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Self-similar formation of an inverse cascade in vibrating elastic plates
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The dynamics of random weakly nonlinear waves is studied in the framework of vibrating thin elastic plates.
Although it has been previously predicted that no stationary inverse cascade of constant wave action flux could
exist in the framework of wave turbulence for elastic plates, we present substantial evidence of the existence of
a time-dependent inverse cascade, opening up the possibility of self-organization for a larger class of systems.
This inverse cascade transports the spectral density of the amplitude of the waves from short up to large scales,
increasing the distribution of long waves despite the short-wave fluctuations. This dynamics appears to be
self-similar and possesses a power-law behavior in the short-wavelength limit which significantly differs from
the exponent obtained via a Kolmogorov dimensional analysis argument. Finally, we show explicitly a tendency
to build a long-wave coherent structure in finite time.
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I. INTRODUCTION

Oscillating random waves are present in a myriad of
situations in nature, displaying a large variety of scales and
exhibiting turbulent-like behavior, so-called wave turbulence
[1–3]. Of particular interest are the oscillations over the surface
of the sea, Rossby waves in atmospherical science, nonlinear
optics, plasma oscillations, and the vibration of elastic bodies
such as piano strings, timbals, or more complex singing bowls,
bells, or gongs. Because of the intrinsic nonlinearity of the
basic underlying physics of these problems, and because
of the randomness of the phase of the oscillations, only a
statistical description seems reasonable. The weak turbulence
theory provides such a statistical description for the asymptotic
long-time behavior of the spectral wave amplitude, in the
case where nonlinearities are small. In particular, it describes
the energy transfer among the different modes in agreement
with the conservation of the total energy of the waves.
More precisely, this wave turbulence theory provides kinetic
equations for the long-time evolution of the spectral amplitude
for dispersive wave systems [1–3]. In the present context
of small nonlinearities, we will use interchangeably wave
turbulence theory and weak turbulence theory and refer to it as
WTT. Remarkably, such kinetic equations exhibit stationary
solutions corresponding to equipartition or constant flux
cascades of the energy, namely the Rayleigh-Jeans solution
and the Kolmogorov-Zakharov (KZ) spectrum, respectively.
The search of the KZ spectra has motivated exhaustive studies
since the early 1960s [3], regaining recent interest, because of
the parallel development of new theoretical and experimental
findings. Among them, we mention the cases of surface
capillary waves [4,5], surface gravity waves [6,7], and elastic
waves of thin plates [8–10], for instance. While such dynamics
corresponds usually to a direct cascade of energy towards
the small scales, the formation of large-scale structure can
sometimes be observed. This is the case in particular for
Bose-Eintein condensation [11–14] or in two-dimensional
hydrodynamic turbulence [15], where the self-organization
process is a consequence of an inverse cascade. This inverse
cascade transfers some quantity (e.g., particles, enstrophy, and
wave action) from the small scales toward the large scales

leading to the formation of coherent structures. The formation
of an inverse cascade in different systems has always been
related to the existence of a conserved quantity at least at
the weakly nonlinear level. For instance, when using the
Gross-Pitaevskii or nonlinear Schrödinger equation to model
the Bose-Einstein condensates, WTT predicts the existence of
an inverse cascade of mass (a conserved quantity). Similarly,
in the case of surface gravity waves, an inverse cascade
of the conserved wave action is deduced and numerically
observed [16,17]. Finally, we want to emphasize that, besides
the description of the stationary solutions of the dynamics, the
kinetic equations that are deduced by the WTT give a very good
framework to investigate nonstationary situations involved in
wave systems such as transitory or decaying regimes that often
lead to self-similar dynamics [18–20]. The goal of this paper
is to show, using the elastic vibrating plate, that the formation
of an inverse cascade does not generally require a conserved
quantity, opening up the possibility of self-organization for a
larger class of systems. In particular, nothing prevents the
existence of a time-dependent inverse cascade that would
transfer wave action from short scale to large scale.

The paper is organized as follows: Section II introduces
the dynamical version of the Föppl–von Kármán equations
which provide the basic nonlinear equations for vibrating
elastic plates, containing both bending and stretching. Then we
summarize the main findings of the WTT of a vibrating plate,
in particular the concept of the Kolmogorov-Zakharov spectra.
Section III presents the numerical simulations of a vibrating
plate which is forced only at very short wavelengths, displaying
a striking inverse cascade of wave action. Section IV analyzes
the numerical evidence of a self-similar evolution which
suggests a blow-up in finite time. Finally, we conclude with an
overall discussion of the problem.

II. WAVE TURBULENCE THEORY OF VIBRATING
ELASTIC PLATES

A. The Föppl–von Kármán equations for elastic plates

Vibrating elastic plates offer, perhaps, the most suitable
weakly nonlinear wave system. It is studied within the
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framework of the dynamical version of the Föppl–von Kármán
equations [21] which model the dynamics of the out-of-plane
displacements of the plate. We shall use the same notations
as in Ref. [8], but we write them in dimensionless units. We

choose l = h/
√

3(1 − σ 2) as the unit of length and l
√

ρ

E
as

the unit of time. Here h is the thickness of the elastic sheet,
the material has a mass density ρ, a Young modulus E, and its
Poisson ratio is σ . In these units the equations read:

∂2ζ

∂t2
= −1

4
�2ζ + {ζ,χ}, (1)

�2χ = − 1
2 {ζ,ζ }. (2)

The out-of-plane displacement of the plate in physical units
is thus lζ (x,y,t), and the Airy stress function is El2χ (x,y,t).
Equation (2) for the Airy stress function χ (x,y,t) may be
seen as the compatibility equation for the in-plane stress
tensor which follows the dynamics at the lowest order.1 The
characteristic size of the plate is L, thus the dynamics of a
free plate is governed by a single dimensionless parameter,
� = L

l
=

√
3(1 − σ 2)L

h
, which is typically of the order of 103

up to 104. � = ∂xx + ∂yy is the usual Laplacian and the bracket
{·,·} is defined by {f,g} ≡ fxxgyy + fyygxx − 2fxygxy, which
is an exact divergence, so Eq. (1) preserves the momentum of
the center of mass, hence, ∂tt

∫
ζ (x,y,t) dx dy = 0. Moreover,

the total energy:

E =
∫ [

1

2
(∂tζ )2 + 1

8
(�ζ )2 − 1

2
(�χ )2 − 1

2
χ{ζ,ζ }

]
dxdy

(3)

is also conserved by the dynamics (1) and (2). Finally, small
plane-wave perturbations [ζ ∼ ei(k·x−ωkt) with x = (x,y)] of a
plane plate are dispersive with the usual ballistic behavior of
bending waves, that is, ωk = 1

2 |k|2 [21].

B. Wave turbulence equations for the spectral densities

As already discussed in Ref. [8], Eqs. (1) and (2) exhibit
a Hamiltonian structure which is easily revealed in Fourier
space, defined by ζk(t) = 1

2π

∫
ζ (x,t)eik·xd2x, with ζk = ζ ∗

−k.
The Hamiltonian structure allows one to performs a canonical
transformation,

ζk = 1√
2ωk

(Ak + A∗
−k), (4)

which leads to a diagonalized form of the wave equation:

dAk

dt
+ iωkAk = iN3(Ak), (5)

where N3(·) abbreviates the cubic nonlinear interaction term
given explicitly in Ref. [8].

The WTT describes the long-time statistical behavior of
weakly nonlinear random waves. The analysis is based on

1In the derivation we have omitted the inertia of the in-plane modes
of oscillations, or, in other words, we assume that the in-plane
displacements are negligible and the static equilibrium holds, so,
as noted, equation (2) describes the dynamics.

an infinite hierarchy of integrodifferential equations for the
cumulants of the canonical variables which maybe deduced
directly from (5). In the weak wave amplitude limit, a mul-
tiscale asymptotic expansion of these hierarchy of equations
provides a rational scheme for solving every cumulant [1–3].
As a result, the second-order cumulant,

〈Ak1A
∗
k2

〉 = nk1δ
(2)(k1 + k2), (6)

is shown to control the long-time dynamics of the wave system,
where nk is the spectrum of the wave. Other second-order
cumulants vanish in the weak amplitude (long-time) limit
[1–3], in particular,〈

Ak1Ak2

〉 → 0 and
〈
A∗

k1
A∗

k2

〉 → 0.

In these formulas 〈. . . 〉 stands for the ensemble average over
an underlying joint probability distribution function [2].

The asymptotic perturbation scheme of this theory provides
at first order a nonlinear frequency shift to the linear waves,
leading to an effective oscillation frequency ωeff

k = ωk +
ω

(1)
k + . . . . This correction due to weak nonlinear effects is

a function of the mean spectral density nk(t) (6) and it reads
(in the dimensionless units) [22]:

ω
(1)
k = π

2

[∫ k

0

q2

k2
nq qdq +

∫ ∞

k

k2

q2
nq qdq

]
. (7)

Notice that this frequency correction was also obtained by
considering a limited number of nonlinear interactions [23].
In addition, in the WWT this frequency shift (7) is useful to
quantify the nonlinear effects and, by consequence, the validity
of the WTT. Indeed, the ratio ω

(1)
k /ωk indicates the relative

importance of the nonlinear term with respect to the linear
behavior. The uniform validity of the WTT requires that this
ratio should satisfy |ω(1)

k /ωk| 
 1 for all the wave numbers.
If this number is of the order of unity, wave turbulence is no
longer valid, at least for the concerned scales.

At the next order, WTT provides a kinetic equation that
governs the mean spectral density evolution nk(t), which
reads [8]:

d

dt
nk = C[nk] = 12π

∫
dk1dk2dk3 |J−k,k1;k2,k3 |2

×
∑
s1s2s3

nk1nk2nk3nk

(
1

nk

− s1

nk1

− s2

nk2

− s3

nk3

)

× δ(2)(k − k1 − k2 − k3)

× δ
(
ωk − s1ωk1 − s2ωk2 − s3ωk3

)
. (8)

The coefficient J−k,k1;k2,k3 , in Eq. (8), comes from the
fourth-order nonlinearities in the total energy (3), and they
are given explicitly in Ref. [8]. The details of this scattering
function J are not needed here and we do no write it for the
sake of simplicity, but, for the purpose of this work, we only
have to notice that it has a zero degree of homogeneity in k,
that is,

J−λk,λk1;λk2,λk3 = J−k,k1;k2,k3 .

Finally, we mention that this function J−k,k1,k2,k3 vanishes as
k → 0, so the spectrum does not vary at k = 0, in agreement
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with the original plate equations (1) and (2). If nk=0 = 0 at
t = 0, then the spectrum vanishes at k = 0 for all time.

The spectral dynamic described by the kinetic equation (8)
corresponds to four-wave resonances which enforce the energy
and momentum conservations in each interaction. However, in
contrast with the case of diluted gases where each collision
preserves the number of particles, the total number of waves
involved in the interaction is not formally conserved for
vibrating plates. Moreover, it is interesting to notice that while
the total energy (3) is conserved by the original Föppl–von
Kármán equations (1) and (2), the kinetic equation preserves
only the quadratic part of the total energy, namely E2 =∫

[ 1
2 (∂tζ )2 + 1

8 (�ζ )2]dxdy.
The sum in (8) rules for si = ±1, that is, the kinetic

equation (8) contains eight terms. Among them, the one
corresponding to all si equal is not resonant and it thus
vanishes. Three other terms (all identical by symmetries)
correspond to interactions of two waves coming in and two
waves going out, so the total number of waves is preserved
by this interaction. We will refer to these terms as the 2 ↔ 2
resonant case. Finally, there are four other interaction terms
corresponding to one (three) wave(s) coming in and three
(one) waves going out, which are referred to as the 3 ↔ 1
resonant case. In this latter case, the total number of waves
is not preserved formally by the four-wave interaction. We
denote these two different interaction terms by C22 and C13,
respectively, so C[nk] = C22[nk] + C13[nk]. This non wave
action conservation represents a major difference with most
of the known four-wave interaction systems such as surface
gravity waves [24] or nonlinear optics [25]. To our knowledge
the only known physical systems that exhibit these two kind
of interactions (2 ↔ 2 and 3 ↔ 1) are the symmetric capillary
waves at the interface between two fluids [5] and the elastic
plates [8].

In conclusion, although the kinetic energy E =∫
ωknk(t)d2k is preserved by the dynamics (8), the wave

action, N = ∫
nk(t)d2k, is not.

C. Kolmogorov-Zakharov spectra

Although the wave action is not preserved by the dynamics,
local conservation equations can be deduced from the kinetic
equation. Indeed, the change in time of the energy spectral
density E(k) = 2πkωknk can be written, after (8), as

d

dt
E(k) = − d

dk
P (k) where

P (k) = 2π

∫ ∞

k

ωqC[nq] q dq (9)

is the energy flux, which depends, in principle, explicitly on
the wave number k and t . Similarly, the wave action flux
Q(k) may be defined via the wave action spectral density:
N (k) = 2πknk , through:

d

dt
N (k) = d

dk
Q(k) with Q(k) = 2π

∫ k

0
C[nq] q dq.

(10)

As the energy flux, the wave action flux may depend on the
wave number and time. Notice that the special writing of

Eqs. (10) may induce the wrong impression that
∫

N (k)dk

is conserved by the dynamics, but this is not so, because
Q(0) �= Q(∞). Wave turbulence theory predicts a class of
exact power-law solutions of the kinetic Eq. (8), found by
Zakharov [1], which keep the fluxes constant. More precisely,
a (direct) energy cascade is found for which the energy flux
P is constant. Similarly, if the wave action is conserved
by the dynamics, then an (inverse) wave action cascade
corresponding to a constant wave action flux Q can be
exhibited. These solutions are named the KZ spectra, because
Zakharov’s findings are in close relation with the Kolmogorov
scaling arguments used in fluid turbulence.

Taking an arbitrary power-law solution, nk = Ak−2x , and
introducing this into the collisional operator C[nk], one readily
gets:

C[Ak−2x] = A3I (x)k2−6x.

Here I (x) is a pure function, which depends only on the
exponent x and whose expression has been explicitly written
in Ref. [8]. Following (9) and (10), the fluxes are then given
by:

P = A3 πI (x)

6(x − 1)
k6(1−x) and Q = A3 πI (x)

(2 − 3x)
k4−6x.

(11)

Constant energy or wave action fluxes are obtained if the
exponents take the values x = 1 or x = 2/3, respectively.
Such arguments guarantee only that the scaling of the solution
is consistent with the collisional operator. However, since
the denominator vanishes for those exponents, one needs in
addition that the collisional operator vanishes in order to obtain
stationary solutions of the kinetic equation. This condition is
not satisfied for elastic plates, where the inverse cascade of
wave action, x = 2/3, is not a root of I (x). Only the terms
corresponding the 2 ↔ 2 resonances vanish for x = 2/3, while
the terms due to the 3 ↔ 1 resonances do not. Then the flux
Q formally diverges and the KZ solution is not valid.

On the other hand, I (x) has a double root for x = 1 due to
a special degeneracy [I (x) vanishes quadratically near x = 1,
I (x) ∼ (1 − x)2]. It indicates that both the Rayleigh-Jeans and
the KZ solutions exist for x = 1. In practice, the resulting flux
is zero; thus a logarithmic correction should be included on the
final spectrum [8]. Therefore, the above considerations imply
that only one cascade is guaranteed, namely a direct cascade
of energy toward the small scales, which remarkably is not a
simple power law. This KZ spectrum, predicted in Ref. [8],
reads (the numerical prefactor is discussed in Ref. [22]):

ndirect
k ∼ P 1/3 ln1/3(k∗/k)

k2
, (12)

where P is the energy flux and k∗ a cutoff scale. These
solutions have been observed in numerical simulations
performed with an ad hoc dissipation concentrated at
small scales only [8,26,27]. However, experimental obser-
vations [9,10,28,29] present a slightly different behavior for
the direct energy cascade, which is understood as follows.
In Ref. [30], it is shown that the dominant low-frequency
dissipation rate of the damping suppresses the existence of
a window of transparency in the wave-number range probed
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by the experiment. It turns out that the stationary spectrum for
a vibrating plate comes from the balance among the kinetic
collision integral, the forcing, and the damping, displaying
no simple KZ scaling spectrum and exhibiting a strong
dependence on the damping mechanisms [30].

We conclude this section with the following remark. If one
neglects the 3 ↔ 1 resonances in the kinetic equation, that is,
if one imposes C13[nk] ≈ 0, then an inverse cascade of wave
action with constant flux can exist in addition to the direct
cascade of energy. This inverse cascade of wave action (from
small scales to large scales) reads:

ninverse
k ∼ Q1/3 1

k4/3
, (13)

where Q < ∞ is identified as the (constant) wave action flux.
This inverse cascade transfers wave action between modes,
a self-organization process which may lead to the formation
of coherent structures and eventually to the breakdown of the
WTT [14,25,31].

The goal of this paper is therefore to investigate the plate
dynamics by forcing the vibrations at small scales only in order
to observe the genuine transfer of wave action towards large
scales despite the presence of the 3 ↔ 1 interactions.

III. MANIFESTATION OF AN INVERSE CASCADE

We solve numerically the coupled set of dynamical equa-
tions (1, 2) using a pseudospectral method which takes
advantage of the linear wave dynamics in Fourier space.
Formally, Eqs. (1) and (2) read, in Fourier space:

ζ̈k = −ω2
kζk + NLk − Dk ζ̇k + Ik, (14)

where NLk stands for the Fourier transform of the nonlinear
term including Eq. (2), Dk represents a linear damping, and
Ik is the forcing in spectral space. Finally, the temporal inte-
gration is performed in the Fourier space using a second-order
Adams-Bashford scheme. A standard dealiaising technique for
cubic nonlinearity has been tested in previous works [8] with
no qualitative changes in the results so no dealiaising is used
in the present simulations.

In the present work we use periodic boundary conditions,
which are the natural framework to investigate the features
of the wave turbulence, the number of modes ranging from
5122 up to 20482, with a mesh size dx = 1/2, leading to
the spectral ultraviolet cutoff kc = π/dx = 2π . For numerical
stability, the time step used for the simulations is dt = 0.02
unit time. To observe the dynamics towards large scale, we
force and dissipate the system at small scales only. The
dissipation is given by Dk = −η(k2 − k2

d )H (k − kd ), where
η is the amplitude of the damping, H (·) is the Heaviside
function, and 2π/kd is the characteristic scale below which
only the dissipation acts. The forcing will be nonzero only in
the finite range [ki − δi,ki + δi] where

Ik = Ai

[k2 − (ki − δi)2][(ki + δi)2 − k2]

k4
i

eiθk(t).

Here ki is the characteristic scale of the forcing and δi and
Ai are its the width and amplitude, respectively. The angular
variable θk(t) is a random phase taken in the interval [0,2π ],
which also changes randomly in time. Notice that this process

injects both energy and wave action around ki since one cannot
separate them formally. To illustrate this inverse transfer
mechanism, we take kd = ki + δi so the inertial range for an
energy cascade vanishes and the low-frequency (large-scale)
inverse transparency window is the largest possible available.
Finally, we have checked numerically that the results do not
depend on the details of the dissipation at small scales.

Although it is required to dissipate the energy at small
scales (large k) to reach numerically a stationary state, we have
realized distinct numerical simulations with a sink and without
it located near k = 0, and we conclude that it is not required
to absorb nor dissipate the energy (nor the wave action) at the
large scale (small k) to reach numerically a stationary state
in the time scale of the simulations. This can be explained
first by the fact that energy is eventually dissipated at small
scales, leading to the general balance between the injected and
the dissipated energy. For the wave action, since this quantity
is not conserved by the dynamics, everything works as if the
wave action is formally absorbed by a sink at k = 0 (which is
a neutral mode) so there is no need to add such an absorption
term near k = 0 in the dynamics.

Figure 1 shows the snapshots of the plate deformation
at six distinct times of the evolution. Notice the apparent
formation of a coherent structure which at the end oscillates
at the largest possible mode. This coherent structure appears
as a consequence of the long-time evolution which is mostly
characterized by the largest modes of oscillation of a plate with
small fluctuations.

Figure 2 shows the numerical evolution of the energy and
the wave action with time for this numerical simulation. After
a transitory regime where both quantities vary, we observe
that a quasi-stationary regime is reached above 105 unit time
approximately.

This dynamics can also be inspected within the evolution of
the wave spectrum which is defined following Eqs. (4) and (6)
by:

nk(t) = ωk〈|ζk|2〉. (15)

The brackets here stand for a temporal average over the fast
time (linear) scale. Therefore it is assumed that the wave
system possesses an ergodic-like property, such that temporal
and ensemble averages are the same.

Figure 3(a) shows the averaged value of the wave spectrum
over the angle in the k space and over a small window of time.
The forcing creates a wave action flux towards k = 0 that
“fills” the spectrum at large scale. This can be observed on
Fig. 3(b), which presents the wave action flux (10) at different
times, computed explicitly as a sum over discrete modes
Q(k) = 2π

∑k
q=0 k ∂tnk . [Note that, by definition, Q(0) = 0.]

For large times (again, above 105 time units) the spectrum
tends asymptotically to a stationary form that exhibits a power
law with an exponent surprisingly close to the hypothetical 4/3
inverse cascade exponent (13) which is forbidden by the 3 ↔ 1
interactions. Similarly, the wave action flux Q converges to an
almost constant value. Notice, however, that the dynamics is
not steady but only in a “quasi”-stationary regime since the
large-scale modes still exhibit a slow dynamics.

In the following, we will show that the evolution of this
amplitude spectra can be decomposed in two distinct regimes
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FIG. 1. (Color online) Snapshots of the out-of-plate displacement ζ (x,y,t) obtained by the numerical simulation of the Föppl–von Kármán
equations (1) and (2) at six different times: (a) t = 22 × 103, (b) t = 50 × 103, (c) t = 62 × 103, (d) t = 82 × 103, (e) t = 162 × 103, and (f)
t = 202 × 103. The injection is made at small scales, with ki = 4.5 and δi = 0.5. Numerical dissipation acts at smaller scale, starting at the end
of the injection range (kd = 5). The amplitude of the injection is Ai = 0.0001. The system size is 10242 units with 20482 modes and kc = 2π .
Note that the vertical scales differ from one figure to the other, growing from (a) to (f). Despite this change of scale, the amplitude of the small
spatial scales can always be observed. Notice the formation of a large-scale structure as time increases.

in time, both being dominated by weakly random waves. The
first regime displays a self-similar behavior corresponding to
a nonconstant wave action flux. On the other hand, the latter
regime displays a quasisteady behavior consistent with an
inverse cascade with a nearly k−4/3 spectrum. This regime
exhibits an almost constant flux of wave action towards the
large scales [see Fig. 3(b)] except precisely near the largest
scale of the system (k ≈ 0).

IV. SIGNATURE OF A FINITE-TIME SINGULARITY

The first stage of the evolution appears as the formation in
time of a spectrum characterized by a nonuniform flux of wave
action from the short to the long scales, as shown in Fig. 3. This
flux fills the spectrum from the large k towards small k, tending

to a steady power-law spectrum with an almost constant flux
of wave action Q [Fig. 3(b)].

It is important to notice that this built-in time spectrum is of
finite capacity [32], that is,

∫ k

0 nkd
2k < ∞ (taking nk ∝ k−α

with α ∼ 4/3). Therefore, one expects, assuming a constant
injection of wave action in the injecting domain around ki , the
formation of such a spectrum in finite time. This situation is
in fact similar to the self-similar formation of a condensate of
weakly classical nonlinear waves [11,12,14,31] and we shall
characterize quantitatively this self-similar dynamics. To do
that, we compute the characteristic length scale involved in
the self-similar process via the negative moments (typically
n � −2 later) of the spectral distribution [1]:

〈kn〉 =
[∫

knnk(t) d2k

] /[∫
nk(t) d2k

]
. (16)
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FIG. 2. (Color online) (a) Evolution of the energy density E/L2 and (b) the wave action density N /L2 with time. The parameters are the
same than those of Fig. 1. The time of the different snapshots of Fig. 1 are indicated on the curves.
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FIG. 3. (Color online) (a) Angular average of the spectra, nk , as a function of wave number k in log-log scale, at different time steps starting
at t = 35 × 103. Subsequent spectra are labeled according to the snapshots of Fig. 1. The straight line indicates a power law k−4/3 as a reference
guide. (b) Under the same conditions log-log plot of the wave action flux Q(k,t) as a function of wave number for the same times.

This allows us to define characteristic wave numbers of the
spectrum through 〈kn〉1/n. Figure 4 shows these characteristic
wave number to the power 2/3 computed numerically for
different moments from n = −2 to n = −7 at short times
(t < 80 000 time units). We observe that the different curves
exhibit a linear decrease below a critical time t∗, suggesting the
singular behavior for the critical wave number of the spectrum:

k0(t) ∼ (t∗ − t)3/2, with t∗ ≈ 65 000. (17)

It is the signature of a finite time singularity that would be
present if the asymptotic spectrum would be filled with a
constant wave action flux.
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FIG. 4. (Color online) The evolution of the characteristic wave
number [k0(t)]2/3 computed through the n-th moments of the
distribution (16) for consecutive n ranging from n = −7 up to n = −2
(labeled explicitly on the figure). The simulation conditions are as for
other figures. The straight lines correspond to a linear fit Kn(t∗ − t).
Notice that almost all moments vanish near an unique critical time.
The corresponding values for this time are t∗ = 85971.8 for n = −7,
t∗ = 76 926.9 for n = −6, t∗ = 69 154.8 for n = −5, t∗ = 64 971.5
for n = −4, t∗ = 64 173.4 for n = −3, t∗ = 65 376.9 for n = −2.
Despite the inaccuracy of the higher-order moments (−7,−6) all other
critical times are around t∗ ≈ 65 000, indicating the independence of
t∗ with order n (notice that the range of the temporal axis is different
from the one of Figs. 2 and 7).

This singular behavior suggests a self-similar solution of
the form [11,12]:

nk(t) = 1

(t∗ − t)α
φ

[
k

(t∗ − t)β
, log(t∗ − t)

]
. (18)

From relation (17), we obtain β = 3/2. The parameter α is
settled assuming that wave turbulence theory is valid, so the
self-similar solution (18) should obey the kinetic equation (8);
α = 2 is then the only possible choice to balance the left-hand
side and the right-hand side terms in the kinetic equation (8).
Finally, the function φ satisfies an autonomous equation, which
reads:

∂

∂τ
φ(s,τ ) =

[
2φ(s,τ ) + 3

2
s

∂

∂s
φ(s,τ )

]
− C[φ(s,τ )], (19)

where s = k(t∗ − t)−3/2 is the self-similar variable, τ =
log(t∗ − t), and C is formally the same collisional operator
of (8) but with the scaling variable s instead of k.

Thus the self-similar function φ(s,τ ) follows an integrod-
ifferential equation (19), with the boundary condition at the
origin, φ(0,τ ) = 0, and with the asymptotic behavior

φ(s,τ ) = 1

s2ν
eλτ (20)

for s → ∞ and τ → −∞ (t → t∗). The condition λ = 2 − 3ν

ensures that, in this limit, the tail of the spectrum does not
depend on time, as it is observed in Fig. 5. Notice that one can
always rescale φ of the nonlinear equation (19) to settle the
pre factor in (20) to unity.

Equation (19) represents in fact a nonlinear eigenvalue
problem for ν, which indicates the power law of the self-similar
spectrum at large wave number. Such problems are difficult to
solve analytically and even numerically since no systematic
approaches exist [11,12]. Here we will develop an indirect
method providing an approximate value only for ν.

Using the relation between the theoretical values of α = 2
and β = 3/2, we can rescale the spectra at different times
following the self-similar formula (18) by plotting k0(t)4/3nk(t)
as a function of s = k/k0(t) taking k0(t) = 〈k−2〉−1/2. A good
collapse of the spectra into a single universal curve is then
observed in Fig. 5, particularly at large wave number s.
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FIG. 5. (Color online) Plot (log-log scale) of the rescaled spectra
k0(t)4/3nk(t) as function of the rescaled variable s = k/k0(t), with
k0(t) = 〈k−2〉−1/2. This choice shows a very good collapse of all
curves in the large k limit. The spectra plotted correspond to times
ranging from t = 40 000 up to t = 60 000 units (the arrow denotes
the time direction).

In fact, the envelope of all the rescaled curves defines the
function

φ∞(s) = lim
τ→−∞ φ(s,τ ).

Averaging the curves near t∗ for the same simulations but
with different system sizes L = 256, L = 512, and L = 1024,
we obtain a single curve with better resolution for φ∞(s),
as shown on Fig. 6(a). Then, seeking the exponent ν such
that s2νφ∞(s) → 1 for large s, the best fit gives ν ≈ 0.873,
which significantly differs (higher) from the theoretical value
ν = 2/3 of the inverse cascade Eq. (13). Let us emphasize that
it is in fact consistent with such unsteady regime which fills
the spectrum from small to large scales.

The particular shape of the universal function φ∞(s)
requires a few comments. First, the spectrum decreases near
s = 0, in agreement with the boundary condition φ(0,τ ) = 0.
Second, as expected, in the self-similar variables the forcing
position in the spectrum tends to s → ∞, as one approaches
the singularity, therefore the forcing only acts as a boundary

condition in the ultraviolet regime. Finally, the matching region
between the inner and outer behavior corresponds to the
maximum of the function.

V. VALIDITY OF WAVE TURBULENCE AND THE LATE
STAGE REGIME

The self-similar behavior (18), discussed in the previous
section, predicts that wave turbulence assumptions will not be
valid near the finite singularity. In general, wave turbulence
theory is no longer valid either because high amplitudes of the
spectrum are reached at large scale or because of the discrete
dynamics of the modes corresponding to wave lengths close
to the size of the computational domain.

The nonlinear transition due to high amplitude will appear
at small k when, for some wave numbers, the nonlinear time
scale deduced from Eq. (8) is of the same order as the period
of the linear wave [32]. In the present case of (18) one has that
the nonlinear and the linear frequencies scale respectively as:

ωNL(k) ∼ 1

nk

dnk

dt
∼ 1

t∗ − t
and ωk ∼ (t∗ − t)3 (21)

near t∗. Therefore one expects the nonlinearities to be large as
t → t∗ so WWT cannot be applied anymore.

In the following we compute numerically two distinct
criteria to quantify the ratio between nonlinear and linear
contributions. First, we computed the ratio between the
nonlinear energy, E4 = − ∫

[ 1
2 (�χ )2 + 1

2χ{ζ,ζ }]dxdy and
the linear energy E2 = ∫

[ 1
2 (∂tζ )2 + 1

8 (�ζ )2]dxdy, already
discussed in (3). This is a global criteria which depends only on
time and indicates the relative importance of both energies in
the dynamics. Figure 7(a) shows this ratio as a function of time.
It is observed that E4/E2 is at most of the order of 6 × 10−3,
indicating that the nonlinear contributions (the stretching
contributions) to the energy are really small. Incidentally, the
maximum of E4/E2 arises for t ≈ t∗, confirming the existence
of a precursor to a singularity. This can be understood by the
following scaling argument: near the singularity, the quadratic
energy would scale like E2 ∼ ∫

ωknk d2k ∼ (t∗ − t)4, while
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FIG. 6. (Color online) (a) Self-similar universal function φ∞(s) as a function of the self-similar variable, s, in linear scale. The data come
from the same conditions as Fig. 3 but for three distinct system sizes: L = 256, L = 512, and L = 1024, as indicated in the figure. (b) The
same self-similar universal function but in log-log scale. Fitting the exponent ν such that s2νφ∞(s) → 1 for large s provides ν ≈ 0.873, which
is slightly larger than 2/3.
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FIG. 7. (Color online) (a) The ratio E4/E2 vs t , under the same conditions as in Fig. 3 but for three distinct system sizes L = 256, 512, and
1024 with 5122, 10242, and 20482 modes, respectively. (b) The ratio ω(1)(k)/ωk as a function of the wave number k for different times steps in
log-log scale. The range of time plotted corresponds exactly to the one used in Fig. 5, that is, from t = 40 000 time units up to t = 60 000. Both
quantities show the weakness of the nonlinearities in all wave numbers and at all times, justifying the validity of the weak turbulence theory.

the fourth-order energy (the stretching) would follow E4 ∼∫
n2

k d2k ∼ 1/(t∗ − t), hence E4/E2 ∼ (t∗ − t)−5.

Although this criterium suggests that the nonlinear behavior
is globally weak, one cannot ensure that the nonlinearities are
uniformly weak and in particular that the nonlinearities are
effectively small for all scales. A local (in k) criteria can be
used numerically via the ratio between the linear time scale
and the first-order nonlinear correction to the frequency (7), as
stated in Eq. (21).

Figure 7(b) plots the ratio ω(1)(k)/ωk , from (7), as a
function of the wave number at different times. One notices
that the infrared behavior of the quotient ω(1)(k)/ωk increases
significantly when approaching the singularity. Nevertheless,
it is always less than 10−2, which implies that the weak
amplitude expansion is presumably uniformly valid, even near
the singularity signature.

Though wave turbulence theory predicts breakdown of the
theory (21), because ωNL(k)/ωk ∼ (t∗ − t)−4, one observes
that direct numerical simulations on the Föppl–von Kármán
equations (1) and (2) do not allow the nonlinearities to be of
the order of unity. Nevertheless, in the case of a large forcing,
such effects have been seen in our numerics and it could be
then a reason for the breakdown of wave turbulence.

In conclusion, in the limit of small forcing investigated
here, the system does not create strong nonlinearities although
the singular behavior is cured near t∗. This effect comes from
the discrete properties of the system which becomes relevant
at this stage, in particular, to the discrete dynamics of the first
modes of the plate (the lowest in term of frequency) which
have to be considered in a modified picture of wave turbulence
theory [16,33].

VI. DISCUSSION

Our numerical study reveals that a time-dependent wave
action inverse cascade is built in time and eventually reaches
the infrared region in finite time through a clearly identifiable
self-similar process. In this early time regime, the wave
system is driven by the WWT kinetic equation (8), and the

dynamics is characterized by a self-similar evolution which
should eventually blow up in finite time. However, near the
singularity, the dynamics is smoothed and the kinetic equation
is no longer valid: In the small forcing cases, investigated
here, the system is governed by the discrete dynamics of the
largest modes coupled with the continuous spectrum (a discrete
breakdown). On the other hand, for larger forcing (not studied
here), a regularization of the dynamics through the nonlinear
breakdown of the WWT is expected (nonlinear breakdown).

For other systems where the wave action is a conserved
quantity (for instance, for the nonlinear Schrödingier equa-
tion), a condensate at (or around) k = 0 forms, changing
the post blow-up dynamics [14,31]. Such effects are not
possible here since the wave action is not conserved by the
dynamics. The mode k = 0 is neutral and remains null with
time. Nevertheless, as it has been shown for the nonlinear
Schrödinger equation [34], the first modes of the systems can
exhibit an autonomous dynamics. Figure 8(a) shows precisely
the evolution with time of the amplitude for the lowest mode
of the plates: After the blow-up time t∗, the amplitude of this
mode grows more or less linearly in time but also exhibits
important oscillations. Finally, for these large times, a station-
ary regime is eventually reached where the spectrum behaves
approximatively like nk ∼ 1/k4/3 for the low wave numbers
[k < 0.2 in Fig. 8(b)] and nk ∼ 1/k2×0.873 for the smaller
wavelength [0.5 < k < kd in Fig. 8(b)]. This stationary regime
is not surprising, since we expect that the long-time behavior
does not change the power law built by the self-similar
evolution (Sec. III), and long wave modulations transfer wave
action toward k = 0 with precisely the Kolmogorov-Zakharov
spectrum, nk ∼ 1/k4/3, which corresponds to the constant
wave action flux solution found for C22[nk]. However, notice
that this regime is not formally steady for the smallest wave
numbers, where the dynamics appears rather more like a
relaxation towards a full stationary dynamics.

In conclusion, although an elastic vibrating plate does
not formally posses a wave action conservation law, an
undoubtedly inverse cascade of wave action is observed,
exhibiting a complex time-dependent dynamics. The process
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FIG. 8. (Color online) (a) Evolution of the fraction of the first mode. This plot corresponds exactly to the numerical simulation of Fig. 1
and the times of the different snapshots are indicated. (b) The long-time evolution of the spectra. The time considered are from t = 80 000 units
up to t = 240 000. The spectra only vary for the small wave numbers where it relaxes towards the stationary power-law spectrum nk ∝ k−2ν

with ν ∼ 2/3. The line (i) correspond to a 4/3 power law, while the line (ii) corresponds to a 2 × 0.873 power law which represents better the
behavior in the large k limit.

of formation of such an inverse cascade is ruled by a self-
similar evolution of the spectra which transfers wave action
from short-wavelength scales up to long-wavelength scales.
Formally, the observed self-similar solution blows up, leading
to a singular behavior which is cured in the original system,
probably because of the finite size of the system and the role
played by the discreteness of the modes. The late evolution
of the system is also governed by wave turbulence theory,
although the discrete nature of the lowest modes modifies the
overall picture. This scenario is consistent with the formation
of a coherent structure which is characterized by the largest
modes of oscillation [see Fig. 7(a)] plus small fluctuations.

Remarkably, the nonlinear fraction of the energy indicates that
this coherent structure makes the stretching very small.
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