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Instruments that belong to the gong family exhibit nonlinear dynamics at large amplitudes of

vibration. In the specific case of the xiaoluo gong, this nonlinear behavior results in a pitch glide of

several modes of the instrument in addition to harmonic distortion and internal resonances. This

study applies a linear modal active control to a xiaoluo gong in an attempt to change its sound prop-

erties. First, a modal damping control of the fundamental mode based on a linear identification and

a state space controller is applied in the small amplitude regime (no pitch glide). Results indicate

that modal control influences not only the controlled mode but also the frequency components

involved in distortion or internal resonance phenomena. Second, a modal damping control is

performed in the large amplitude regime (in the presence of pitch glide). Results show that modal

control does not affect the pitch glide. However, the controller becomes effective at a time trigger

which is related to the instantaneous frequency. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4985108]

[TRM] Pages: 4567–4578

I. INTRODUCTION

Active control of musical instruments is of great interest

for improving instrument quality and enhancing musical per-

formance.1,2 Active control uses a feedback loop consisting

of a controller and a set of actuators and sensors added to the

vibrating part of the instrument. Among the variety of exist-

ing techniques, modal active control, based on the control of

identified vibration modes, has proven to be promising for

controlling the sound of instruments. The significant relation

between modal parameters and instrument’s sound3,4 allows

this control technique to explore new and interesting direc-

tions for the control of vibration characteristics and, there-

fore, the sound of the instrument. Since modal control relies

on linear models of the structures, it is particularly suited to

instruments that maintain a linear behavior in regular playing

conditions. The studies of Benacchio and coworkers5,6 and

Meurisse et al.7 are successful examples of experimental

modal control applied to a guitar soundboard and a simpli-

fied clarinet, respectively.

However, instrument resonators may present a nonlinear

response in normal playing conditions.4 This is especially

true for percussions. In the case of gongs and cymbals, vibra-

tion amplitudes on the order of the plate thickness lead to

geometrical nonlinearities in the instrument’s dynamic

behavior.8 In particular, typical plate vibration phenomena,

such as hysteresis, distortion, or chaos can be observed.9

When considering gongs, two main families can be

identified according to the intensity of the nonlinear effects

in the instrument’s behavior. The first family contains the

Chinese tam-tam and exhibits highly nonlinear vibrations

and chaotic behavior.10,11 The second family is referred to

weakly nonlinear percussions and includes Chinese opera

gongs which exhibit contrary pitch glides. In the current

study our attention focuses on Chinese opera gongs in order

to avoid chaotic behavior like those encountered in Chinese

tam-tams. The pitch glide of Chinese opera gongs depends

on the curvature and thickness of their central area.12 The

balance between these two parameters determines the hard-

ening or softening behavior of the instrument.8,13 The larger
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Chinese opera gongs, called daluo (Fig. 1, right), present a

flat central section and exhibit a hardening behavior associ-

ated with a downward pitch glide; smaller gongs, called

xiaoluo (Fig. 1, left), present a convex central section and

exhibit a softening behavior resulting in an upward pitch

glide.

Linear models are expected to be inadequate to predict

the nonlinear behavior of gongs. In consequence, the relevance

of using linear control techniques to control such instruments

is an open question. On the other hand, nonlinear control is

often difficult to handle as it requires the identification of non-

linear models14 which are so far incomplete for systems with

global nonlinearities like gongs. In this context, it may be

interesting to apply linear control to nonlinear instruments to

evaluate the relevance of such a technique for the control of

significant nonlinear phenomena inherent to these instruments.

Such control is of particular interest in the case of instruments

for which nonlinear phenomena—e.g., pitch glides in Chinese

gongs, or internal resonances in steel-pan15—significantly

influence the sound timbre.

In the present study, we aim to apply the simplified

framework of modal control16 applied to the xiaoluo gong.

In particular, we will infer the performances and limits of

modal control on phenomena induced by geometrical nonli-

nearities. For this purpose, our control experiments focus on

modal damping control, therefore excluding frequency

control. The modal control is specifically applied to the

fundamental mode in order to properly separate the origin of

nonlinear phenomena.

In order to explore the whole range of possible responses,

two distinct vibration regimes will be distinguished: In the

“small amplitude regime,” no pitch glide occurs and the main

nonlinear phenomena pertain to harmonic distorsions and

internal resonances. In the “large amplitude regime,” these

nonlinear phenomena also occur but a pitch glide of one or

several modes is additionally observed.

The present paper is organized as follows. Section II

provides a brief summary of the nonlinear dynamics of

gongs and modal active control theory. Then, the experimen-

tal set-up is presented in Sec. III. The results are reported in

Sec. IV, both for the small and large amplitude regimes.

Finally, the performances and limitations of modal control

are discussed in Sec. V. Some conclusions and perspectives

are presented in Sec. VI.

II. THEORETICAL BACKGROUND

A. Nonlinear behavior of Chinese opera gongs

Chinese gongs can be considered thin structures which

exhibit geometrical nonlinearities when subjected to large

amplitude flexural vibrations.10 In such cases, the relation-

ship between displacements and deformations can no longer

be considered as linear, leading to so-called geometrical

nonlinearities in dynamical equations that are responsible for

the appearance of specific phenomena.9 In the case of the

xiaoluo, these nonlinear phenomena correspond to harmonic

distortion, internal resonances, and pitch glides. The follow-

ing paragraph underlines qualitative rather than quantitative

features of Chinese gongs; for more details, the reader can

refer to Refs. 9 and 17.

An illustrative and simple example of the nonlinear

behavior of complex structures like gongs is given by

Thomas et al.8 These authors provide an analogy between

these structures and simple one-degree-of-freedom rod

systems which all exhibit nonlinear stretching for large mag-

nitude of the transverse displacement. In particular, for a

one-degree-of-freedom system with geometrical nonlinear-

ities, the equation of motion reduces to a Duffing equation

with an additional quadratic term. The nonlinear terms of

such equation are responsible for the appearance of two

nonlinear phenomena in the gong’s response: harmonic dis-

tortion and pitch glide.

Harmonic distortion refers to frequency components

with pulsations that are multiples of the oscillator modal

pulsation x0.9 In the case of the xiaoluo, these harmonics

emerge from very small vibration amplitudes. An example

of quadratic and cubic distortion of the fundamental mode

(x0 � 451 Hz) is shown in Fig. 2(a) (horizontal green

arrows).

Pitch glide corresponds to an amplitude-frequency

dependence of the oscillations. Assuming that the nonlinear

terms of the Duffing equation are small in comparison to the

linear terms, multiple scale methods9,18 can be applied to

establish the relationship between the pulsation x of the

vibration and the amplitude A of the displacement at fre-

quency x,

x ¼ x0ð1þ CA2Þ; (1)

where C 2 R. The sign of coefficient C controls the trend of

the nonlinearity, and thus the pitch glide direction of

Chinese gongs: for C> 0 the gong has hardening behavior,

whereas for C< 0 it has a softening behavior. The complete

expression of C is reported in Ref. 8. This frequency-

amplitude dependence of the xiaoluo is observed for several

modes in the large amplitude regime [see Fig. 2(b)]: the fun-

damental mode exhibits an upward pitch glide from 370 to

450 Hz highlighting a softening behavior.

The above discussion is valid for a one-degree-of-freedom

system. In a multiple degree-of-freedom system, internal

resonances may occur when two or more natural frequencies

are commensurable or near commensurable.9 Such resonan-

ces lead to strong coupling and energy exchanges between

the corresponding linear modes. The resonance relationships

FIG. 1. Two different Chinese opera gongs: the xiaoluo, displaying a convex

central section (left) and the daluo, displaying a flat central area (right).
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between modal frequencies depend on the order of the non-

linearity in the system.9 In playing conditions, identification

of internal resonances in the gong’s behavior is not straight-

forward as all modes are excited by a mallet strike.

However, the variation of the amplitude of the fundamental

mode sound in both vibration regimes (downwards red and

upwards yellow arrows in Fig. 2) suggest that energy

exchanges may take place between the fundamental mode

and other modes. Modal active control will demonstrate the

presence of such internal resonances in Sec. IV.

B. Theory of modal active control

Modal active control relies on a linear modal decompo-

sition of the structure dynamics. Therefore, the nonlinear

phenomena described in Sec. II A are not modelized by the

approach presented hereafter.

The rationale for the modelling approach adopted goes as

follows. In linear analysis, it is common to reduce the dynam-

ics of vibrating system to p selected eigenmodes. Each eigen-

mode is the solution of a one-degree-of-freedom oscillator

€qiðtÞ þ 2nixi _qiðtÞ þ x2
i qiðtÞ ¼ fi; 1 � i � p; (2)

where i refers to the eigenmode’s number (1 � i � p), qi,

_qi; and €qi to its displacement, velocity, and acceleration,

respectively, ni and xi to the modal damping ratio and modal

pulsation, and fi to the modal force. Modal control is

expressed in a so-called state-space formulation, that defines

the state vector X ¼ ½q1; :::; qp; _q1 ; :::; _qp �t and allows for the

p equations (2) to be arranged in one single first-order differ-

ential equation

_XðtÞ ¼ AXðtÞ þ GwðtÞ; (3)

where w(t) is the temporal disturbance signal and G defines

the spatial distribution of the perturbation w(t). Boldface

terms indicate matrices and vectors, and scalar variables are

shown in regular italicized fonts. Note that the output vibra-

tion of system Eq. (3), Y(t), is provided with the help of sen-

sor(s) and is related to the state-space vector XðtÞ by the

sensor gain matrix C, such that YðtÞ ¼ CXðtÞ.
The structure matrix A contains the p modal parameters

ni and xi. Defining the matrices X ¼ diagðx2
i Þ; N

¼ diagðniÞ, and 0p;p as the p� p null matrix, A can be writ-

ten as follows:

A ¼
0p;p Ip

�X �2NX

" #
:

The p modal frequencies and damping ratios of the sys-

tem are related to the 2p eigenvalues (or poles) of matrix A,

ki and its complex conjugate ki�,

ki ¼ �nixi þ jxi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

i

q
; i 2 v1; pb: (4)

The principal aim of modal active control is to alter the

system’s frequencies and damping ratios by a feedback com-

mand u(t) which is added to Eq. (3). The control command

introduces feedback terms that are proportional to modal dis-

placements and velocities. It is therefore proportional to the

state vector X through the control gain K. The command is

sent to the system with a set of actuator(s) which are charac-

terized by the actuator gain matrix B. This leads to the clas-

sical equation of a linear controlled system with a

disturbance w(t),

_XðtÞ ¼ AXðtÞ þ BuðtÞ þ GwðtÞ;
YðtÞ ¼ CXðtÞ; uðtÞ ¼ �KXðtÞ: (5)

If we consider a single-input, single-output (SISO) sys-

tem, B and C can be written as

B ¼
0p;1

gaP
a

" #
; C ¼ gsPs 01;p

� �
:

Pa and Ps stand for the modal characteristics of the actuator

and sensor, respectively. The gains of the actuator amplifier

and sensor conditioner are designated by the terms ga and gs.

The feedback loop introduced by the command u(t) allows

for modifying the system poles (corresponding to the eigen-

values of A� BK); such a change pertains to a modification

of the modal parameters xi and ni as described by Eq. (4).

The control gain K is derived from the user-defined target

poles using a pole placement algorithm.19

FIG. 2. (Color online) Spectrograms of the sound of the xiaoluo in (a) the

small amplitude regime (no pitch glide) and (b) the large amplitude regime

(with pitch glide). In both panels, alternating maxima (marked by down-

wards red arrows) and minima (marked by upwards yellow arrows) in the

vibration energy density indicate amplitude beats of the fundamental mode.

In (a), harmonic distortion of the fundamental mode (451 Hz) is visible at

double (902 Hz) and triple frequencies (1353 Hz) (marked by horizontal

green arrows). In (b), pitch glides of several modes, including the fundamen-

tal mode, can be distinguished.
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The determination of the command u implies the knowl-

edge ot the state-space vector X which is estimated by a

Luenberger observer. The observer is characterized by the

observer gain L that minimizes the error between the real

and estimated output signals Y and bY , respectively. Gain L is

also obtained by a pole placement algorithm.19 In total, the

governing equations of the entire system are then

_bX ðtÞ ¼ ðAm � BmKÞbXðtÞ þ LðYðtÞ � bYðtÞÞ;bYðtÞ ¼ Cm
bXðtÞ; uðtÞ ¼ �KbXðtÞ; (6)

where bX is the estimate of the state-space vector X by the

observer. Am; Bm; Cm denote the system, the actuator, and

the sensor matrices modelled in the observer, respectively.

The identification of Am; Bm, and Cm is derived from a ratio-

nal fraction polynomial (RFP) algorithm20 carried out on an

experimental actuator/sensor frequency response function

(FRF). The RFP algorithm evaluates the modal frequencies,

damping ratios, and complex amplitudes ðaiÞ1�i�p correspond-

ing to the product BmCm.21 It is then possible to arbitrarily

choose Bm and Cm such that Bm ¼ ½ 01;n ja1j � � � apj �t
and Cm ¼ ½ 01;p I1;p �, which ensures that both matrices are

real.21 A global framework of the structure and the controller

is shown in Fig. 3.

III. EXPERIMENTAL SET-UP

This section introduces the experimental set-up for the

active control of the fundamental mode of the xiaoluo. First,

a preliminary modal analysis of the gong is performed in

order to determine the optimum location of the sensor and

actuator on the instrument. Second, the system apparatus is

described. Third, the identification of the observer model

from RFP algorithm is presented.

A. Preliminary modal analysis

An initial modal analysis of the xiaoluo in free vibration

was carried out as follows. The gong was placed horizontally

on two foam blocks to ensure the free boundary conditions

of a playing situation. The instrument was excited in its cen-

ter by an automated impact hammer. A laser vibrometer,

placed vertically above the instrument, measured the bend-

ing speed on a 1 cm step grid pattern of 429 points (the

diameter of the gong was �23 cm). The hammer signal F
and the vibrometer signal v were recorded simultaneously at

each grid point and processed to derive the impedance func-

tion (Z¼ v/F) over the structure.

The resulting first operating deflection shapes are shown

in Fig. 4 with the corresponding (k,n) notation. k and n are

the number of nodal diameters and nodal circles of the

deflection shapes, respectively. The fundamental mode of

the instrument was �451 Hz and located in the central

section. This analysis highlights the duplication of the asym-

metric modes due to asymmetries in the geometry of the

instrument. These results are consistent with the experimen-

tal modal analysis previously performed by Tsai et al.22 on a

xiaoluo and by Rossing et al.12 on a daluo.FIG. 3. Diagram of the control system.

FIG. 4. (Color online) First operating deflection shapes deduced from the

modal analysis of the xiaoluo without instrumentation. The second panel

from top shows the pattern associated with the fundamental mode.
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This modal analysis allows for the identification of the

location of linear modes and is therefore necessary for the

location of sensor and actuator.

B. Instrumentation

Control experiments rely on an electrodynamic Tectonic

Element TEAX19C01-8 actuator and a Macro Fiber

Composite sensor (MFC). The MFC offers a high flexibility

that allows it to be used on curved surfaces with little

addition of mass and stiffness. However, it offers poor per-

formance as an actuator, whereas the electrodynamic

Tectonic Element TEAX19C01-8 actuator performs well in

the frequency range of interest (100–2000 Hz). Although the

modal analysis indicate that the fundamental mode is located

in the center of the instrument, putting the sensor and the

actuator in the central area was not feasible, because of the

stiffening introduced by the instrumentation. This stiffening

hinders the activation of nonlinear phenomena, whose sig-

nals stay below the measurement noise level. Therefore, the

location of the sensor and actuator represents a trade-off

between observing the fundamental mode and measuring

weak nonlinearities (Figs. 5 and 6). The sensor and the actu-

ator were bonded to the gong surface with thin double-sided

adhesive tape. They were colocalized to improve stability of

the SISO controlled system.16

Note that the impact of instrumentation on the vibration

of the gong was evaluated by a second modal analysis. The

deflection shapes exhibited by the instrumented gong are sig-

nificantly similar to the ones without instrumentation (Fig.

4), highlighting a negligible impact of the instrumentation

on the vibration of the structure (results are not shown in the

present paper). Nevertheless, a slight change in the modal

frequencies may be observed and the experimental apparatus

slightly shifted the fundamental mode frequency from 451 to

449 Hz.

The COALA controller,23 developed at IRCAM, was

used for the experiments. This embedded system consists of

a Beaglebone Black card running Xenomai Unix distribu-

tion. The device is equipped with a custom data acquisition

cape for SISO control and allows for real-time performance

with a sufficient sampling frequency; a sampling frequency

of 20 kHz was used for the experiments.

The gong was held by a cord and left to hang. A mallet

was suspended from a pivot system that allows for different

strike angles with good reproducibility: the inter-correlation

coefficient of different sensor signals obtained with the same

angle strikes is above 0.95. The gong was excited either on

FIG. 5. (Top panels) Schematic top

view of the gong showing two different

locations of the actuator: (a) on the

edge of the instrument and (b) close to

the center. (c) Coherence function

between the actuator and the sensor for

an actuator positioned as in (a) (dotted

line) or (b) (solid line) for the full

range of frequencies (left panel) and

for the frequency range around the fun-

damental mode (right panel).

FIG. 6. Top view of the xiaoluo showing the location of the MFC sensor

(left panel) and the electrodynamic actuator (right panel). The black cross

shows the location of the mallet strike.
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its circumference by the actuator with a swept sine or with

the mallet at its center. However, the pitch glide regime of

the gong was only achieved with a mallet strike: the position

of the actuator (see Fig. 6) does not allow one to excite the

large amplitude regime of the fundamental mode, located in

the central area.

C. Identification and observer choices

Identification of the observer model is performed with the

RFP algorithm in the range 0–1300 Hz on an experimental

transfer function with a swept sine excitation (80–2000 Hz).

The swept sine frequency range starts at 80 Hz as there is no

mode below that frequency (see Fig. 4). The frequency range

of the RFP algorithm was adjusted so that the identification is

correct, equating to the quadratic error between the experimen-

tal FRF and the identified FRF being minimized.

Fifteen modes of vibration were chosen for the model,

allowing for an efficient identification of the fundamental

mode. This also assists in minimizing the control effects on

the amplitude of high frequency modes. The amplitude of

the state-space model transfer function resulting from the

identification procedure is shown in Fig. 7(a), along with the

experimental FRF. Note that the fundamental mode at

449 Hz is correctly identified [Fig. 7(b)]. As stated in Sec.

II B, the control and observer gains K and L are calculated

with a pole placement algorithm.

IV. RESULTS

In the following, the results of the damping control of

the fundamental mode are introduced in two distinct steps.

First, the results of the damping control in small amplitude

regime (no pitch glide) are presented and the performances

of modal control on the fundamental mode, harmonic distor-

tion, and internal resonances are experimentally assessed.

Second, the results of damping control in high amplitude

regime (with pitch glide) are reported, and the efficiency of

control system is quantified. In both cases, various damping

controls ranging from �70% to þ200% were applied to the

fundamental mode of the gong.

A. Case of small amplitude regime

In the small amplitude regime, damping control was

applied for two excitation types: (i) a swept sine

(80–2000 Hz) from the actuator and (ii) a mallet strike with a

small angle of about 25	 (momentum p¼ 31 g m s�1). The

first type of excitation is classical for the observation of

active control of systems; the second type of excitation

allows for the observation of nonlinear phenomena.

The sensor/actuator FRFs obtained with a swept sine

excitation are shown in Fig. 8 for the different control con-

figurations. Note that the peaks widen as the damping ratio

increases, as theoretically expected. The control provides a

peak amplitude decrease of up to 7 dB when the damping is

FIG. 7. Amplitude of the state-space

model transfer function (black line)

resulting from RFP identification of an

experimental sensor-actuator FRF

(shown as a grey line) for (a) the full

range of frequencies and (b) the fre-

quency range around the fundamental

mode.

FIG. 8. Experimental sensor-actuator

FRF without control and for various

damping control factors.
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multiplied by 3 and a peak amplitude increase of almost

5 dB when the damping is divided by 3. However, a fre-

quency shift of about 1 Hz is observed as the damping con-

trol value increases.

Striking the gong with the mallet allows for measuring

the experimental damping ratios achieved with the control,

by measuring the free decay response around the fundamen-

tal mode. For this purpose, sensor signals were post-

processed with a Butterworth bandpass filter, centered on the

fundamental mode’s frequency, and designed to have a fre-

quency response as flat as possible in the passband. Linear

regression on the slope of the resulting monochromatic sig-

nal was then performed to extract the fundamental mode

damping ratio. Results are shown in Fig. 9. The difference

between the target control and experimental data increases

as the absolute damping control value increases while the

relative error rarely exceeds 15% for larger control values.

In addition, modal control also affects frequencies other

than the fundamental mode. This behavior can be observed

in the fast Fourier transform (FFT) of the sensor signal (Fig.

10) for a small mallet strike with an angle of about 25	

(momentum p¼ 31 g m s�1). The damping control of the

fundamental mode impacts other frequency components

indicated by black arrows. These side effects are highlighted

in Figs. 10(b)–10(d) for different control configurations.

Three frequency components at 898, 1261, and 1272 Hz are

controlled which exhibit a peak amplitude decrease as the

fundamental mode [Figs. 11(a)–11(c)]. We will see in Sec.

V that the damping control of the two latter frequencies

(1261 and 1272 Hz) suggests the presence of an internal res-

onance between the fundamental mode and other linear

modes.

B. Case of high amplitude regime

The effects of modal control on nonlinear phenomena in

the small amplitude regime raises question concerning its

effects in the large amplitude regime. In order to investigate

this question, experiments were conducted with the same

control configurations as in Sec. IV A, with strike angles

ranging from 45	 (momentum p¼ 55 g m s�1) to 70	

(momentum p¼ 83 g m s�1), allowing for the observation of

pitch glide. An example of damping control (þ200% damp-

ing) in the large amplitude regime for a strike angle of 63	

(momentum p¼ 75 g m s�1) is shown in Fig. 12. The pitch

glide does not appear to be affected by the control effect

until it reaches a frequency close to the first mode’s fre-

quency and gets damped by the controller. Such a finding is

confirmed by inspection of the sensor signals. Each of them,

corresponding to a specific control configuration and strike

angle, was filtered by a Butterworth bandpass filter around

the frequency band of interest (400–460 Hz). This allows for

observation of the controlled mode only. The envelopes of

the filtered sensor signals for the different control configura-

tions are shown in Fig. 13 for two different strike angles: 57	

(momentum p¼ 69 g m s�1) and 63	 (momentum p¼ 75

g m s�1). For each strike angle, all envelopes overlap during

the first tenths of a second until a characteristic time thresh-

old beyond which each of them decays linearly. According

to Fig. 14, this time threshold seems to depend on the damp-

ing control value. This will be confirmed in Sec. V.

V. DISCUSSION

A. Assessment of control quality in the small
amplitude regime

In the small amplitude regime, modal control performs

well on the fundamental mode, although a frequency shift of

the controlled mode is observed (Fig. 8). Such a frequency

shift is larger than expected from the increase of an oscillator

damping ratio. Assuming that the fundamental mode’s natu-

ral frequency x is theoretically unchanged by the control

process, the associated ideal oscillatory second order model

would display a monotonically decreasing value in response

oscillation frequency x0 as damping ratio n increases, fol-

lowing the relation x0 ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
. However, since the

damping ratio is identified as very small (n � 10�3 
 1),

then we should have x0 � x. It is likely that the observed

shift results from imperfections in the system modelling,24

as the phase information of the modal amplitude was not

taken into account when determining the sensor and actuator

FIG. 9. Experimental damping ratios

(grey line) and control target values

(black line) as a function of the damp-

ing modification target (corresponding

to the different control configurations).

Error bars represent the residuals of

the linear regression.
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matrices (see Sec. II B). Such modelling imperfections could

also explain the observed errors between target and experi-

mental values (see Fig. 9).

The damping control in small amplitude regime also

showed that modal control impacted nonlinear phenomena

related to the controlled mode. This behavior is demon-

strated in three frequency components (see Figs. 10 and 11).

The first component (898 Hz) which does not correspond to

a modal frequency (see Fig. 4) matches the double frequency

of the fundamental mode and corresponds to the quadratic

harmonic distortion. The second and third frequency

components impacted by the damping control are at frequen-

cies 1261 and 1272 Hz, and correspond to linear modes (the

frequencies are not exactly the same as in Fig. 4 because of

the frequency shift induced by the instrumentation). The

damping variation of these latter frequency components can

be understood as an 1:1:1 internal resonance phenomenon

(xi þ xj ¼ xk) taking place between the fundamental mode

and other linear modes at 812, 823, 1261, and 1272 Hz (e.g.,

449þ 812¼ 1261 and 449þ 823¼ 1272). Although such a

behavior was expected, these results highlight three new fea-

tures. The first concerns the control of the harmonic

FIG. 10. FFT of the sensor signal in the damping control experiment of the fundamental mode at 449 Hz for (a) the full range of frequencies and the frequency

range around (b) the fundamental mode, (c) the second order harmonic distortion (898 Hz) of this fundamental mode, and (d) the linear modes at 1261 and

1272 Hz (lines as in Fig. 8).

FIG. 11. Amplitude decrease of the peaks associated with frequencies impacted by the damping control experiment of the fundamental mode at 449 Hz (grey

line). (a) Peak at 898 Hz, (b) peak at 1261 Hz, and (c) peak at 1272 Hz. In all panels the amplitude decrease for the fundamental mode is shown as a black line

for comparison.

4574 J. Acoust. Soc. Am. 141 (6), June 2017 Jossic et al.



distortion which highlights the ability of modal control to

impact frequency components that are not present in the

state-space model. (Note that we have demonstrated that

such impacts were not due to a spillover phenomenon.16)

The second feature concerns the impact of modal control on

internal resonances: to the author’s knowledge, this is the

first time that such behavior has been experimentally demon-

strated. This latter result would suggest that modal control is

a suitable detector of internal resonances. Moreover, our

control device allowed us to detect these resonances in the

free vibration regime, in contrast to earlier experimental

studies15,17 which reported detection of internal resonances

FIG. 12. (Color online) Spectrogram

of the sound of the xiaoluo when the

gong is struck with a mallet at an angle

of 63	 (momentum p¼ 75 g m s�1) in

the case (a) without control and (b)

with control based on a 200% damping

ratio increase of the fundamental mode

at 449 Hz (located by the white arrow).

FIG. 13. Time evolution of the sensor signal envelop during the entire duration of the experiment (left panels) and for the time period around

the controller trigger time (right panels) for (a) a strike angle of 57	 (momentum p¼ 69 g m s�1) and (b) a strike angle of 63	 (momentum

p¼ 75 g m s�1). As in Fig. 8, different line style-color coding is used for different control configurations while the case without control is shown as a

solid black line.
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under forced stimulation. Finally, modal control on internal

resonances provides useful information on energy exchange

that occur between linear modes. In particular, in the case of

the 1:1:1 resonances that are highlighted in Sec. IV A, the

812 and 823 Hz modes are not impacted when damping con-

trol is applied to the fundamental mode, which suggests that

energy exchanges are restricted to the fundamental mode

and the 1261 and 1272 Hz modes.

B. Efficiency of active modal control in large
amplitude regime

The high amplitude results (Sec. IV B) underline the

limits of modal control to control on pitch glide. When the

system’s and the observer’s frequency differs significantly,

the observer is not able to properly estimate the system

state. However, the fact that the linear controller still has

some influence on the dynamics when the frequency of the

fundamental mode approaches the corresponding observer

linear frequency, that is, when the signal amplitude has

decreased sufficiently, is quite interesting. More precisely,

one can wonder whether the trigger of the controller

depends on the damping control value. This question can

be investigated by looking at the relationship between the

instantaneous frequency of the fundamental mode when the

controller triggers and the damping control value. The con-

troller’s time trigger can be determined with the command

signal. One can see on Fig. 14 that the command signal has

two principal maxima: the first one corresponds to the

FIG. 14. Time evolution of the sensor signal envelope (top panels) and command (bottom panels), filtered in the frequency band of interest [400–460 Hz] for

different control configurations: (a) damping control: þ50%; strike angle: 63	 (momentum p¼ 75 g m s�1), (b) damping control: þ150%; strike angle: 63	

(momentum p¼ 75 g m s�1), (c) damping control: þ50%; strike angle: 46	 (momentum p¼ 56 g m s�1) and (d) damping control: þ150%; strike angle: 46	

(momentum p¼ 56 g m s�1). In all panels, the case corresponding to the control configuration is shown as a grey line while the case without control is shown

as a solid black line. The trigger time (shown as a vertical dashed line) corresponds to the second command maximum.
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impact of the mallet—since the impact is a broadband sig-

nal that causes the controller to send a command signal to

all the modes. The second one is assumed to be the true

trigger of the controller, that is the time when the mode is

actually controlled. It is then possible to measure the

instantaneous frequency of the sensor signal at this second

time trigger for the different control configurations, in order

to assess if the damping control value impacts the instanta-

neous frequency at which the control of the fundamental

mode is effective. This instantaneous frequency was mea-

sured using PRAAT software for each combination of control

configuration and strike angle. The results of the analysis

performed for the different control configurations and four

strike angles are displayed in Fig. 15. One can see that the

instantaneous frequency at which the control becomes

effective decreases as the damping control value increases.

Moreover, this trend does not depend on the strike angle

and is therefore reproducible. It is then possible to draw an

average control efficiency zone (grey area in Fig. 15) corre-

sponding to the frequency band bounded by the frequency

of the controlled mode (dash-dot black line) and the mean

of the trigger frequency plots of the different strike angles

(dash black line). It can be assumed that the control is effi-

cient when the observer is able to identify the instantaneous

frequency of the controller identical to the one of the

observer model identified by the RFP algorithm (449 Hz).

In other words, the control becomes effective when the

instantaneous frequency of the upward pitch glide reaches

the average control efficiency zone defined above (which

itself depends on the damping control value).

Finally, these considerations highlight the limited per-

formances of the controller when dealing with frequency

variations. Nonetheless, an efficient control of the pitch glide

could be realized by (i) designing an adaptive linear observer

whose matrix A varies at the same time as the instantaneous

frequency of the fundamental mode, or (ii) creating a nonlin-

ear observer including a nonlinear model of the gong. This

latter solution would significantly benefit from the work of

Touz�e25 on nonlinear normal modes26 applied to plates and

shells.

VI. CONCLUSION

An experimental protocol was developed in order to

carry out the modal control of a gong with geometric nonli-

nearities. A modal analysis of the structure and an identifica-

tion process led to the implementation of a SISO control

system manipulating the damping of the fundamental mode.

In the small amplitude regime, experimental damping

control of the fundamental mode provides good experimental

results. Additionally, results demonstrate that the damping

control acts both on the controlled mode and on the frequen-

cies involved in nonlinear phenomena such as distortion and

internal resonances. The control of harmonic distortion high-

lights the ability of modal control to affect frequency compo-

nents initially absent from the linear state-space model of the

observer. On the other hand, the effects of modal control on

internal resonances is demonstrated for the first time, opening

up new perspectives for their detection and comprehension.

The study also underlines the limited performances of the

modal control regarding the control of the fundamental pitch

glide which are mainly due to the difference between the sys-

tem instantaneous frequency, gliding upward, and the fre-

quency identified by the RFP algorithm in the observer model

(449 Hz). These limitations were quantified by measuring the

instantaneous frequency band around the controlled mode that

allows for an efficient damping control. The control setup was

found to be efficient once the instantaneous frequency of the

controlled mode reaches an average frequency band which

depends on the damping control value.

In total, a global control of the pitch glide may require

additional modelling of the nonlinear dynamics of the xiao-
luo. This work represents a first step towards the control of

nonlinear musical instruments. Future work deriving from

this study could aim to implement a completely configurable

gong for musical practice and composition.
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