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Elastic wave turbulence and intermittency
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We investigate the onset of intermittency for vibrating elastic plate turbulence in the framework of the weak
wave turbulence theory using a numerical approach. The spectrum of the displacement field and the structure
functions of the fluctuations are computed for different forcing amplitudes. At low forcing, the spectrum predicted
by the theory is observed, while the fluctuations are consistent with Gaussian statistics. When the forcing is
increased, the spectrum varies at large scales, corresponding to the oscillations of nonlinear structures made of
ridges delimited by d cones. In this regime, the fluctuations exhibit small-scale intermittency that can be fitted
via a multifractal model. The analysis of the nonlinear frequency shows that the intermittency is linked to the
breakdown of the weak turbulence at large scales only.
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Introduction. Random interacting waves, often called wave
turbulence [1–3], are present in different systems such as
oceans [4–6], capillary or Alvèn waves [7–10], nonlinear
optics [11], and elastic plates [12]. Understanding the sta-
tistical properties of such structures is crucial since inter-
mittency and/or anomalous scalings may have important
practical interest, for instance in predicting the frequency
of extreme events such as rogue waves in oceans [6,13].
At variance with hydrodynamics turbulence, a linear order
is present, consisting of independent dispersive waves, and
a perturbative statistical approach converges asymptotically
for weak nonlinearities, the so-called weak wave turbulence
theory (WWT) [1–3]. WWT can be seen as a mean-field
theory for the spectrum n(k,t), which neglects fluctuations and
supports nonequilibrium cascade solutions. The asymptotic
closure suggests that the Fourier modes are somehow close
to joint Gaussianity, even though it is not a necessary
condition and the detailed statistics of the fluctuations is
still debated [3]. Indeed, large discrepancies with the WWT
predictions have been observed in some cases [14], motivating
the theoretical analysis of possible onset of strong fluctuations
and intermittency [10,15–22]. Moreover, when nonlinearities
are not weak anymore, a breakdown of weak turbulence occurs,
since the WWT is not formally valid, and anomalous scalings
for the fluctuations are then expected. Nevertheless, turbulent
spectra are usually still observed, involving the spectrum of
strong nonlinear dynamical structures, leading, for example, to
the so-called Phillips spectrum [23,24]. First evidences of these
nontrivial behaviors have been observed for gravity waves
both numerically [25] and experimentally [26–28]. However,
because of the difficulties of gravity wave dynamics [27,29],
a detailed understanding of the origin of this intermittent
behavior is still lacking. In fact, although a potential link
between the breakdown of WWT and the appearance of
intermittency has been invoked, the underlying mechanisms
need still to be identified.

The goal of this Rapid Communication is to investigate
the occurrence of intermittency and the breakdown of WWT
by analyzing numerically the vibrations of elastic plates,
prototype of wave turbulence [12,30], that is also well suited
for experimental investigations [31–34].

Wave turbulence in plates. Elastic vibrating plates are
modeled using the dynamical version of the Föppl–von
Kármán (FVK) equations [35]. These equations describe the
evolution of the out-of-plane displacement ζ (x,y,t) of a plane
plate of thickness h of an elastic material of density ρ,
Young modulus E, and Poisson coefficient σ . It reads in a
dimensionless form:

∂2ζ

∂t2
= −1

4
�2ζ + {ζ,χ}, (1)

�2χ = − 1
2 {ζ,ζ }, (2)

where the lengths have been rescaled by h/
√

3(1 − σ 2), the
time by h

√
ρ/[3E(1 − σ 2)], and the Airy stress function

χ (x,y,t) that describes the plate stresses by Eh2/[3(1 − σ 2)].
� = ∂xx + ∂yy is the usual Laplacian and the bracket {·,·}
is defined by {f,g} ≡ fxxgyy + fyygxx − 2fxygxy , so that
Eq. (1) preserves the momentum of the center of mass, namely
∂tt

∫
ζ (x,y,t)dxdy = 0. The first term on the right-hand side

of (1) represents the bending while the second one {ζ,χ},
a cubic nonlinearity, represents the stretching. The second
equation (2) relates the Airy stress function to the Gaussian
curvature of the plate {ζ,ζ }. Linear elastic waves obey a
quadratic dispersive relation ωk = k2/2 (k the wave number
and ωk the wave frequency), so that the WWT formalism can
be applied [12]. WWT consists then of a small frequency
correction quantifying the (weak) nonlinear interactions:

ω
(1)
k = π

2

[ ∫ k

0

ωqq
2

k2
〈|ζq |2〉 qdq +

∫ ∞

k

ωqk
2

q2
〈|ζq |2〉 qdq

]
,

(3)

where ζk = 1
2π

∫
ζ (x,t)eik·xd2x is the Fourier transform of

the displacement field ζ and the brackets 〈·〉 indicate statistical
average. The next order of the WWT is a kinetic equation for
the spectrum of the displacement 〈|ζk|2〉 involving four-wave
nonlinear interactions that exhibits two types of stationary
solutions. In addition to the Rayleigh-Jeans equilibrium distri-
bution, which reads 〈|ζk|2〉 = T

ωk
, where T plays the role of a

temperature, WWT predicts a constant flux of energy from the
large- to the small-scale solution, the Kolmogorov-Zakharov
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(KZ) spectrum:

〈|ζk|2〉KZ = CP 1/3 ln1/3(k∗/k)

k4
. (4)

The logarithm correction comes from the degeneracy of the
Rayleigh-Jean solutions, similarly to the WWT for the nonlin-
ear Schrödinger equation in two dimensions (2D) [36,37]. P

is the energy flux density involved in the energy cascade, k∗ is
a critical wave number, and C is a pure number.

For the present study, the FVK equations (1) and (2)
are solved numerically using a pseusospectral method on a
square plate with periodic boundary conditions. The linear
wave dynamics is solved exactly in the Fourier space while
the nonlinear terms are evaluated in the real space using fast
Fourier transform [12]. Dissipation at small scales and forcing
at large ones are added in Eq. (1) to simulate a turbulent
process. Realistic dissipation in plates is in fact present at
all scales, affecting the spectra of vibrating plates [34,38,39].
In order to avoid this problem that is not related to the
present issue, we have chosen to model the dissipation using a
classical diffusion process D(x,t) = γ�ζ̇ , where γ represents
the relevant viscosity and ζ̇ is the vertical velocity. It presents
the advantages of being mostly relevant at small scales, in
agreement with the WWT, and of remaining reasonably close
to the real dissipation [34,41]. The forcing is added as a white
random force at large scales, whose amplitude in Fourier space
follows V �(k0 − k), where �(·) is the Heavyside function.
Here, the amplitude V is varied over a large range of values
with a constant characteristic wave length k0 = 0.05. The
simulations start with a plate at rest. Then, after a transient, a
statistically stationary regime is reached, where the field and
the energy are fluctuating around mean values. The amplitude
V is directly related to the power injected in the system ε

that corresponds, in this stationary regime, to the dissipation,
following ε ∝ V 2.

Numerics and spectra. In Fig. 1, we show the numerical
representation of the plate deflection together with the corre-
sponding displacement spectrum, for different forcing. First,
it should be emphasized that for all the spectra computed
here, no anisotropy of the fields have been observed, as
already noticed in experiments [40]. Two different groups
of spectra are identified, separating low from high forcing
regimes: For the four smallest forcing (corresponding to
V � 10−5), the k−4 slope is observed over an inertial range
separating the forcing from the damping scales, in line with
theoretical predictions. For the larger forcing (V � 5 × 10−5)
the k−4 slope is still present at large wave numbers, whereas
a steeper spectrum consistent with |ζk|2 ∼ k−6 appears at low
wave numbers, as recently highlighted experimentally and
numerically [33]. There, most of the energy is concentrated
in coherent deformations, which have been identified to be
dynamical ridges limited by d cones. More precisely, since
ridges correspond to lines separating planar domain, they
can be described by the relation ∂xζ ∼ �(x − x0), where �

is the Heavyside function. Such displacement fields exhibit
a 1/k4 spectrum similar to the KZ one but the logarithm
correction. On the other hand, one should notice that such
ridges exhibit d cones at their edges whose spectra scale
like 1/k6: Indeed, close to its center a d cone can be
described in polar coordinates following ζ (x) ∼ rf (θ ), where
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FIG. 1. Wave spectrum 〈|ζk|2〉 for the different forcings studied.
We have used 8 forcing amplitudes spanning two orders of magnitude
(the smallest is V 1 = 10−6 and the strongest V 8 = 5 × 10−4,
corresponding to energy flux ranging from ε = 4.45 × 10−10 to
ε = 10−4, following ε ∝ V 2). The curves correspond to increasing
forcing from the bottom to the top, with V 2 = 2 × 10−6, V 3 = 5 ×
10−6, V 4 = 10−5, V 5 = 5 × 10−5, V 6 = 10−4, and V 7 = 2 × 10−4.
The dashed lines represent the two limit curves |ζk|2 ∼ k−4 for
the theoretical Kolmogorov-Zakharov (KZ) spectrum (up to the
logarithmic correction) and k−6 that describes the ridge turbulence.
In all the simulations, the plate is a 1024 × 1024 square and in order
to correctly describe the high forcing amplitudes, we have varied
accordingly the mesh from 1024 × 1024 grid points at small forcings
up to 4096 × 4096 for the highest ones. The two images show the
surface plate deflection ζ (x,y) in the two extreme regimes analyzed
here, the lowest forcing amplitude (bottom) and the largest one (up),
exhibiting ridgelike deformation.

f (·) is a function of θ only. Its Fourier transform reads
ζk ∼ ∫

rf (θ )eik·xrdrdθ ∝ 1
k3 , leading to a 1/k6 spectrum.

Thus in the high forcing regime, the spectrum is dominated
by the contribution of the d cones, so that the plate dynamics
can be interpreted as oscillating ridges with moving d cones at
their edges. Interestingly, it is also different from the Phillips
spectrum, that is obtained by balancing the nonlinear with the
linear time scales [3], leading to a 1/k2 scaling. Assuming
|ζk|2 ∼ k−x , we obtain ω

(1)
k ∼ k4−x so that the condition

ω
(1)
k /ωk ∼ 1 gives x = 2, leading to the same spectrum than the

Rayleigh-Jeans one.
Intermittency. Intermittency for these structures has in

fact already been noticed through the computation of the
flatness in numerical simulations showing a non Gaus-
sian behavior [30,33]. To analyze further intermittency and
anomalous scaling, that is the lack of self-similarity, it is
interesting to investigate higher moments using the structure
functions [42], Sp(r) = 〈|δζ (x,r)|p〉, where the increment is
defined as δζ (x,r) ≡ ζ (x + r) − ζ (x). It is worth emphasizing
that statistics of displacement and velocity are the same,
since normal variables are a linear combination of both. For
plates, the scaling of the energy spectrum is of the form
Eζ = k|ζ |2k ∼ k−n, with n � 3 but a possible logarithmic
correction. With this exponent, the cascade is not local and
the Wiener-Kintchine theorem does not apply [42], so that
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FIG. 2. Compensated structure functions S2
p for p = 2, 6, and 8

are plotted as functions of r/L, for the strong forcing case (V 7). They
are compensated (divided) by a scaling factor of the form (r/L)ξp . For
p = 2, the best fit corresponds to ξp = 3.2 due to the high forcing,
different from ξp = 2 that would be expected for a the k−4 spectrum.
For p = 6 and p = 8 both the Gaussian predictions (ξp = 9.6 and
12.8 respectively) and the best guessed scalings (ξ6 = 8.48 and ξ8 =
10.8) are presented.

the ζ field is expected to be smooth, leading to S2(r) ∼ r2,
independent of n. Therefore, second-order difference should
be used [27], defined as δζ 2(x,r) = ζ (x+r)−2ζ (x) + ζ (x −
r). While in hydrodynamic turbulence, we have the remark-
able Kolmogorov four-fifth law for the correlation of third
order [42]; no similar relationship exists for the plate equations.
However, a semianalytical result can be deduced here from
the KZ spectrum: For small forcing the spectrum |ζ |2k ∼ k−4

suggests S2
2 ∼ r2 while a steeper exponent is expected at

higher forcing, where the spectrum can be seen as a mix of
k−4 at small scales and k−6 at larger ones (corresponding to
S2

2 ∼ r4). That leads to the scaling S2
2 ∼ r2α , with 1 � α � 2.

Then, in the case of Gaussian statistics, one would expect for
higher-order structure functions S2

p(r) ∼ rp for low forcing
(neglecting the logarithmic correction) and S2

p(r) ∼ rαp for
high forcing. The numerical results for the structure function
of order 2 are in line with these findings: For the smallest
forcing, we find S2

2 ∼ rξ2 = r2.2, whereas for a stronger one
(V 7 here), S2

2 ∼ rξ2 = r3.2 (see Fig. 2), leading to α = 1.6.
Figure 2 compares the structure functions of order p = 6
and p = 8 compensated by the expected self-similar scalings
(αp) with those compensated using a best-fit scaling law.
We find lower exponent values with the fitted scalings (8.48
instead of 6α = 9.6 for p = 6 and 10.8 instead of 8α = 12.8
for p = 8), demonstrating a discrepancy between Gaussian
predictions and actual data for strong forcing, indicating
that an intermittent regime is at play. However, the structure
functions still exhibit an inertial range over a decade (around
r/L ≈ 10−2).

To investigate further this intermittent property, we extract
systematically in all our simulations the exponents ξp for the
structure functions S2

p(r) up to p = 12. This is done using the
extended self-similarity (ESS) technique [43], that consists
in computing the logarithmic slope of the curves obtained
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FIG. 3. Plot of the structure function S2
p vs S2

2 , for p = 10, 8, 6,
and 4 from top to bottom. Lines have slopes ξp/ξ2, computed as the
logarithmic local slopes shown in the inset as function of r/L. Clear
constant slope can be estimated, giving ξp/ξ2 = 4.05, 3.4, 2.65, and
1.85 respectively.

by plotting S2
p(r) as a function of S2

2 (r), as shown in Fig. 3.
This slope gives in fact directly the ratio ξp/ξ2. While ESS
was originally proposed as a form of self-similarity appearing
even when inertial range is not detectable [43], we use it
here only as a technical tool to extend the range where the
scaling can be measured. In particular, we use S2

2 (r) to probe
the scaling and to determine a clear inertial range for the.
calculations.

Figure 4 presents the ratio of the exponents extracted in this
way, ξp/ξ2 as function of p, for the different forcings up to
the twelfth order. A Gaussian statistics would correspond to
the straight line ξp/ξ2 = p/2 drawn in the figure. We observe
that for the low forcing V 1, the results are in agreement with a
Gaussian statistics, as expected by the WWT. This is, however,
in contradiction with former results obtained experimentally
for gravity waves where anomalous scalings were already
present at the smallest forcings available [27]. Yet, a clear
discrepancy is present for stronger forcing: The variation for
the twelfth order is about 20% for V 7, comparable to what is
found for hydrodynamics turbulence (30%). Remarkably, the
intermittency saturates for high forcing, at least in the high
amplitude limit that we have been able to reach numerically.
Such anomalous scaling of the structure functions cannot
be reproduced by a linear model, indicating a nontrivial
multifractal spectrum of exponents [44,45]. As shown in wave
turbulence in the context of magnetohydrodynamics [22],
it is useful to build a model which fits the data. Among
the various models available [46,47], we have chosen the
random-β model [48], with the KZ spectrum considered
as a physical constraint. The model describes the cascade
in real space looking at scales of size rj = 2−jL, with
L being the length at which energy is injected. At the n

step of the cascade, the scale rn splits into scales of size
rn+1, but only a fraction βn(0 < βn � 1) is considered as
active. The βj are independent, identically distributed random
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FIG. 4. Structure functions exponent ratio ξp/ξ2 computed using
the ESS technique are shown as a function of p for four different
forcings. The Gaussian statistics line ξp = p

2 is shown by the dashed
line for comparison. The results can be fitted using the multifractal
random β model (solid line), as shown here for the highest forcing
V 7, taking DF = 1 and x = 0.65. The inset shows a zoom of the
exponent ratio at large p.

variables. Therefore, the field fluctuations ζn at scale rn

receive contributions only by a fraction �n
j=1βj . Taking into

account the KZ constraint, one has ζn ∼ ζ0r
3/2
n �n

j=1β
−1/2
j . All

the physics is contained in the distribution of βj . A simple
phenomenological choice is to take βj = 1 with probability x

and βj = B = 2DF −2 with probability (1 − x), where DF is the
dimension of the most singular structures. The corresponding
scaling exponents are given in terms of these two parameters
ξp = 3

2 − log2[x + (1 − x)B1−p/2]. The case x = 1 gives the
Kolmogorov-Zakharov scaling. We shall consider x as a free
parameter to be estimated by data. Instead, it seems appropriate
to consider the ridges between d cones as the most singular and
oscillating structures, so that we take DF = 1. The plot of the
model deduced shows a very good agreement with numerical
results for the highest forcing choosing x = 0.65, Fig. 4. From
such an agreement, it may be inferred that intermittency is
dominated by the oscillations of the ridges. In particular, our
results suggest that 35% of the fluctuations are given by these
structures.

Discussion. In order to tackle the intermittency origin, some
basic hypothesis behind WWT need to be questioned. Since
the nonlinear energy terms always remain much lower than the
linear ones, varying between 5% and 10% for all the forcings
(inset of Fig. 5), no global breakdown of WWT is responsible
of the intermittency. But, by analyzing locally in Fourier space
the frequency ratio ω

(1)
k /ωk, Fig. 5 shows that the nonlinear

frequencies remain small at large wave numbers for all the
forcings, while they become comparable with the linear one at
small wave numbers for the highest forcings.

0.01 0.1 1 10
wave number k

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

ra
ti

o 
 ω

nl
/ω

l

V1
V2
V3
V4
V5
V6
V7
V8

0 2000 4000

time
0

0.1

0.2

0.3

0.4
E

nl 
/E

l

Forcing

FIG. 5. Nonlinear to linear frequency ratio ω
(1)
k /ωk as a function

of the wave number for the different forcings. The inset shows the
ratio between the nonlinear and the linear energy as a function of time
for the highest forcing V 8.

The breakdown of WWT appears thus first at large scales
although the spectrum in the inertial ranges still remains
within WWT. We can clearly separate our results in two
groups: for the four smaller forcings the frequency ratios
are everywhere smaller than 10−2, while for the four higher
ones, large scales are clearly out of the WWT validity. These
two groups are the same as those observed for the spectra in
Fig. 1, demonstrating the direct link between the oscillating
d-cone spectra, the breakdown of wave turbulence, and the
onset of intermittency. Nonetheless, the anomalous scaling was
observed for higher statistics at smaller scales, showing that
the cascade process triggers a multiplicative amplification of
fluctuations.

In conclusion, our numerics show that WWT implies
Gaussian statistics at small forcing for vibrating plate tur-
bulence. When the forcing increases, the spectrum changes,
exhibiting dynamical ridges and d cones with the breakdown
of WWT occurring at large scales. Intermittency appears
simultaneously characterized by a multifractal spectrum of
exponents which is observed in the inertial range. Observations
of intermittency remain an experimental challenge in wave
turbulence [26]. In the case of the vibrating plates, the ridgelike
structures have been observed mostly numerically, while
they were smoothed experimentally by the plate dissipation
acting at all scales [33,34]. We hope that this work will
motivate experimental estimation of the structure functions
of the displacement or the velocity fields, particularly for
higher moments than the flatness already studied. More
importantly, it would be interesting to characterize experimen-
tally the influence of the oscillating ridges in the dynamics
at high forcing and try to relate them to the multifractal
model.
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