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We investigate experimentally the quenching of a liquid pancake, obtained through the impact of a water
drop on a cold solid substrate (0 °C to −60 °C). We show that, below a certain substrate temperature,
fractures appear on the frozen pancake and the crack patterns change from a 2D fragmentation regime to a
hierarchical fracture regime as the thermal shock increases. The different regimes are discussed and the
transition temperatures are estimated through classical fracture scaling arguments. Finally, a phase diagram
presents how these regimes can be controlled by the drop impact parameters.
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When molten glass drips into cold water, the outside
cools—and shrinks—faster than the inside, creating pent-
up tension in the so-called Prince Rupert’s drop, known
since before 1625 to have very striking mechanical proper-
ties [1,2]. Indeed, while the drop’s head stays impervious to
even the strongest blows, flick the tail and the whole drop
shatters in a myriad of small pieces, in less than a
millisecond. In the same way, fragmentation is in fact
present in many physical processes, from jet atomization to
bubble bursting in fluids [3–5], from spaghetti breaking [6]
to popping balloons [7] or broken windows in solids [8,9].
It is related to diverse applications such as comminution
[10], shell case bursting [11,12], ash generation during
eruption [13,14], cooling lava [15], or meteoric cratering
[16], for instance.
Fragmentation is thus a sudden process, where the whole

considered domain divides extremely rapidly. At least as
ubiquitous, there exists a completely different crack mor-
phology where a space-dividing pattern shows a strong
hierarchy of slower fractures [17]. Fractures develop
successively, and each new fracture joins older fractures
at a typical angle close to 90° [18,19]. Such patterns are
usually observed when the shrinking of a material layer is
frustrated by its deposition on a nonshrinking substrate,
such as drying-induced cracks in mud [20,21], coffee [22],
colloidal silicas [23], industrial coating [24], or artistic
painting [25].
In this Letter, we investigate experimentally the quench-

ing of a liquid pancake (Fig. 1) that is obtained through the
impact of a water drop on a cold solid substrate. We show
for the first time that, as a function of the substrate
temperature, the crack patterns produced by the thermal
shock change from a 2D fragmentation regime to a
hierarchical fracture regime [Fig. 2(a)].
The experimental setup consists of releasing a drop of

water, with a diameter D0 ¼ 3.9 mm, on a steel substrate,
so as to form a liquid pancake of radius R and typical
thickness h0 (Fig. 1). At room temperature, both are

determined by the impact parameters (see, e.g., Ref. [26]
for the exact expression). The impact velocity is close to the
free fall one: U0 ∼

ffiffiffiffiffiffiffi
gH

p
, where H is the falling height.

Throughout most of the Letter, the falling height will be
kept constant at H ¼ 36 cm. The subsequent pancake
radius is R≃ 8 mm, from which pancake thickness can
be estimated by balancing the volume of the drop with that
of the cylindrical pancake h0 ¼ D3

0=6R
2 ≃ 150 μm. The

temperature of the substrate Ts is homogeneous, measured
by contact thermometers at different locations, and typi-
cally varies from the water freezing temperature, 0 °C, to
−60 °C. The desired temperature is reached by plunging a
large cube of stainless steel (103 cm3) into liquid nitrogen.
The whole experiment is made into a glove box where the
humidity is controlled in order to avoid frost formation.
Because of the small experiment time (max ∼1 s), we can
keep in mind that the substrate remains at constant temper-
ature during the dynamics. The drop dynamics is visualized
using a high-speed camera recording the spreading from
the top.
Figures 2(b) and 2(c) present time sequences for different

substrate temperatures, −31 °C and −60 °C, respectively. In
both impact sequences, the drop spreads on the substrate
until it reaches its maximum diameter, captured in the
second image. During this phase, the droplet remains liquid
but a thin layer of ice forms upon contact with the substrate.
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FIG. 1. Scheme of the frozen pancake obtained after a liquid
drop impacted a cold substrate. The pancake has a radius R and a
typical thickness h0. The substrate, at a temperature Ts, cools the
pancake, so that a layer of thickness hðtÞ is frozen, above which
the liquid is at the freezing temperature T0.
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In contrast to the situation at room temperature [26], almost
no retraction of the drop is further observed since it is
pinned on the solid substrate, most probably by this ice
layer. Instead, capillary waves propagate on the spread
droplet, which now has the shape of a pancake. In the
meantime, the solidification of the drop occurs, observed in
Fig. 2(b) through a front that develops radially from the
pancake edge towards its center, forming eventually a
doughnut that solidifies (t ∼ 500 ms) because of the com-
plex dynamics of the solidification front [27]. After that
point [t ∼ 500 ms in Fig. 2(b)], the whole pancake is frozen
and keeps cooling. It is therefore shrinking, but the
adhesion to the solid substrate limits this ice contraction.
This frustration causes mechanical tensions that are sud-
denly relaxed by the formation of a pattern of fractures.
This remarkable dynamics, called fragmentation, is a 2D
equivalent to the Prince Rupert’s drop shattering described
in the Introduction. This solid fragmentation seems to
propagate radially from a nucleation point. Experimental
estimation gives a high front propagation velocity, typically
between 800 and 1000 ms−1, which is a fraction of the
Rayleigh wave speed.
Figure 2(c) presents the same drop impact experiment,

but on an even colder substrate (−46 °C). In this case,

shortly after the drop has pinned, while ripples are still
visible, first fractures are observed on a growing ice layer
(t ∼ 28 ms). Then more cracks propagate, hierarchically,
by a successive division of the frozen drop. The crack
pattern here is typical of hierarchical fractures [17], with
the younger crack joining the older one at an angle close
to 90°. The domains are larger—and consequently less
numerous—than in the fragmentation regime. Note that, if
this particular cracking dynamics is very similar to what is
observed in the case of desiccation [22], the time scales are
much shorter.
To summarize the qualitative description of our experi-

ment, the main different patterns are shown in Fig. 2(a) as a
function of the temperature difference ΔT ¼ T0 − Ts,
where Ts is the substrate temperature and T0 ¼ 0 °C is
the water freezing temperature. They are gathered in three
different regimes: (I) At low ΔT, the solid pancake remains
smooth—no cracks are present. (II) The fragmentation
regime, at intermediate ΔT—the cracks appear suddenly
from a nucleation point. (III) The hierarchical regime, at
high ΔT—the cracks are formed step by step.
The two sequences described above, Figs. 2(b) and 2(c),

belong to the beginning of regime II and the end of regime
III, respectively. We observe that, close to the transition
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FIG. 2. (a) Frieze presenting snapshots of the frozen pancakes formed after a water drop impacted, from a falling heightH ¼ 36 cm, a
cold substrate at various temperatures, Ts ¼ −20.0 °C, −31.1 °C, −41.2 °C, −50.3 °C, and −59.6 °C from left to right (with ΔT ¼ −Ts).
Depending on ΔT, the frozen pancake presents different crack patterns that can be gathered into three different regimes: (I) no cracks,

(II) fragmentation regime, (III) hierarchical fracture regime. The transition temperatures are ΔTðexpÞ
I-II ∼ 27 °C and ΔTðexpÞ

II−III ∼ 42 °C.
(b) Sequence showing the drop impact and solidification dynamics preceding the fracture pattern observed on the second image of (a):
Ts ¼ −31.1 °C. (c) Sequence preceding the fracture pattern observed on the fifth image of (a): Ts ¼ −59.6 °C. On these two sequences,
the time and the scale bar are on the images.
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between the regimes, intermediate cases appear, with
fragmentation only on the edge of the pancake or the
mix between the fragmentation and hierarchical fractures.
It is also worth emphasizing that while the fragmentation
occurs after the whole pancake has solidified, the hierar-
chical cracks are usually formed during the solidification
phase: if the bottom part of the pancake is solid, a liquid
layer is still present on the top. Finally, this experiment
provides, to our knowledge, the first example where it is
possible to pass continuously from a fragmentation to a
hierarchical regime using a simple control parameter.
Thermal shock in ceramic [28,29] might display compa-
rable behavior, but this has not been observed so far.
These different regimes can be understood using

classical fracture arguments [30]: indeed, since the freezing
of the liquid is at 0 °C, the new solid is submitted to a rapid
thermal contraction since the substrate temperature is
smaller. If the ensuing deformation energy is high enough,
fractures can appear in the frozen pancake. This mechanism
can be quantified using energy balance [31,32]: we assume
a linear isotropic elastic behavior of ice, with a Young’s
modulus E ¼ 9.33 GPa. Its thermal contraction induces a
deformation tensor field εthðx; tÞ ¼ αδTI, where α ¼ 5.3 ×
10−5 K−1 is the ice thermal expansion coefficient taken
constant here [33], I is the identity tensor, and δT ¼
T0 − Tðx; tÞ, with Tðx; tÞ being the local time-dependent
temperature in the ice domain. The density of the elastic
energy induced by this thermal contraction reads, there-
fore, E ¼ 3

2
Eα2δT2.

A fracture in a brittle material consists of the formation
of a new interface, associated with an energy per unit
surface, the so-called Griffith energy, Gc ≃ 1 kg s−2 [34].
Balancing the elastic energy due to the thermal contraction
of a cubic ice of length Lc, with homogeneous temperature
Ts, 3EðαΔTÞ2L3

c=2, with the energy of a crack breaking the
cube in the two part 2GcL2

c, leads to the introduction of the
Griffith length:

Lc ¼
4Gc

3Eα2ΔT2
: ð1Þ

Above this typical length, breaking the shrunk solid
becomes energetically favorable.
In our system, three regimes can therefore be identified

in the crack formation, depending on the ratio between the
Griffith length Lc and the typical height h0 of the liquid
pancake [35]. If h0 ≪ Lc, no crack formation is expected
from the thermal shock, this first regime is observed in the
first image of Fig. 2(a). On the other hand, for h0 ≫ Lc, one
expects the cracks to appear before the whole solidification
of the pancake, when a solid ice layer of thickness of the
order of Lc is formed. This is the behavior observed in
Fig. 2(c) and, therefore, corresponding to regime III. In
between, for h0 ∼ Lc, one expects the cracks to be formed
when the whole pancake is solid, and we identify the latter

behavior with regime II [Fig. 2(b)], where the frozen
pancake fragments into a myriad of small pieces of a
typical size h0 [17].
Let us start by estimating the appearance temperature of

the first cracks at the frontier between regimes I and II,
ΔTI-II. Energy balance requires the total elastic energy in
the frozen pancake to be greater than the surface energy of
all of the fractures, namely,

3

2
Eα2ΔT2πR2h0 ≥ 4

πR2

h20
Gch20;

where the ratio πR2=h20 is the number of pieces of the
typical size h0 formed by the fragmentation. It leads to the
relation

ΔT2 ≥ ΔT2
I-II ¼

8Gc

3Eα2h0
: ð2Þ

For ΔT > ΔTI-II, the cracks are energetically favorable,
while no cracks should be observed otherwise. At this
transition temperature, the pancake thickness is then found
to be twice the Griffith length. Taking the values of E, Gc,
and h0 given above leads to ΔTI-II ∼ 26 °C, which is in
excellent agreement with the experimental transition tem-

perature to fragmentation ΔTðexpÞ
I-II ∼ 27 °C (Fig. 2).

On the other hand, when h0 ≫ Lc, fractures can form
before the full solidification of the liquid pancake, and we
identify there regime III, where the cracks appear step by
step. In this case, the solid layer of the thickness hðtÞ grows
with time as the pancake freezes (see Fig. 1), while the
liquid temperature can be considered constant and equal to
T0 because of the high contrast between the water and air
thermal conductivities. The diffusive heat flux through this
solid layer, Q ¼ −λ∂zT, is then balanced, at the solidifi-
cation front, by the solidification rate −ρsL _hðtÞ. Here,
L ¼ 333.5 kJ kg−1 is the ice-water latent heat per unit
mass, ρs ¼ 920 kgm−3 the density of the ice, and λ ¼
2.4 Wm−1K−1 its thermal conductivity [33]. This gives a
time scale for the solidification process, τs ¼ ρsLh2=λΔT.
Comparing the latter to the time scale of heat diffusion
τd ¼ h2=D leads to the Stefan number:

St ¼ CpΔT
L

¼ τd
τs
;

where D ¼ λ=ρsCp ¼ 1.3 × 10−6 m2 s−1 is the heat diffu-
sion coefficient of the ice. In our experiments, the Stefan
number is always smaller than one, indicating that the
diffusion process is always faster than the solidification
dynamics. Therefore, we can consider that the temperature
field in the ice layer is in a quasistationary regime, obeying
the stationary diffusion equation. Taking a simple horizon-
tal ice layer of height hðtÞ, it reads ∂zzT ¼ 0, with the
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boundary conditions Tð0; tÞ ¼ Ts and T(hðtÞ; t) ¼ T0

since the temperature at the solidification front z ¼ hðtÞ
is the freezing temperature. This leads to the linear temper-
ature field:

Tðz; tÞ ¼ Ts þ ΔT
z

hðtÞ : ð3Þ

Now, balancing the time-dependent diffusive heat flux
through the ice,Q ¼ −λ∂zT ¼ −λΔT=hðtÞ, with the solidi-
fication rate, −ρsL _hðtÞ, gives the following time evolution
for the ice layer:

h2ðtÞ ¼ 2λΔT
ρsL

t ¼ 2StDt;

with hð0Þ ¼ 0. Considering that the formation of the first
crack happens when hðtcÞ ∝ Lc [Eq. (1)], it gives for the
time of cracks appearance in regime III

tc ∝
8ρsLG2

c

9λE2α4ΔT5
: ð4Þ

This first crack time tc has been measured for all of our
experiments, varying both the impact velocity and the
substrate temperature, and is shown in Fig. 3. The closed
triangles correspond to the appearance of the first crack in
regime III, in reasonable agreement with theΔT−5 variation
predicted by the relation (4), plotted with a dashed line.
This confirms our model where quasistationary heat dif-
fusion in the ice layer drives the solidification rate, and the

first crack appears when the thickness of the ice layer is
close to the Griffith length. On the contrary, the open
diamonds corresponding to the fragmentation time in
regime II do not follow the same scaling since the
solidification dynamics and the temperature fields in the
solid are different.
Finally, the transition between regimes II and III is

expected when h0 ∼ Lc. Then the elastic energy in the ice
block has to be estimated at the time when the solidification
ends; namely, when hðtÞ ¼ h0. Integrating the elastic
energy density E on the pancake volume with the corre-
sponding temperature field [Eq. (3)] yields

3Eα2

2
ΔT2

II−IIIπR
2

Z
h0

0

�
1 −

z
h0

�
2

dz ¼ Eα2

2
ΔT2

II−IIIπR
2h0:

Balancing this energy with the minimal elastic energy
needed to fragment (3

2
Eα2ΔT2

I-IIπR
2h0) allows us to obtain

the transition temperature ΔTII-III separating the two
fracture regimes,

ΔTII-III ¼
ffiffiffi
3

p
ΔTI-II: ð5Þ

Taking ΔTI-II ∼ 26° computed above leads to ΔTII-III ∼ 45°,
which is in very good agreement with the experimental

transition temperature TðexpÞ
II-III ¼ 42°. Note that this gives a

pancake thickness 6 times larger than the Griffith length at
the transition.
Finally, only one falling height H has been considered

for the drop so far, which signifies that the shape of the
pancake has been kept almost constant. However, the drop
impact enables control of the pancake aspect ratio and
further on of the crack patterns of thin structures. Indeed, by
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FIG. 3. Appearance time of the first crack, tc, plotted as a
function of ΔT ¼ T0 − Ts ¼ −Ts, with Ts being the substrate
temperature, for five different falling heights of the impacting
drop. tc is determined considering the initial time when the drop
reached its maximum spreading diameter after impact. The open
diamonds correspond to the fragmentation regime (II), while the
closed triangles correspond to the hierarchical fracture regime
(III). The dashed line, representing tc ∝ ΔT−5, follows reason-
ably well the points in regime III.
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FIG. 4. Phase diagram for the cracks pattern as the substrate
temperature (−ΔT) and the drop impact velocity (here noted by
H, the height of the drop fall) vary. The three regimes observed
are represented with the same symbols and the same color as in
Fig. 2: white squares for regime I, red diamonds for regime II, and
blue triangles for regime III.
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varying the impact parameters and the substrate temper-
ature, our experimental setup allows us to span a large
range of spreading dynamics, leading to a broad variety of
frozen drop shapes [26,36,37]. Figure 4 displays the phase
diagram as both H and ΔT vary, where the three main
domains of Fig. 2 are retained, proving their universality.
However, we observe that the transition temperatures vary
nonmonotonically with the drop falling height: since
increasing H decreases the pancake thickness (h0), we
would expect the transition temperatures ΔTI-II ∝ h−1=20

[Eq. (2)] and ΔTII-III ¼
ffiffiffi
3

p
ΔTI-II [Eq. (5)] to increase with

H, which is only compatible in our experiment for H’s
greater than 25–30 cm. Below this height, the transition
temperature decreases, which is not predicted by our
model, probably because the frozen drop does not have
the pancake cylindrical shape of Fig. 1 anymore.
In conclusion, in this Letter the different crack regimes of a

frozen water pancake, shrunk by cooling and pinned on a
nonshrinking substrate, are investigated using classical
fracture scaling arguments. By increasing the thermal shock,
the pancake undergoes two regimes: from fragmentation to
hierarchical fracture. The appearance temperature of both
regimes are determined, along with the scaling of the first
crack time in the hierarchical fracture regime. This original
experiment, therefore, constitutes a model system enabling
us to easily investigate a broad range of fracture mechanisms
and to progress in the understanding of the multiphysics
aspects of crack patterns due to thermal shocks.
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