change
appreciably the regular viscosity of the fluid. Any explanation
of this effect has to rely on the lessening of turbulent dissi-
pation in such a flow. If dissipation is in singular events it
could be that the rush to small scales in the corresponding
self-similar solutions is stopped by polymers elongated in a
more or less distorted state. This could stop the collapse pro-
cess before its dissipative end. This strengthens the notion put
forth by de Gennes19 that polymer additives suppress motions
at the small length scales where the strain rates are high, cut-

ting off the evolution of fluctuations toward small dissipative
scales.
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