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ABSTRACT: Raindrop impact is an important process in soil erosion. Through its pressure and shear stress, raindrop impact
causes a significant detachment of the soil material, making this material available for transport by sheet flow. Thanks to the
accurate Navier–Stokes equations solver Gerris, we simulate the impact of a single raindrop of diameter D, at terminal velocity,
on water layers of different thickness h: D

10 , D
5 , D

3 , D
2 , D, 2D, in order to study pressures and shear stresses involved in raindrop

erosion. These complex numerical simulations help in understanding precisely the dynamics of the raindrop impact, quantifying
in particular the pressure and the shear stress fields. A detailed analysis of these fields is performed and self-similar structures are
identified for the pressure and the shear stress on the soil surface. The evolution of these self-similar structures are investigated as
the aspect ratio h=D varies. We find that the pressure and the shear stress have a specific dependence on the ratio between the
drop diameter and the water layer thickness, and that the scaling laws recently proposed in fluid mechanics are also applicable to
raindrops, paving the road to obtain effective models of soil erosion by raindrops. In particular, we obtain a scaling law formula
for the dependence of the maximum shear stress on the soil on the water depth, a quantity that is crucial for quantifying erosion
materials. Copyright © 2016 John Wiley & Sons, Ltd.

KEYWORDS: raindrop; Navier–Stokes equations; pressure; shear stress

Introduction

Raindrop impact is a major driver of soil erosion and acts
through a wide range of processes (Terry, 1998; Planchon and
Mouche, 2010): the raindrop impacts break down aggregates,
leading to soil detachment and crust formation (Bresson and
Moran, 2003). They also cause splashes, i.e. the transport of
soil material in the air over distances of a few decimeters
(Leguédois et al., 2005). Also, raindrop impacts are essential
in shallow overland flow (i.e. sheet flow) for the detachment
of particles. Indeed, sheet flow by itself does not have the abil-
ity to detach particles because of its limited velocity and thus
weak shear stress (Kinnell, 1991). The impacts of the raindrops
can detach material, which is then transported by the sheet
flow.

Drop impact effects can differ strongly depending on
whether the soil is dry or wet, because both the shear strength
of the soil and the shear stress caused by the drops depend on
the soil humidity. For raindrops, the soil can be considered to
be wetted rapidly, so we will focus here on the impact on a
thin liquid film. The presence of a thin water layer at the soil
surface modifies the effect of raindrop impacts (Kinnell, 1991).
The consequences of drop impacts depend primarily on drop

properties. However, the drops of concern for soil erosion have
a narrow range of features: raindrops are consided at termi-
nal velocity, leading to a clear relationship between diameter
and velocity (Atlas et al., 1973). This contrasts with other usual
applications in fluid mechanics (e.g. ink-jet printing, where
the ink drop impacts the paper or the coating of a surface by
multiple drop impacts) where drops vary in viscosity, density,
surface tension, velocity and diameter (Marengo et al., 2011).

Raindrop-driven erosion depends also on soil properties
such as soil resistance to shear stress (Sharma et al., 1991;
Mouzai and Bouhadef, 2011), hydrophobicity (Ahn et al.,
2013) and roughness (Erpul et al., 2004). While raindrop
impacts cause splashes, the quantity of eroded material is con-
trolled mostly by the shear created by the impact, which is not
strongly affected by the splash itself (Josserand and Zaleski,
2003). Indeed, it has been argued that the erosion, in terms
of bedload transport rate, is controlled by the shear stress
affected at the soil boundary, usually measured through the
dimensionless Shields number (Parker, 1990; Charru et al.,
2004; Houssais and Lajeunesse, 2012). Although these results
have been deduced precisely for gravel river beds made of
non-cohesive granular materials with a narrow granulometric
distribution, it is believed that this bed shear stress, and to a
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smaller extent the bed pressure, are the main ingredients of
most erosion processes. Therefore, if the transport of eroded
materials can be influenced by the splashing itself, which is
always present for raindrop impact, the bedload transport rate
is primarily due to the shear stress created by the impact.

The influence of the water layer on the erosion process
has also drawn attention: first, one could argue that the ero-
sion is limited by the shielding of the soil surface by the
water layer. Raindrop energy is absorbed by the water layer,
which lowers the pressure and shear stress exerted on the
soil. It has been documented, in fact, that a water layer can
maximize sheetflow erosion rate in comparison to a drained
surface and that such erosion depends mostly on the ratio
between the water depth and the raindrop diameter (Singer
et al., 1981). In fact, there is a critical depth hc at which
the splash transport rate is maximal: beyond hc the transport
rate decreases strongly. However, different values for hc have
been proposed in the literature, as shown in (Dunne et al.,
2010): for instance, it can vary from hc D D (Palmer, 1963,
1965) to hc D 0.2D in Torri and Sfalanga (1986), and even by
0.14D � hc � 0.2D according to Mutchler and Young (1975).
Finally, Ghadiri and Payne (1986) showed a reduction of soil
splash once a water layer covered the soil surface, while Moss
and Green (1983) and Kinnell (1991) found that the outflow
rate of raindrop-induced flow transport reached its maximum
value when the flow depth equaled two to three drop diam-
eters. For three drop diameters (and above), detachment by
raindrops becomes quite limited but drop energy still allows
for particle suspension, leading to a significant transportation
rate (Ferreira and Singer, 1985).

Raindrop interaction with the soil surface has been investi-
gated using numerical simulations (Wang and Wenzel, 1970).
They allow for the computation of pressure and shear stress
fields at the soil surface (Huang et al., 1982; Ferreira et al.,
1985; Hartley and Alonso, 1991; Hartley and Julien, 1992).
All these simulations considered a rigid soil surface, hence not
accounting for the elasticity of the soil or its granular nature.
According to Ghadiri and Payne (1986), the soil behaves like
a solid during the short time of the impact, justifying the
simplification. These simulations have enabled the determina-
tion of critical variables. For example, maximum shear stress
was found to depend mostly on the Reynolds number and
the water layer thickness-drop diameter ratio (Hartley and
Alonso, 1991; Hartley and Julien, 1992). However, owing to
limitations in computer and algorithm performance, simula-
tions were carried out with critical parameters (such as the
Reynolds number) well outside the natural range, moderating
confidence in the results.

The present paper takes advantage of the recent develop-
ments of detailed and direct simulations in fluid mechanics to
study the impact of single raindrops on a soil surface with a
water layer (see reviews on drop impacts in the fluid mechan-
ics literature: Rein, 1993; Yarin, 2006; Marengo et al., 2011;
Josserand and Thoroddsen, 2016). The pressure field inside the
water layer, the pressure field at the soil surface and the shear
stress at the soil surface are analyzed for raindrops of diameter
2 mm and terminal velocity 6.5 m s�1, varying the thickness of
the water layer. Short timescales are considered, i.e. develop-
ment of stresses before particle splash initiation. A self-similar
approach valid for a thin liquid layer is used to analyze the
results, showing that scaling laws recently proposed in fluid
mechanics apply to natural raindrops too. It confirms that the
ratio between water depth and raindrop diameter is critical in
order to understand the effect of raindrop impact.

Materials and Methods

Problem configuration

We consider the normal impact of a liquid drop of diameter
D on a thin liquid film of thickness h in the paradigm of rain-
fall (Figure 1). The liquid has a density and dynamic viscosity
denoted by �l and �l respectively. The density and viscosity
of the surrounding gas are denoted by �g and �g . The drop
impacts on the ground at velocity U D �U0ez , which corre-
sponds to the terminal velocity for a raindrop. We will assume
here for the sake of simplicity that the raindrop has a spheri-
cal shape, even though it is known that raindrops can have a
deformed shape, particularly for large diameters (Villermaux
and Bossa, 2009). However, it is not expected to impact the
dynamics significantly, and the effect of the specific shape of
the impacting drop is postponed to future work. The gravity is
denoted by g D �gez , and the liquid–gas surface tension by � .

Different dimensionless parameters can be constructed in
this configuration. Two of them are commonly used in drop
impact problems, since they characterize the balance between
the inertia of the drop with the viscous and capillary forces
respectively: firstly, the Reynolds number (Re) is the ratio
between inertia and viscous forces:

Re D
�lU0R
�l

For raindrops, Re ranges from 6500 to 23 000 (Hartley and
Julien, 1992). Secondly, the Weber number (We) is defined as
the ratio between inertia and capillary forces:

We D
�lU2

0R
�

The Weber number ranges from 50 (for a raindrop diameter
of 0.5 mm and a velocity of 2 m/s) to 12 000 (for a raindrop
diameter of 6 mm and a velocity of 9 m/s) for natural rainfall.
The problem depends also on the aspect ratio of the problem
geometry, i.e. the ratio between the drop diameter and the
thickness of the liquid film:

h
D

Additional dimensionless numbers are present in this prob-
lem, but are of limited interest, either because they do not
depend on the raindrop impact configuration, or because they
characterize a physical mechanism that can be neglected here.
This is the case with the Froude number:

Fr D
U2

0

gD

Figure 1. Schematic configuration of a raindrop (diameter D and
terminal velocity U) impacting a water layer of depth h.

Copyright © 2016 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms,41, 1199–1210 (2016)
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which quantifies the ratio between inertia and gravity forces;
it can take values between 800 and 1400 for natural rainfall.
Indeed, although gravity is crucial to accelerate the raindrop
to its terminal velocity, gravity itself plays quite a limited role
in the impact dynamics and hence is usually not accounted
for in the modeling and numerical simulation of drop impacts
(Josserand and Zaleski, 2003). For instance, for a drop falling
from a height H, the free-fall velocity gives U2

0 � 2gH, so that
the Froude number is simply the ratio 2H=D. Since the termi-
nal velocity of a raindrop is equivalent to a free-fall height H
of several meters, the Froude number will always be very high
in the present problem. Note, finally, that while the Reynolds
and Weber numbers are also high in the present problem,
this does not mean that viscous and capillary effects can be
neglected: the formation of a thin liquid layer means that vis-
cous and capillary effects will be important in some region of
the flows – something that is not valid for gravity, which can
thus be safely neglected.

The two dimensionless numbers related to the liquid/gas
properties, namely the density ratio �g=�l and the viscosity
ratio �g=�l , present a limited interest too: while the sur-
rounding gas can sometimes influence the splashing properties
(Xu et al., 2005), in particular through the entrapment of
an air bubble beneath the drop on impact (Thoroddsen et
al., 2003, 2005), this effect is negligible for the impact of
a raindrop (Hartley and Alonso, 1991). Moreover, these two
dimensionless numbers are only related to the gas and liq-
uid characteristics and not to the impact conditions. Therefore
they do not vary significantly with the raindrop radius and
velocity.

Based on the water hammer pressure, i.e. the pressure cre-
ated by the inertia of the drop hitting a solid surface, it was
first suggested in the soil erosion literature that the ampli-
tude of the stress on the soil surface can be quite large (2–6
MPa), with a limited duration of about 50 �s (Ghadiri and
Payne, 1980), this duration increasing with the depth of the
water layer (Ghadiri and Payne, 1986). However, such high
water hammer pressures have not been observed experimen-
tally (Ghadiri and Payne, 1986; Hartley and Julien, 1992;
Josserand and Zaleski, 2003) and, following the argument of
Ghadiri and Payne (1980), it can be shown that this pres-
sure should arise only during a very short time of the order
of D=c (where D is the drop diameter and c is the sound
speed), leading to a typical timescale of the order of 1 �s
as found by Ghadiri and Payne (1986). Then, the pressure
decreases rapidly with time as shown in numerical simula-
tions (Josserand and Zaleski, 2003). Moreover, as discussed
by Nearing et al. (1986, 1987), compressible effects can be
neglected since they will only influence the very early time of
contact and a very small region of the impacted zone. This is
in agreement with former theoretical and experimental stud-
ies on drop impacts where compressible effects were shown
to appear only at much higher drop velocities, typically of
the order of a fraction of the sound velocity in water (Lesser
and Field, 1983). Therefore, as shown and as used in recent
studies, the liquid can be assumed to be incompressible dur-
ing impact (Rein, 1993; Yarin, 2006; Marengo et al., 2011;
Josserand and Thoroddsen, 2016).

The two-fluid Navier–Stokes equations

Both gas and liquid obey the incompressible Navier–Stokes
equations (with respective densities and viscosities) with jump
conditions at the interface. This complete dynamics can be
described within the one-fluid formulation of the incompress-
ible Navier–Stokes equation, which can be stated as follows:

�

�
@u
@t
C uru

�
D �rpC �gC �4uC ��ısn (1)

to which is added the equation of mass conservation, which
for incompressible fluid yields

r � u D 0 (2)

where u is the vector of fluid velocity, r is the usual differential
operator, p is the pressure field, with function of space x and
time t, and 4 the Laplacian operator. In these equations, the
density �.x, t/ and viscosity �.x, t/ are discontinuous fields of
space and time. �.x, t/ (�.x, t/) is �l or �g (�l or �g ) depending
on whether we are in the liquid or gas phase. The term ��ısn
represents the surface tension force, proportional to the curva-
ture � and localized on the interface (the Dirac term ıs) with
normal is n. The curvature is defined by the divergence of this
vector:

� D r � n

An additional equation has to be considered for the motion
of each phase (gas and liquid), leading eventually to the move-
ment of the interface. Indeed, considering the characteristic
function �.x, t/, which is equal to one in the liquid phase and
zero in the gas phase, the volume conservation of both phases
implies that � is the solution of the advection equation:

@�

@t
C u � r� D 0 (3)

Within this framework, both fluids satisfy the incompress-
ible Navier–Stokes equation with the applicable density and
viscosity.

From here on the soil surface is taken to be rigid. This
simplification comes from the unavailability of a realistic
deformation law for soils at the scale of a raindrop.

Numerical method and dimensionless version

The Navier–Stokes equations (1, 2, 3) are solved by the
open source Gerris flow solver (version 2013/12/06) (Popinet,
2007). Gerris uses the Volume of Fluid method on an adap-
tive grid (Popinet, 2003, 2009). The rotational symmetry of
the problem around the vertical axis is used to perform 2D
numerical simulations using cylindrical coordinates (called
3D-axisymmetric coordinates).

The discretization of the equations is made on a quadtree
structure for square cells. The quadtree structure allows for
a dynamic mesh refinement: when needed, a ‘parent’ cell of
the mesh is divided into four identical square ‘children’ cells
(the length of which is half that of one of the parent cells), up
to a maximum level n of refinement. Similarly, a cell merg-
ing is performed whenever the precision of the computation
is below a user-defined threshold. The refinement/merging
criterion is based on a mix of high values of the density
and velocity gradients. Hence smaller cells are used at the
gas/liquid interface and at locations showing large changes
in velocity.

The interface between the gas and liquid phases is tracked
using a color function C, which corresponds to the integral
of the characteristic function in each grid cell. C is taken as
the fraction of liquid phase inside the cell. This allows for the
interface to be reconstructed using the piecewise linear inter-
face calculation (Li, 1995), leading to a conservative advective
scheme for the advection of the interface (Brackbill et al.,
1992; Lafaurie et al., 1994). For each phase, the viscosities

Copyright © 2016 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms,41, 1199–1210 (2016)
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(�g or �l ) and the densities (�g or �l ) are constant because the
fluids are assumed incompressible. Hence each cell crossed
by the interface has a viscosity � and a density � determined
by the relative volume fraction of each phase, as follows:

� D C�l C .1 � C/�g ; and � D C�l C .1 � C/�g (4)

Finally, the Navier–Stokes equations are solved in Gerris in
a dimensionless form to lower numerical errors. The domain
length has a size of one. The other lengths are rescaled by a
factor � using a numerical diameter of the raindrop D0 D 0.3
in Gerris (so � D D=D0), the velocities, densities, time and
pressure by U0, �l , �=U0 and �lU2

0, respectively. Hence the
effective Navier–Stokes equation to solve reads

�0
�
@u0

@t 0
C u0r 0u0

�
D �r 0P 0 C �g0 C �040u0 C � 0�0ı0sn (5)

where the primes represent dimensionless variables.

Simulated cases and conditions

We performed numerical simulations for typical raindrop
impacts falling on a water layer. All computations were done
for spherical raindrops of diameter equal to D D 2mm. Con-
sidering the scaling factor D0 D 0.3, this leads to a domain of
6.67 mm in both width and height. The raindrop velocity was
set to its terminal velocity, U0= 6.5 m s1. The thickness of the
water film h varied from D=10 (i.e. 0.2 mm) to 2D (i.e. 4 mm),
with the intermediate cases D=5, D=3, D=2 and D.

Standard air and water properties were used: �l D 103 kg
m�3, �l D 10�3 kg m�1 s�1, �g D 1kg m�3, �g D 2 � 10�5

kg m�1 s�1, with a surface tension � D 0.02 kg s�2. In this
configuration, the Reynolds number Re was 6500 and the
Weber number We 2112.5. These large values indicate that
inertia dominates a priori the other forces. Preliminary test-
ing confirmed that the effect of gravity was negligible during
a raindrop impact. Consequently, gravity was not included in
the simulations.

At high velocities, drop impacts develop angular instabil-
ities, leading to the well-known pictures of splashing pop-
ularized, for instance, in commercials. Splash is one of the
key issues of drop impacts identified already by Worthing-
ton (1876) in the first studies on drop impacts, leading, for
instance, to secondary droplet break-up (Rein, 1993). These
splashing dynamics can be important in soil erosion because it
can transport eroded material at large distances, as shown by
Planchon and Mouche (2010). In the present case, the axisym-
metric geometry can be used because (i) we are focusing on
the erosion mechanism itself and not on the transport of par-
ticle, and (ii) such instabilities become relevant for timescales
much larger than the typical timescale of the pressure and
shear stress development at the soil surface. Consequently,
an axial boundary condition was imposed on the symmetry
axis (r 0 D 0). At the soil surface (z0 D 0), a zero velocity
boundary condition (also known as Dirichlet condition) was
set. This ensured that both (i) no infiltration (u0z D 0) and (ii)
no slip (u0r D 0) occurred. For the top (z0 D H0max D 1) and
radial (r 0 D R0max D 1) boundaries, either Neumann (no slip)
or Dirichlet (zero velocity) boundary conditions could poten-
tially be used. Preliminary testing showed that the type of
boundary condition did not influence the results because the
simulated domain was sufficiently large compared to the area
of interest. For the simulations, a Dirichlet condition was used
at z0 D H0max and r 0 D R0max.

During simulation of a raindrop impact, the water height
h can become zero (especially for thin initial water depths).
The occurrence of cells with h D 0 requires special attention,
because it involves the motion of the contact line separating
the water and the air along the soil surface (i.e. a triple-point
occurs). In general, a specific boundary condition should be
applied at the moving contact point to account for the high vis-
cous stresses involved (Afkhami et al., 2009). In our case, an
alternative approach can be used by acknowledging that a real
soil surface is not exactly smooth but involves some rough-
ness, which can be crucial for the dynamics of the impact. This
roughness can be taken into account by imposing a Navier slip
boundary condition on the soil surface with a slip length of
the order of the roughness (Barrat and Bocquet, 1999). Techni-
cally, since the usual no-slip boundary condition imposed by
the numerical scheme corresponds to a Navier slip condition
with a slip length of the order of the mesh size, one has sim-
ply to take the no-slip boundary condition here with a mesh
size similar to the surface roughness. Therefore, the numeri-
cal no-slip boundary conditions imposed for a constant level
of refinement can be interpreted as a natural model for the
soil roughness. In that framework, throughout the simulations,
we can consider that a surface roughness equal to 65 �m was
used (level of refinement n D 10).

Results and Discussion

Overall dynamics

The phenomenology of a drop impact on a thin water layer is
illustrated for the case h D D=10 in Figure 2, where the inter-
face, the velocity and pressure fields are shown together for
different times. In the following, the initial time t 0 D 0 is taken
as the theoretical time of impact, defined by the falling velocity
U00 D 1 of a sphere onto the undeformed flat liquid layer.

At t 0 D 10�3 (i.e. 1 �s after the impact initiation), the drop
and the water layer are still separated by a narrow sheet of air
(Figure 2a). Nevertheless, the pressure has started to increase
in the water, mediated by the high lubrication pressure created
in the cushioning air layer located between the drop and the
liquid film. The maximum pressure (P 0max D 1.85, i.e. Pmax D

78.2 kPa) is between the drop and the water layer.
At t 0 D 10�2 (i.e. 10 �s after the impact initiation), the

drop and the water layer have started to merge and some air
is trapped inside the water (Figure 2b) due to the air cush-
ioning (Thoroddsen et al., 2003; Korobkin et al., 2008). A
high-pressure field is created, with a maximum pressure of
P 0max D 2.68 (i.e. Pmax D 113.2 kPa) now located close to
the wedge formed by the intersection between the drop and
the liquid layer. At t 0 D 0.03 (i.e. 31 �s after the impact ini-
tiation), most of the water that belonged to the raindrop still
has its terminal velocity (Figure 2c). It is only in the impact
region that the velocity vectors rotate from the vertical. In this
same area, the velocities are smaller than the terminal veloc-
ity but in the small wedge region one can see the formation
of a high-speed jet created by the high pressure peak. Indeed,
the maximum pressure is still located near the wedge but has
started to decrease (P 0max D 1.47, i.e. Pmax D 62.1 kPa). A few
droplets are emitted from the wedge.

At t 0 D 0.08 (i.e. at t D 82�s ), a complex velocity field
is formed (Figure 2d). Firstly, a jet has been emitted by the
impact, leading to a splash of which the specific dynamics
would be fully three dimensional and which is not at the heart
of the present study. Secondly, close to the soil surface, the
velocity field is expanding mostly radially due to the spread-
ing of the raindrop into the water layer. Together with the

Copyright © 2016 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms,41, 1199–1210 (2016)
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Figure 2. Pressure and velocity fields in the water (colors and arrows respectively) as a function of time for a film layer of h D D
10 . The drop

diameter is 2 mm with a terminal velocity of 6.5 m s�1. t 0 D 10�3 (i.e. 1 �s) t 0 D 10�2 (i.e. 10 �s) t 0 D 0.03 (i.e. 31 �s) t 0 D 0.08 (i.e. 82 �s).

no-slip boundary condition on the soil surface, this leads to a
radial velocity field depending both on the radius r 0 and the
vertical coordinate z0. In fact, the no-slip boundary condition
imposed at z0 D 0 induces the formation of a viscous bound-
ary layer between the substrate and the radial flow created by
the impact (Roisman, 2009; Eggers et al., 2010). Hence the
soil is subjected to a significant shear stress, which is crucial
for erosion processes. The pressure field is now maximal near
the soil surface, directly under the impact region, but its max-
imum value has decreased to P 0max D 0.8 (i.e. Pmax D 33.8
kPa).

This general description is in agreement with previous pub-
lications on raindrop impacts on a water layer (Wang and
Wenzel, 1970; Ghadiri and Payne, 1977, 1980, 1986; Hartley
and Alonso, 1991; Hartley and Julien, 1992; Marengo et al.,
2011).

Since the erosion rate depends mostly on the shear stress
applied on the soil surface, a detailed analysis of the dynami-
cal evolution of the stress tensor during the impact is needed.
In particular, the Meyer-Peter and Müller equation is often
used, relating the erosion rate qs to the shear stress � (Mey-
er-Peter and Müller, 1948; Houssais and Lajeunesse, 2012):

q0s D c.� 0 � � 0c/
3=2

where the dimensionless erosion rate and shear stress are
defined by

q0s D
qsp

.�s=�l � 1/gd3
and � 0 D

�

.�s � �l/gd

where d is the typical size of the grains composing the soil,
�s is its density and c is an empirical constant fitted through
experimental data. In the following, we will use the numeri-
cal simulations done for raindrop conditions to deduce scaling
laws for the shear stress induced by the impact that we will
compare with simple formulas obtained using a self-similar

model. Prior to the shear stress itself, we will investigate the
pressure field created by the impact, where self-similar behav-
ior has already been observed (Josserand and Zaleski, 2003).
Here, self-similarity means that the pressure field depends only
on a quantity that is time dependent. In particular, it means
that the pressure field conserves the same shape with time,
with only amplitude and size varying with time.

Pressure evolution inside the water and
self-similar approach

In fluid mechanics, scaling laws have been deduced from
numerical simulations of the pressure evolution inside the
water during the impact of a droplet on a solid surface or
in the limit of thin liquid films, using a self-similar approach
(Josserand and Zaleski, 2003; Eggers et al., 2010). However,
their validity has not been studied in the context of rain-
drop impacts yet, in particular when the liquid film thickness
varies. The self-similar approach is based on a theory first
developed by Wagner (1932) using as the typical length scale
involved in the impact the intersection between a falling spher-
ical drop and the unperturbed liquid layer surface. In other
words, the pertinent length scale of the impact rc.t/ (or r 0c.t

0/

in dimensionless form) is as follows:

rc /
p

DU0t or r 0c /
p

t 0 (6)

where t (t 0) is the time after the contact of the falling drop
on the surface. This formula corresponds to the intersection
of the drop (taken as a circle of radius D=2) that is in contact
with the water surface at time t D 0. The self-similar theory
takes advantage of the observation on the numerical simula-
tions that the perturbed region of the drop at a short time after
impact is governed by rc (Josserand and Zaleski, 2003). Such a
self-similar approach is possible when no specific length scale
is dominating the dynamics: this is precisely the situation at a

Copyright © 2016 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms,41, 1199–1210 (2016)
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Figure 3. Position of the maximal dimensionless pressure as a func-
tion of time after impact for different water depth/drop diameter ratios.
Note: the exponent was not fitted.

short time for high Reynolds and Weber numbers, where only
the intersection between the falling drop and the impacting
liquid layer is thus playing a role.

Indeed, Figure 3 shows the evolution with time of the radial
position r 0c of the maximum pressure in the water for differ-
ent liquid layer thicknesses. This evolution can be separated
into three stages. For t 0 < 2.10�3 (i.e. for durations smaller
than 2.1 �s), the evolution of r 0c depends on the ratio h=D.
This is also true for t 0 > 2.10�2 (i.e. for durations larger than
20.5 �s), where it can also be noticed that, at the beginning
of this period, r 0c is of the order of one raindrop radius (i.e.
r 0c D 0.15 in Figure 3). In the intermediate stage, all the val-
ues of r 0c collapse onto a single straight line (in log-log scale),
meaning that the relationship between the location of the max-
imum pressure and time is independent of the ratio h=D. Over
this period, the position of the maximum pressure r 0c.t

0/ is in
good agreement with the former square-root law (6), yielding
quantitatively

r 0c D 0.65
p

t 0

Remarkably, and as predicted by the theory, this law is inde-
pendent of the layer thickness, in addition to being found
independent of the Reynolds and Weber numbers in pre-
vious studies (as long as these numbers are high enough)
(Thoroddsen, 2002; Josserand and Zaleski, 2003).

As geometrically deduced, this geometric law should not
be valid for rc > D=2. However, it is well known that the
square-root law for rc is in fact observed for much larger val-
ues and, in the figure, the law is typically valid up to rc � 2 D.
Indeed, it has been argued that such a square-root law is also
the cylindrical shock solution of the shallow-water equations
as explained in Yarin and Weiss (1995), so that the geometric
law matches this shock solution for longer times. The limita-
tion of this regime at short and long times can be explained
by two distinct arguments. At short timescales, the cushioning
of the air layer delays the contact between the drop. At long
timescales, numerical limitations can also be present: because
the drop spreading has a large spatial extent, finite size effects
coming from the size of the numerical box start to affect the
dynamics.

Similar regimes are observed for the maximum pressure in
the water P 0c, as shown on Figure 4. Firstly, the pressure is
slightly varying at short timescales t 0 < 2.10�2 (i.e. lower than
20.5 �s) and does not depend on the h=D ratio. At this stage
the contact between the raindrop and the water layer is weak
and we attribute this effect to the lubrication pressure created

Figure 4. Maximum dimensionless pressure as a function of time for
(a) small and (b) large water depth to drop diameter ratios. Note: the
exponents were not fitted.

in the gas layer. At long timescales, typically corresponding to
r 0c > D=2, the pressure rapidly drops to very small values. In
between, corresponding roughly to 2.10�2 � t 0 � 10�1, the
pressure decreases with time following power law behaviors.
However, two distinct regimes are observed depending on the
ratio h=D: for small aspect ratios (typically h=D < 1=4) the
maximum pressure is found to decrease following the inverse
of the square root of the time (Figure 4a), as usually observed
for the impact on the thin liquid layer (Josserand and Zaleski,
2003). For thicker water layers (i.e. for h=D > 1=4), another
regime is observed where the maximum pressure decreases
first like the inverse of time (Figure 4b), while the inverse of the
square root of the time seems to remain valid at longer times.
The crossover between these two time dependences increases
with the aspect ratio h=D.

As detailed in Josserand and Zaleski (2003), the thin water
layer behavior can be understood using a simple momentum
balance in the self-similar impact region. Indeed, it has been
observed that in this regime the pressure field is perturbed in
the impacted region only, defined by the characteristic length
rc.t/. Therefore, one can develop a self-similar approach using
this length and perform the vertical momentum balance in the
self-similar volume of radius rc.t/ (the volume being that of a
half-sphere of radius rc, namely 2	r3

c =3), yielding

d.2�l	rc.t/3U0=3/
dt

� 	rc.t/2Pc.t/

where Pc.t/ is the typical amplitude of the pressure field cre-
ated by the impact. This equation balances the variation of
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vertical momentum in the self-similar half-sphere of radius
rc.t/ with the force of the pressure on the liquid layer, giving

Pc.t/ / �lU0
drc.t/

dt
� �lU2

0

s
D

U0t

This regime is in good agreement with the observed max-
imum pressure evolution for thin liquid films (Figure 4a).
Moreover, this regime starts to fail at a longer timescale (typ-
ically corresponding to rc.t/ � D=2) and the dynamics can
then be described by the shallow-water equation (Yarin and
Weiss, 1995; Lagubeau et al., 2010).

For thick water layers, the former vertical momentum bal-
ance does not work since the liquid layer dynamics have to be
taken into account. However, inspired by the former balance,
one can deduce a simple model: considering that the radial
characteristic length is still rc but that the vertical one is now
h, we obtain

d.�l	rc.t/2hU0/

dt
� 	rc.t/2Pc.t/,

which gives the observed scaling for the pressure:

Pc.t/ � �lU0
h

rc.t/
drc.t/

dt
� �lU2

0
h

U0t

The former thin layer regime is retrieved at a longer
timescale in this configuration and one can argue that this
comes from the fact that the liquid contained in the layer has
been pushed away by the impact so that only a thin residual
liquid layer remains beneath the drop.

Therefore, we have shown that the pressure field due to the
impact follows self-similar laws involving the spreading radius
rc.t/. However, as explained above, the crucial quantity for
the erosion process is not the maximum pressure in the liquid
but rather the shear stress at the soil surface. The self-similar
approach can be used a priori to compute the soil surface
quantities, but one has to notice that the soil surface does not
coincide with the self-similar geometry (which involves the
liquid layer interface rather than the solid surface). In conclu-
sion, this leads to the difficult challenge of determining the
shear stress at the intersection between the self-similar geom-
etry and the soil surface. Moreover, the shear stress is also a
consequence of the boundary layer created by the large-scale
flow and the no-slip boundary condition imposed at the sur-
face (Roisman, 2009; Eggers et al., 2010; Lagubeau et al.,
2010), which makes its prediction even more difficult.

Scaling laws for stresses onto the soil surface

We therefore now investigate the pressure and shear stress
fields onto the soil surface – quantities of interest for under-
standing and modeling erosion processes, keeping in mind the
underlying self-similar structure of the impact.

Dependency of the maximum shear stress with water depth
First, let us mention that the dependence of the shear stress
with the water depth has already been studied using numeri-
cal simulations by Hartley and Alonso (1991) and Hartley and
Julien (1992), leading to an algebraic fitted relationship for the
maximum (over time and space) shear stress at the soil surface,
as a function of the Reynolds number and the water depth:

�max D 2.85�lU2
0

�
h

D=2
C 1

�
�3.16

Re�0.55C1 (7)

Figure 5. Maximum physical shear stress at the soil surface as a
function of .1C 2h=D/.

The prefactor C1 is almost a constant number, varying only
slightly with the impact parameters between 0.91 and 1 and
deviating from one only for slow drops and thick water lay-
ers. However, this relationship was based on simulations that
included only Reynolds numbers within the range 50–500 and
Weber numbers in the range 18–1152 – values much lower
than the range of natural raindrops (6500 6 Re 6 23000,
50 6 We 6 12150). Hence their simulations underestimated
the inertia forces compared to both viscous and capillary
forces.

In the present study, we performed numerical simulations
for realistic Re and We numbers for raindrops, varying only the
water depth. Figure 5 shows the maximum shear stress �max as
a function of the liquid depth plus the drop radius normalized
by the drop radius, which can be written as 1 C 2h=D. It is
well fitted by the following relationship:

�max /

�
h

D=2
C 1

�
�2.6

(8)

The maximum shear stress is observed around the time
.D=2 C h/=U0, which would correspond to the penetration
of half of the unperturbed drop over all the liquid layer. This
relationship was fitted varying only the ratio h=D, so that the
physical prefactor involves �lU2

0 multiplied by some function
of the dimensionless numbers (in particular the Reynolds num-
ber). As far as the aspect ratio h=D is concerned, we observed
that our fitted law is slightly different than the Hartley law (7),
the exponent of the fraction being smaller. However, given the
variation of 1 C 2h=D studied here, one should remark that
the quantitative differences between our results and those of
Hartley are not very large. In order to suggest an explanation
for such dependence, a detailed study of the evolution of the
stress tensor at the soil surface is first needed.

Self-similar evolution of the stress tensor on the
soil surface

Pressure
The pressure field on the soil surface shows a bell-shaped
curve with a maximum on the symmetry axis (r D 0) for all
times, the amplitude of this curve decreasing with time, while
its width increases. We thus define the characteristic length
for the pressure field on the soil surface as the radius where
the pressure is half the pressure on the axis r 0P1=2

.t/. The width
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Figure 6. Dimensionless radial position r 0P1=2
.t 0/ of half the maximum dimensionless pressure (located at r D 0) at the soil surface for different

ratios h=D shown in insert. The fitted power-law is traced on the figure for each value of h=D.

Figure 7. Rescaled pressure on the substrate for different aspect ratios h=D (indicated on each figure) for t 0 < 10�1.

Figure 8. Comparison of the rescaled pressure for different aspect
ratios h=D.

r 0P1=2
.t 0/ is shown in Figure 6 as a function of time for different

aspect ratios h=D. For a short time after impact, the evolu-
tion of r 0P1=2

.t/ can be fitted by a power-law, the exponent m
decreasing with the aspect ratio. For the thinnest simulated
water layers, r 0P1=2

.t/ evolves as the square root of t 0 (m � 0.5),
which is consistent with the law obtained for thin films. The

exponent m of the power-law decreases when the water layer
increases (see insert of Figure 6). Thus the water layer can be
seen as a shield protecting the soil surface against the dis-
turbance caused by raindrop impacts and it is only for the
thinnest water layers, i.e. when the shielding is the lowest, that
the disturbance (here the pressure) is similar inside the water
layer and at the soil surface.

For deeper water layers, the shielding is more efficient, lead-
ing to a disconnection between the behavior of the pressure
inside the liquid and at the soil surface. This disconnection
becomes quite significant for a water layer equal to the drop
radius.

However, a self-similar structure of the pressure field on
the soil surface can also be exhibited for the different aspect
ratios h=D. Indeed, rescaling the pressure on the soil surface
P 0.r 0, z0 D 0, t 0/ at different times by the maximum value
P 0.0, 0, t 0/ and the coordinate r 0 by r 0P1=2

.t/, we observe a
good collapse of the different pressure curves into a single
one for t 0 < 10�1 (i.e. smaller than 102.6 �s) (Figure 7).
However, these self-similar curves vary with the aspect ratio
h=D (Figure 8), the width e of the self-similar curve increasing
with h=D.
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Shear stress
The shear stress at the soil surface is computed numerically
using the shear rate, yielding

� D �l
dur.r, z D 0/

dz

and it exhibits a ring shape of which the radius r 0�max
.t 0/, cor-

responding to the maximum shear stress location, increases

with time. For thin liquid layers, r 0�max
.t/ evolves again approx-

imately as the square root of t 0 (Figure 9a), while the situation
is more complex for h=D > 1, where no tendency could be
extrapolated (Figure 9b).

We rescaled again the dimensionless shear stress � 0.r, z D
0, t/ by its maximum value (denoted by � 0max.r, z D 0, t/) and
plotted it as a function of the rescaled radius r 0=r 0�max

.t/ (where
r� 0max

.t/ is the position of the maximum value of � 0 at t) for
short time t 0 < 10�1 (i.e. smaller than 102.6 �s) (Figure 10).

Figure 9. Time evolution of the dimensionless radial position r 0�max.t/ of the maximum dimensionless shear stress at the soil surface for (a) small
and (b) large h=D. Note: the exponent was not fitted.

Figure 10. Rescaled dimensionless shear stress for different aspect ratios h=D for t 0 < 10�1.

Copyright © 2016 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms,41, 1199–1210 (2016)



1208 A. NOUHOU BAKO ET AL.

The collapse of the profiles is reasonable for small (< 1=3) and
large (> 1) aspect ratios h=D but the situation is much more
complex for intermediate cases, where only a partial collapse
is found. The shear stress has a quasi-linear profile for small
radius (r 0 < r 0�max

.t/) and then relaxes to zero for large r 0. Such
behavior for small radii can be understood within the dynam-
ics of thin films (Yarin and Weiss, 1995; Lagubeau et al., 2010).
This regime is valid after the self-similar regime of the impact
for which the pressure is high. Then, assuming a small gradi-
ent of the interface, the dynamics follow the so-called thin film
equations, for which the radial velocity yields

u D
r 0

t 0

for r 0 < r 0�max
.t/. This radial velocity is not consistent with the

no-slip boundary condition on the z D 0 solid boundary, so
that a viscous boundary layer of thickness lv D

p
�t=� grows

from the solid (Roisman, 2009; Eggers et al., 2010). Therefore,
one obtains for the shear stress on the solid (in dimensionless
form)

� 0.r, z D 0, t/ /
r 0

t 03=2Re1=2

which is consistent with the linear behavior for small r 0. On
the other hand, this regime can also explain the dependence of
the maximum shear stress. Indeed, assuming that for the max-
imum shear stress obtained at time t 0 D 1C 2H=D the radial
momentum of the thin film is equal to the vertical momentum
of the impacting drop, one obtains approximately

D3U0 � hcD2U0
.r 0�max

/3

t 0�max

where hc is the film height in the impacted zone, a priori dif-
ferent from the unperturbed film height h. Then, we obtain,
taking the time of maximum shear stress at t 0�max

/ 1C 2h=D

r 0�max

1C 2h=D
�

1
.r 0�max

/2hc=D

Then, using the observed relation r 0�max
/
p

t 0�max
, we have

� 0max /
1

.1C 2H=D/3=2hc=D
Re�1=2

Assuming the same scaling relation for the film height
hc=D / 1C 2h=D we obtain

� 0max /
1

.1C 2H=D/5=2
Re�1=2

which is in good agreement with the numerical results. Note
that the exponent 5=2 is obtained from assumptions that are
very speculative and which would need further studies to val-
idate. However, it is very close to the 2.6 fitted exponent of
relation (8), shedding light on the underlying mechanism for
the film thickness that is at play in the shear stress formula.
In particular, this exponent combines the contribution of the
thin film velocity field with the viscous boundary layer. The
Re�1=2 is a direct consequence of the boundary layer structure
and thus has better scientific grounds although it has not been
tested in our numerics. Note that it is in good agreement with
the previous observed behavior (Hartley and Alonso, 1991;
Hartley and Julien, 1992). We would like also to emphasize
that such an analytical formula is very important since it could
be implemented in macroscopic models coupling raindrops
and erosion.

Conclusions

Using the present numerical methods to solve the
Navier–Stokes equations for liquid–gas dynamics, we have
studied raindrop impacts on water layers for realistic con-
figurations. Quantities of interest for soil erosion, such as
pressure and shear stress at the soil surface, have therefore
been accurately computed, paving the way for quantitative
understanding of soil erosion driven by rain.

The simulations confirm that the maximum shear stress at
the soil surface depends in particular on the ratio between
the water depth and the drop size. The variation of the pres-
sure inside the water layer during the raindrop impact is well
explained by a self-similar approach where the self-similar
length is the spreading radius. The position of this radius cor-
responding to the maximum pressure moves as the square
root of time after impact. Such a relationship comes from very
general geometrical arguments and it was in fact previously
observed numerically and experimentally for a wider range of
drop impacts (especially with drop velocities different from the
terminal velocity). Importantly, the present study shows that
this relationship is independent of the ratio h=D.

At the soil surface, the maximum pressure is located at the
center of the impact. Considering half of this pressure, it was
found that it moves radially with the square root of the time
after impact only for thin water layers h=D < 1=5. For low
h=D ratios, the location of both the maximum pressure inside
the water and the pressure at the soil surface follow the same
law because the shielding caused by the water layer is mini-
mal. The shielding becomes significant for larger h=D ratios,
especially for h=D > 1, leading to a disconnection between
pressure behaviors inside the water and at the soil surface.
Nevertheless, for all h=D ratios, a self-similarity was found for
the pressure rescaled by its central value P.r, z D 0, t/ as a
function of the radius rescaled by the half-pressure radius. The
existence of this self-similarity shows that the dynamics of the
pressure at the soil surface are quite similar for different h=D
ratios (even though the rescaling depends on h=D).

The shear stress at the soil surface was also rescaled, but the
self-similarity was not as consistent as that for the pressure.
This indicates that the dynamics of the shear stress is more
complex, and that additional variables may have to be taken
into account. In particular, one would need in a further study
to elucidate the interplay between the growth of the viscous
boundary layer and the spreading dynamics.

By clarifying the dynamics of the raindrop impact on a water
layer, these results could foster experimental and numerical
studies of soil erosion by raindrops. By identifying the vari-
ables of interest, it will simplify the design of these studies.
More precisely, the equations for the maximum shear stress
could be implemented in a macroscopic model of erosion to
estimate the quantities of materials eroded. New insight could
also come from theoretical developments carried out in fluid
mechanics, such as the influence of air cushioning prior to the
impact on the interface deformation (Xu et al., 2005) or the
changes in flow due to the granular structure of the soil.

Indeed, the biggest drawback of current numerical model-
ing is probably the hypothesis of a rigid soil surface, which
comes from the unavailability of a suitable deformation law.
To be realistic such a law should account for the aggregated
status of soils. Finding such a law remains a challenge for soil
physicists.
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