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h i g h l i g h t s

• A phenomenological model has been derived in the case of elastic vibrating plates.
• Without damping, self-similar dynamics for forced and free turbulence are retrieved.
• In the framework of damped wave turbulence, self-similar universal solutions are given.
• An equation that links power spectra, damping law and injected power has been found.
• The agreement of the model with experiments and simulations is found to be good.
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a b s t r a c t

A phenomenological model describing the time-frequency dependence of the power spectrum of thin
plates vibrating in awave turbulence regime, is introduced. Themodel equation contains as basic solutions
the Rayleigh–Jeans equipartition of energy, as well as the Kolmogorov–Zakharov spectrum of wave
turbulence. In the Wave Turbulence Theory framework, the model is used to investigate the self-similar,
non-stationary solutions of forced and free turbulent vibrations. Frequency-dependent damping laws can
easily be accounted for. Their effects on the characteristics of the stationary spectra of turbulence are
then investigated. Thanks to this analysis, self-similar universal solutions are given, relating the power
spectrum to both the injected power and the damping law.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

TheWave (or Weak) Turbulence Theory (WTT) aims at describ-
ing the long-term behaviour of weakly nonlinear systems where
the nonlinearity controls the exchanges between scales [1–3]. Un-
der classical assumptions such as dispersivity, weak nonlinearities
and the existence of a transparency window in which the dynam-
ics is assumed to be conservative, a kinetic equation can be de-
duced for the slow dynamics of the spectral amplitude. In addition
to the Rayleigh–Jeans spectrum that corresponds to the equipar-
tition of the conserved quantity, here the energy, a broadband
Kolmogorov–Zakharov (KZ) spectrum of constant energy flux is
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predicted, by analogy with hydrodynamic turbulence [1,2]. Such
dynamics has been firstly studied for ocean (gravity) waves [4–6]
and since then in systems such as capillary waves [7,8], nonlinear
optics [9] or plasmas [10].

A wave turbulence spectrum for elastic vibrating plates has
been deduced theoretically and observed numerically in [11]. The
theoretical analysis considers the dynamics of a geometrically non-
linear thin vibrating plate in the framework of the Föppl–von Kár-
mán (FVK) equations. The WTT analysis leads to the prediction of
a direct cascade characterized by a KZ spectrum with constant en-
ergy flux. Soon after, two independent experiments performed on
thin elastic plates [12–14] did not recover the theoretically pre-
dicted and numerically observed spectra, questioning the valid-
ity of the underlying assumptions of WTT in the case of vibrating
plates. Recently, an experimental and numerical study considering
the effect of damping on the turbulent properties of thin vibrating
plates has clearly established that [15]:
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• In experiments, damping acts at all scales such that the assump-
tion of a transparency window, a domain in the wave number
spacewhere dissipation and injection can be neglected, is ques-
tionable.

• Modifying the damping alters the shape of the velocity power
spectra so that a direct comparison with the predicted spectra
is out of reach in experimental conditions.

• However, by including the experimentally measured damping
laws in the numerical simulations of the full dynamics (the FVK
equations), a good agreementwith the experiments is retrieved.
This suggests that the discrepancies between the experiments
and the WTT predictions are mainly due to damping.

These conclusions have been corroborated by a numerical
study where the damping was gradually modified, from the
experimentally measured law to a vanishing value in a given
frequency band [16], showing also how the spectra aremodified by
a small yet non-negligible values of damping found in real plates.

Accounting for dissipation within the WTT framework remains
challenging since the analytic calculations are based on the long
time asymptotic evolution of the weakly nonlinear Hamiltonian
dynamics. The injection and dissipation in this context can be
seen as boundary conditions imposed to the transparency win-
dow in the wave number space and to the best of our knowledge,
we do not know any analytical attempt to introduce dissipation
within the WTT. Another option would be to find an alternative
description of the dynamics of the power spectrum, where adding
dissipation appears more straightforward. The alternative can be
provided by using a phenomenological model describing the tem-
poral evolution of the power spectra, as first proposed by Leith for
hydrodynamic isotropic turbulence [17]. These models provide a
natural framework for investigating unsteady and self-similar dy-
namics in a variety of context [17–22]. They are generally derived
from ad-hoc assumptions, by constructing a model equation ad-
mitting as stationary solutions both the Rayleigh–Jeans equipar-
tition of energy and the KZ spectrum. This results in a nonlinear
diffusion equation in the wave number (k-space) or the frequency
(ω-space) domain, which mimics the energy transfer within the
modes. Thanks to this approach, ideal situations can be investi-
gated, as for instance the injection of a constant flux of energy at
small scales and its diffusion, or the evolution of an initial condi-
tion in absence of dissipation. Self-similar dynamics are generally
observed in these cases.

The goal of this paper is thus to derive and investigate such a
phenomenologicalmodel in the case of elastic vibrating plates. The
model equation should contain both Rayleigh–Jeans and KZ solu-
tions. Injection and dissipation terms are then introduced in order
to studymore particularly the effects of the damping. Twomain re-
sults are obtained. First, self-similar dynamics for forced and iso-
lated turbulence in the absence of dissipation are retrieved. In a
second part, the effect of the damping on the cascading turbulent
spectrum is investigated, exhibiting a self-similar solution relat-
ing the power spectrum to the injected power and the damping
law.

2. Model equation

The application of thewave turbulence theory to the Föppl–von
Kármán thin plate equations has been performed in [11] (see Ap-
pendix A for the dimensional and non-dimensional forms of these
equations. Note that for this section, all values are dimensionless).
Without recalling the details of the derivation and the complex
form of the kinetic equation, one only needs to remind that the two
stationary solutions of the kinetic equation, written here under the
form of a density of energy Eω , function of the frequency ω, are:
• The Rayleigh–Jeans equilibrium solution, where the energy Eω

is equally parted along all the available modes. Consequently,
the density of energy Eω is a constant that is denoted as C:

Eω = C . (1)

• The Kolmogorov–Zakharov solution, for which an energy flux ε
is transferred along the cascade until its dissipation nearω⋆, the
cut-off frequency of the spectrum. Referring to [11], the energy
spectrum in this case is such that

EKZ
ω = Aε

1
3 log

1
3


ω⋆

ω


, (2)

where A is a constant. The specific form of this solution, con-
sisting in a logarithmic correction of the Rayleigh–Jeans spec-
trum, comes from a degeneracy of the equilibrium solution in a
similarmanner as for the nonlinear Schrödinger equation [9]. In
fact, this logarithmic correction is obtained using a perturbative
expansion and is valid far from ω⋆. Therefore, although Eq. (2)
exhibits a steep cut-off because of the non-existence of
the mathematical solution above ω⋆ (negative energy), ex-
periments and numerical simulations do not show such a
behaviour, and the spectrum decreases more smoothly as ω in-
creases in the vicinity of ω⋆ [15,23,24].

The phenomenological model is directly deduced from these
stationary solutions of the energy spectrum. Let us consider the
following diffusion-like equation in the ω-space for the energy
spectrum Eω(ω, t):

∂tEω = ∂ω(ωE2
ω∂ωEω), (3)

where ∂t and ∂ω refer respectively for the partial derivatives with
respect to time and angular frequency. The energy flux associated
to this equation reads straightforwardly

ε = −ωE2
ω∂ωEω. (4)

Thanks to the identification of the energy flux ε, the proportionality
constant A of Eq. (2) is then uniquely defined as A = 3

1
3 . Hence, for

the phenomenological model the KZ solution finally reads:

EKZ
ω = (3ε)

1
3 log

1
3


ω⋆

ω


. (5)

The model equation, Eq. (3), is constructed so that Eqs. (1) and
(2) are stationary solutions (∂tEω = 0). The Rayleigh–Jeans equi-
librium is a trivial solution to Eq. (3) in the stationary case since
∂ωEω = 0. For the KZ spectrum, one has just to verify, by deriv-
ing Eq. (2) with respect to ω, that ωE2

ω∂ωEω is constant with re-
spect to ω. Because this model equation has been deduced in the
dimensionless framework, only a numerical prefactor, which could
be easily absorbed by a rescaling of the time, should be present on
the right-hand side of Eq. (3).

Thephenomenological equation is nothing else than anonlinear
diffusion equation in the frequency space, in the spirit of the
Richardson cascade view of turbulent processes [25]. However, a
direct derivation of this equation starting from the kinetic equation
cannot be done formally, and only qualitative arguments can be
deduced from a local approach on the kinetic equation [1] (Section
4.3). In fact, attempts to deduce such simplified Fokker–Planck
equation from the weak turbulence equations go back to the
pioneering works done for ocean waves by Hasselmann [26–28],
although additional approximations were needed to deduce such
local models in frequency.

Nonlinear diffusion equations can exhibit important differences
as compared to the linear diffusion one. In particular, singularity
can be formed by the nonlinear dynamics and compact support
solutions can also be present, by opposition to the linear diffusion



36 T. Humbert et al. / Physica D 316 (2016) 34–42
Fig. 1. Forced turbulence. (a) Energy spectrum Eω as a function of the frequencyω, for times increasing from the left to the right, andwith εI = 1. (b) Characteristic frequency
ωc defined by Eq. (6) as a function of time. Red dashed line: ωc ∝ t . (c) Energy spectrum Eω( ω

ωc
) computed from the non-stationary spectra (before t = 1) shown in (a),

and compared to the stationary Kolmogorov–Zakharov spectrum EKZ
ω = (3εI )

1
3 log

1
3 ( ω⋆

ω
) (green dashed line). (d) Stationary regime. Energy spectrum Eω , divided by ε

1/3
I ,

plotted as a function of the rescaled frequency ω/ωc for several energy fluxes εI = 0.5, 1, 2, 5 and compared to the KZ theoretical spectrum EKZ
ω (green dashed line). (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
where disturbances propagate at infinite speed [29]. Here, while
a singular cut-off will be observed for the spectra, the equation
does not correspond a priori to the situationwere compact support
solutions have been proved to exist [30]. Finally, it should be
said that other phenomenological models exhibiting the same
stationary solutions could be deduced and the present model can
be considered as one of the simplest among other ones.

Numerical simulations of this model equation will now be
conducted in various cases in order to investigate different
dynamical situations. We begin with the classical case where an
energy flux is imposed at low frequency and for which the classical
KZ spectrum should be observed when dissipation acts at high
frequency.

3. Conservative dynamics of the spectrum in the inertial range

3.1. Forced turbulence

3.1.1. Non-stationary and stationary spectra
In order to simulate numerically Eq. (3), a finite volumemethod

is used. The flux ε is computed at each frequency increment and
the value of Eω is defined at the centre of the mesh element. A con-
stant value εI over time for the flux at ω = 0 is applied and strong
dissipation is included upon ω = 103. Remarkably, thanks to this
model equation alongwith this numericalmethod, simulations ex-
actly corresponding to the ideal configuration of turbulence can be
launched, with a flux of energy imposed at ω = 0, and dissipation
of energy realized with a sink at high frequency. A typical run con-
sists in 2048 points in the ω direction, a time step equal to 10−7

time unit and a total duration of 2 time units. When the dissipative
scale is reached, the cascade front stops its evolution and a station-
ary regime arises.
Fig. 1(a) displays the energy spectrum every 0.2 time unit in
the considered framework. At the beginning (for t < 1), the cas-
cade grows towards high frequencies suggesting a self-similar be-
haviour. More precisely, a characteristic frequency may be defined
as

ωc =


∞

0 Eωωdω
∞

0 Eωdω
, (6)

in order to obtain a more quantitative analysis. Fig. 1(b) shows the
evolution of ωc versus time, exhibiting a clear linear behaviour in
the transparencywindow.When the cascade front reaches the dis-
sipative scale fixed here arbitrarily at ω = 103, the characteristic
frequency does not evolve anymore and is constant.

Let us first consider the non-stationary regime where the
characteristic frequency of the cascade evolves linearly with time
for a constant fixed flux. Fig. 1(c) displays the non-stationary
spectra of Fig. 1(a) taken before t < 1 as functions of the non-
dimensional frequency ω/ωc . All the curves merge into a unique
function, confirming the self-similar growth of the cascade. The
shape of this function will be discussed later but can already
be compared to the Kolmogorov–Zakharov spectrum Eq. (5), the
solution of the phenomenological equation for the conservative
case, displayed by a green dashed line in Fig. 1(c). Although the two
functions are quite close to each other, the self-similar function
of the non-stationary regime is steeper near the cut-off. This
discrepancy has already been noted in [23], where the case of
forced turbulence within the framework of the Föppl–von Kármán
equations (direct simulation) has been studied.

In the stationary regime, shown in Fig. 1(d), the phenomeno-
logical model recover the Kolmogorov–Zakharov solution for thin
plates, as awaited. The scaling of the amplitude of the spectrum by
ε
1/3
I , as theoretically predicted, is also verified by our data. The typ-

ical behaviour of energy spectra of vibrating plates in the stationary
regime is therefore correctly described by the phenomenological
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Fig. 2. Self-similar function gη in case of non-stationary forced turbulence. (a) Blue points: numerical simulation of Eq. (3) with εI = 1. Red dashed line: solution of Eq. (11).
(b) Direct simulations of the Föppl–von Kármán equations. Black line: finite-difference and energy-conserving scheme [23]. Green line: pseudo-spectral method detailed
in [11]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
equation (3). Moreover, our model recovers the fact that the cas-
cade grows with a steeper function of the frequency until its front
reaches the dissipative scales, where a stationary regime in agree-
ment with the theoretical predictions arises.

3.1.2. Self-similar analysis
In order to recover the numerical behaviour of the non-

stationary regime observed in Fig. 1(a)–(c), the self-similar
solutions of Eq. (3) are investigated. The solutions are thus written
under the form

Eω = tαg
 ω

tβ


, (7)

withα andβ two real unknowns and g a function to be determined.
Inserting Eq. (7) into Eq. (3), one finds that α and β must fulfil the
relationship

2α = β − 1. (8)

If we assume further that when injecting with a constant flux over
time, the total energy of the plate is growing linearlywith time, the
equality

+∞

0
Eωdω = Bt, (9)

where B is a constant, leads to a second relationshipα+β = 1. This
yields α = 0 and β = 1 so that finally the self-similar solutions are
necessarily under the form

Eω = g
ω

t


. (10)

The previous observation that the characteristic frequency of the
self-similar solutions of Eq. (3) in case of forced turbulence grows
linearly with time is retrieved.

Inserting Eq. (10) into Eq. (3), the equation for the self-similar
function gη = g(ω/t) finally reads

−ηg ′

η = (ηg2
ηg

′

η)
′, (11)

where ′ stands for the derivative with respect to the self-similar
variable η = ω/t . This equation is solved using Matlab algorithm
ode45 which applies a fourth-order Runge–Kutta scheme with a
variable time step [31]. For this purpose, Eq. (11) is written at the
first order:

Y ′
=

1 0

0 −
1
g2
η

−
1
η

− 2
g ′
η

gη

 Y , with Y =


gη

g ′

η


and

Y ′
=


g ′

η

g ′′

η


.

(12)
The initial value problem consists in choosing, for η0 given and
small (in the simulations, η0 = 0.01 is selected), the values of
gη and g ′

η that determine the desired initial flux εI . Whereas the
value of gη(η0) is selected for comparison with a given dataset,
g ′(η0) is retrieved from Eq. (4). As the flux εI is fixed, one obtains
g ′
η(η0) = −

εI
η0g2η (η0)

.

Fig. 2(a) compares the self-similar solution deduced from the
phenomenological model (and already displayed in Fig. 1(c)) with
the self-similar solution provided by Eq. (11). A perfect agreement
is observed, exhibiting in particular a cut-off above which the
solution vanishes. As shown in [23], the self-similar solution can be
obtained directly from the kinetic equation. However in this case,
the general shape of the function is not provided by the theory.
Thanks to Eq. (11), the phenomenological model is able to predict
the shape of the self-similar function.

Let us now compare this solution with direct numerical sim-
ulations. Fig. 2(b) shows the obtained results, rescaled according
to the self-similar relationship proposed in Eq. (11). Two different
numerical schemes have been used for a better comparison. On the
one hand, a finite-difference and energy-conserving scheme sim-
ulates a perfect rectangular plate with simply-supported out-of-
plane boundary conditions and in-plane movable edges [23]. The
plate has a surface of 0.4 × 0.6 m2, the thickness is 1 mm, and
the material parameters are that of a metal, see [23] for more de-
tails. The other solution is obtained thanks to the pseudo-spectral
method used in previous works [11,15], where such a spectral ap-
proach leads to periodic boundary conditions. The simulated plate
has also the material properties of a metal and corresponds to a
square of 0.4 × 0.4 m2 and its thickness is 1 mm [11]. In both
numerics, the plate is continuously excited at large scale, corre-
sponding roughly to a constant injection of energy with time. For
the finite-difference simulation, this is realized with a pointwise
forcing, the frequency of which is selected in the vicinity of the
fourth eigenfrequency. For the pseudo-spectral code, this is real-
ized in the Fourier space directly through a random noise acting
at small wave numbers only. With the two numerical schemes, a
clear self-similar behaviour has been observed. Hence we are in
position to compare the master curves of the self-similar process
for the phenomenologicalmodelwith those found in the numerical
simulations. For the detailed presentation of the self-similar pro-
cess found in direct numerical simulations, the interested reader is
referred to [23].

Fig. 2(b) shows that the two different numerical methods
exhibit similar rescaled spectra. Comparing to Fig. 2(a), one can
observe two discrepancies between the two solutions:

• In the direct numerical simulations, the slope in the turbulent
cascading regime is a bit steeper. This can be assigned to the
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Fig. 3. (a) Energy spectrum Eω as a function of the frequency ω at (from top to bottom) t = 0, 1, 2, 3, 4 [nondim]. (b) Characteristic frequency ωc as a function of time. Red
dashed line: ωc ∝ t1/3 . (c) Eω(ω = 0.5) as a function of time. Red dashed line: Eω(ω = 0.5) ∝ t−1/3 . (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
presence of the forcing term in the very-low frequency part
of the spectrum, which creates a small prominence that has
already been observed and commented, see e.g. [23,32].

• Near the cut-off, it appears that numerical spectra of the
full dynamics decrease continuously and smoothly, whereas
theoretical spectra display a steep cut-off because of the
non-existence of the mathematical solution. This observation
is similar to what has been obtained for the KZ stationary
spectrum.

Despite these two differences, the general shape of the self-similar
solutions in the case of non-stationary forced turbulence shows
a very good agreement, validating the results provided by the
phenomenological model.

3.2. Free turbulence

The case of free turbulence, i.e. the evolution of the cascade
without external forcing, for a given amount of energy as initial
condition, is now considered. As shown in [23] from the kinetic
equation and confirmed by direct numerical simulation, the
cascade front must evolve to high frequencies as t1/3. The ability
of the phenomenological model to retrieve this dynamics is now
investigated.

3.2.1. Self-similar analysis
Considering free turbulence leads to withdraw forcing and

damping terms. The system being conservative, the amount of
initial energy K is conserved, so that Eq. (9) is replaced by:

+∞

0
Eωdω = K . (13)

The second relationship that links the unknowns α and β now
turns to be α = −β , leading to α = −1/3 and β = 1/3. The
self-similar solution for the energy spectrum Eω reads in this case

Eω = t−1/3h
 ω

t1/3


. (14)

In order to simulate numerically the framework of free
turbulence, the dissipation introduced earlier at high frequency, is
now removed. An energy flux εI is imposed for a few time steps and
then cancelled, thus fixing the origin of time. Then, the simulation
is run by imposing a vanishing energy flux at ω = 0, ensuring
free turbulence. Fig. 3(a) shows the evolution for an initial amount
of energy K (corresponding to the spectrum in red) as a function
of time. Fig. 3(b)(c) describe the evolution of the characteristic
frequency ωc as well as the evolution of the amplitude of the
energy spectrum at the centre of the first mesh element (ω = 0.5).
Two behaviours respectively proportionals to t1/3 and to t−1/3 are
displayed. These two observations are in agreement with the self-
similar solution given by Eq. (14).

In the samemanner as for the forced case, the solution given by
Eq. (14) can be inserted into Eq. (3) in order to obtain the evolution
equation of the self-similar function hν = h(ω/t1/3). The analogue
of Eq. (11) for the free turbulence case then reads

−
1
3
νh′

ν = (νh2
νh

′

ν)
′, (15)

where ′ stands here for the derivative with respect to the self-
similar variable ν = ω/t1/3. The numerical method used in order
to solve Eq. (11) is now applied to Eq. (15). Fig. 4(a) displays the
self-similar function built from the spectra calculated by the phe-
nomenological model at multiple times and scaled as prescribed
by Eq. (14). For comparison, the solution of the self-similar equa-
tion Eq. (15) is also represented. A good agreement is observed,
confirming the self-similar evolution of the spectrum. Fig. 4(b) dis-
plays the numerical results from the direct numerical simulations
of the Föppl–vonKármán equations. Once again, the twonumerical
schemes leads to functions that are very close from each other. A
much better agreement is observed between the solutions fromdi-
rect simulations and the one from the phenomenological model, in
particular the slope in the cascade regime are really the same. This
confirms once again the effect of the forcing which creates a small
bump in the very low-frequency part of the spectrum and alters
the direct comparison between the different solutions. Here in the
free turbulence case, a perfect agreement is observed, the only dif-
ference being the behaviour near the cut-off frequency where the
decrease of the spectrum is much slower for the direct numerical
simulations, as already commented.

Two situations belonging to the theoretical conservative frame-
work of wave turbulence in thin vibrating plates have been inves-
tigated through numerical simulations of the phenomenological
equation. Self-similar behaviours pertaining to the phenomenol-
ogy of the Föppl–von Kármán equations have been successfully
recovered. Note also that the behaviours Eω = g(ω

t ) for forced tur-
bulence and Eω = t−1/3h( ω

t1/3
) for free turbulence can be derived
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Fig. 4. Self-similar function in case of free turbulence. (a) Points: spectra of Fig. 3 rescaled by the self-similar law given by Eq. (14). Red dashed line: solution of Eq. (15). (b)
Results of the direct simulations of the Föppl–von Kármán equations. Black line: finite-difference and energy-conserving scheme [23]. Green line: pseudo-spectral method
detailed in [11]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
by an analysis of the kinetic equation, as shown in [23]. However,
in this case the self-similar functions g and h are left unknown.
Thanks to the phenomenologicalmodel, two different ordinary dif-
ferential equations have been deduced, the solutions of which are
functions g and h. Hence, the model gives further informations
which have been found to be relevant by comparisons with the di-
rect numerical simulations. All these results show the ability of our
simple equation to recover complex features of the physics of the
problem.

4. Non conservative case: the effect of damping

4.1. Model equation

Physical dissipation can be introduced in the phenomenological
model by adding a linear dissipation term to Eq. (3):

∂tEω = ∂ω(ωE2
ω∂ωEω) − γ̂ Eω, (16)

where γ̂ can be chosen as a function of ω for the sake of gener-
ality. In thin plates, the damping depends strongly on parameters
such as the size of the plate, its thickness, the boundary conditions.
Regarding these values and the frequency range of interest, either
thermoelastic, viscoelastic, acoustical radiation, or losses through
the boundary conditions, can dominate [33–36]. In the framework
of our experimental set-up, the importance ofmost of these contri-
butions has been estimated and related to theoretical predictions
in [37].

As a starting point, let us consider the damping laws obtained
from experiments. As observed in [15] where experimental meth-
ods have been used in order to increase the amount of damping in
the plate, the damping laws for four different configurations were
found to follow the power-law γ̂ = ξω0.6, with relative values
of ξ (with respect to the smallest one) ranging from 1 to 5. This
damping lawwith varying ξ is first used for investigating the solu-
tions of Eq. (16). Appendix B gives the full correspondence between
experimentally measured values of ξ and their respective dimen-
sionless counterparts used in the numerical simulations of Eq. (16).
The same finite volumemethod is used as in the previous sections,
and the flux of energy εI is fixed at ω = 0. After a certain number
of time steps (depending on the selected damping coefficient ξ ), a
stationary regime is reached.

Fig. 5 exhibits the stationary energy spectrum obtained for each
of the four damping cases retrieved from [15], with an amount of
damping coefficient ξ multiplied by 5 between the smallest and
largest ones. The energy flux at ω = 0 is the same for each situa-
tion. For very low frequencies (say 0 < ω < 5), all spectra shows
roughly the same behaviour. For larger frequencies, the more
damped the system, the steeper the spectrum and the smaller its
Fig. 5. Stationary energy spectrum Eω in the damped case, as a function of the
frequency ω and for εI = 1 × 10−5 . Red: ξ = 1.908 × 10−5 . Black: ξ =

3.0528 × 10−5 . Magenta: ξ = 5.9359 × 10−5 . Blue: ξ = 9.3279 × 10−5 . (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

characteristic frequency are. Moreover, it appears that the dissipa-
tion affects the energy transfers between scales, so that summing
up the stationary spectra to power laws is not possible anymore.

Fig. 6 shows the previous spectra as functions of the rescaled
frequencyω/ωc . The rescaling of the frequency axismakes all spec-
tra collapse into a single curve, which appears to be steeper than
the Kolmogorov–Zakharov spectrum (displayed by a green dashed
line in Fig. 6). This result, obtained with the phenomenological
model, is similar to the conclusions already reported in [15] from
experiments only: damping plays an important role in the discrep-
ancies between theoretical and experimental spectra. However,
this uniquemaster curve has never been observed before and tends
to provide a simple explanation on the behaviour of the cascade in
presence of damping. Indeed, it shows that the effect of damping
on the turbulent cascade can be mainly attributed to the balance
between the conservative term ∂ω(ωE2

ω∂ωEω) and the dissipative
term γ̂ωEω , since only these terms are present in the phenomeno-
logical model, and allows one to retrieve the experimental obser-
vations. There is obviously no inertial range so that the stationary
solution depends on the shape of the dissipation function and dif-
fers from the Kolmogorov–Zakharov spectrum.

Finally, the collapse suggests a self-similar behaviour of the
spectrum as a function of the injected flux εI and the damping
coefficient ξ . In order to derive the equation corresponding to this
self-similar solution, the energy spectrum Eω is thus written under
the form

Eω = ε
µ

I ξ xfη


ω

ωc


with ωc = ε

y
I ξ

z, (17)
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Fig. 6. Energy spectra displayed in Fig. 5 as functions of the rescaled
frequency ω/ωc . Green dashed line: Kolmogorov–Zakharov spectrum EKZ

ω =

(3εI )1/3 log( ω⋆

ω
)1/3 for εI = 1 × 10−5 . Red dashed line: solution of Eq. (23). (For

interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

where fη is an unknown function of the self-similar variable η =

ω/ωc and µ, x, y, z are constants to be determined. Recalling that
the injected flux εI corresponds in the phenomenological model to

εI = lim
ω→0

(−ωE2
ω∂ωEω), (18)

one obtains, after inserting Eq. (17) into Eq. (18), the following
relationship:

εI = −ε
3µ
I ξ 3x lim

η→0
(ηf 2η ∂ηfη), (19)

so that µ = 1/3 and x = 0. The energy spectrummust thus write:

Eω = ε
1/3
I fη


ω

ε
y
I ξ

z


. (20)

In addition, inserting Eq. (17) in the phenomenological equa-
tion (16) with a damping of the form of an unknown power law
γ̂ = ξωλ

= ξηλωλ
c yields:

∂tEω = 0 = ε
1−y
I ξ−z∂η(ηf 2η ∂ηfη) − ε

λy+1/3
I ξλz+1ηfη. (21)

Thus, the unknowns y and z must fulfil the following relationships
that depends on the frequency dependence of the damping:

z = −
1

1 + λ
, y =

2
3(1 + λ)

. (22)

All the unknowns of Eq. (17) have been determined, leading to an
equation for the function fη ,

∂η(ηf 2η ∂ηfη) − fηηλ
= 0, (23)

and to an expression for the characteristic frequency as a function
of the damping and the injected flux:

ωc = ε
2

3(1+λ)

I ξ−
1

1+λ . (24)

Eq. (23) has no analytical solution but can be solved numerically
following the same procedure as for Eqs. (11) and (15). The result
is plotted in red in Fig. 6, displaying a perfect agreement with the
universal solution obtained by rescaling all the spectra.

To conclude this part, the validity of Eq. (24), which expresses
the behaviour of the characteristic frequency, is questioned. As
already observed in Fig. 5 for λ = 0.6, increasing the damping
coefficient ξ decreases the characteristic frequencyωc . In this case,
the theoretical prediction provided by Eq. (24) reads

ωc = ε
5/12
I ξ−5/8. (25)
Fig. 7. Characteristic frequency ωc as a function of the damping coefficient ξ ,
εI = 1 × 10−5 . Black: λ = 2. Red: λ = 1. Blue: λ = 0.6. Dashed lines: evolution
laws predicted by Eq. (24). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 7 compares this prediction with the characteristic frequencies
obtained by solving Eq. (16) for γ̂ = ξωλ and λ = 0.6. The same
study for λ = 1 and λ = 2 is also displayed. A perfect agreement is
found, showing that the evolution of the characteristic frequency
can be fully explained thanks to the self-similar behaviour of the
energy spectrum with damping and injected flux.

4.2. Discussion

The results of the previous section, obtained with the phe-
nomenological model, have shown the existence of a unique
master curve on which all spectra collapse when rescaling the
frequency with respect to the characteristic frequency. This fea-
ture has not been noticed before in the experimental results re-
ported in [15], where four different configurations of damping for
the same plate have been measured. It is potentially a very impor-
tant result since it suggests that the change in the cascade slope
observed when the damping varies (following the stronger the
dissipation, the steeper the energy spectra are) is simply a conse-
quence of the master curve which does not exhibit a single slope.
Depending on the dissipation a different region of themaster curve
is dominating, exhibiting different ‘‘apparent’’ slope. It is thus cru-
cial to investigate whether this feature is also present in experi-
ments and in numerical simulations of the plate equations.

Fig. 8 displays precisely the experimental and numerical
(pseudo-spectral method) power spectral densities Pv from [15]
as functions of the rescaled frequency f /fc for different damping
coefficients ξ . As for the phenomenological model, the proposed
rescaling causes all curves to collapse into a unique master curve.
In Fig. 8(b), the spectra from the damped case are compared
to the KZ spectrum obtained numerically when the dissipation
is only located at high frequency, showing that the spectra are
clearly steeper than the usual KZ spectrum. Moreover, both the
experimental and the numerical cases exhibit similar profiles, but
are very different from the master curve of the phenomenological
model, in the same vein than the other situations studied above.
Nevertheless, these figures confirm here that the observations
brought by the phenomenological model describe a true feature
of the physical system.

Finally, the relation Eq. (24) between the characteristic fre-
quency, the damping and the injected power can also be ques-
tioned using the experimental results. Fig. 9 displays, for three
injected powers, the evolution of the ratio ωc/ε

5/12
I as a function

of the damping parameter ξ . The predicted dependence of ωc with
ξ is also drawn for comparison: ωc/ε

5/12
I ∝ ξ−5/8. The accordance

is good, confirming that the results of the model are in agreement
with the behaviour of the experiments.
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Fig. 8. Power spectral density of the transverse velocity Pv as a function of the rescaled frequency f /fc . Red: ξ = 0.045. Black: ξ = 0.072. Magenta: ξ = 0.14. Blue:
ξ = 0.22. (a) Experiments. Red: εI = 0.56 × 10−3 m3.s−3 . Black: εI = 0.54 × 10−3 m3.s−3 . Magenta: εI = 0.52 × 10−3 m3.s−3 . Blue: εI = 0.48 × 10−3 m3.s−3 . (b)
Numerical simulations. Green: ξ = 0, εI = 0.057×10−3 m3.s−3 . Other cases: εI = 0.024×10−3 m3.s−3 . (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
Fig. 9. Ratioωc/ε
5/12
I as a function of the damping coefficient ξ . λ = 0.6. Red: εI =

0.52×10−3 m3.s−3 . Green: εI = 0.16×10−3 m3.s−3 . Blue: εI = 0.58×10−4 m3.s−3 .
Line: evolution law predicted by Eq. (24): ωc/ε

5/12
I ∝ ξ−5/8 . (For interpretation

of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

5. Conclusion

A phenomenological model describing the time-frequency
dependence of the power spectrum for wave turbulence in thin
vibrating plates, has been derived. In the framework of non-
stationary turbulence, the model equation has shown its ability in
predicting the self-similar behaviours for two different cases: free
and forced turbulence. These two examples show the ability of our
model to capture the most salient features of the dynamics of thin
elastic plates. Themodel equation possesses a number of attracting
features for further studies, the prominent one being its simplicity
in handling complicating effects such as forcing and dissipation.
Besides its ability in recovering the self-similar behaviours already
derived from the kinetic equation [23], a step further has been
obtained with the derivation of two equations, (11) and (15), the
solutions of which are the self-similar universal functions for the
forced and the free cases, which were not provided by the theory
developed from the kinetic equation in [23].

The phenomenological model has then been used in order
to further investigate the effect of damping on the spectra of
turbulence for thin vibrating plates reminding that, in that case,
damping acts at all scales and breaks the transparency window
required by thewave turbulence theory. Then, nomore power-law
behaviour can be observed, and the slope of energy spectra does
not represent the most important parameter to investigate [15].
Thanks to the phenomenological model, a self-similar analysis
provides new results andmakes appear a relationship between the
power spectra, the damping law and the injected power. With the
model equation and for a given damping law, all curves collapse
into a single one when increasing the damping factor, and the
characteristic frequency can be directly studied and predicted from
the energy budget of the cascade. All these results shed new light
on experimentally observed turbulent spectra with damping. This
also confirms that the phenomenological model is a useful tool for
studying complicating effects in wave turbulence of plates.

Appendix A. Non-dimensional Föppl–von Kármán equations

The dynamics of thin vibrating plates is described by the
Föppl–von Kármán equations with two unknowns that are the
transverse displacement field ζ (x, y, t) and the Airy stress function
χ(x, y, t). For a thin plate of thickness h, made from amaterial with
Poisson ratio ν, density ρ and Young’s modulus E, the equations of
motion read [38–40]

ρh
∂2ζ

∂t2
= −

Eh3

12(1 − ν2)
∆2ζ + L(χ, ζ ), (A.1)

∆2χ = −
Eh
2

L(ζ , ζ ). (A.2)

The operator L is bilinear symmetric, and reads in Cartesian
coordinates L(f , g) = fxxgyy + fyygxx − 2fxygxy.

The following change of variables is applied to obtain dimen-
sionless variables

x′
=

x
l
, ζ ′

=
ζ

l
, t ′ =

t
τ

, χ ′
=

χ

C
, (A.3)

where the characteristic length l =
h√

3(1−ν2)
, time τ = l


ρ

E and

C = Ehl2, have been introduced. This leads to the following set of
non-dimensional dynamical equations:

∂2ζ

∂t2
= −

1
4
∆2ζ + L(χ, ζ ), (A.4)

∆2χ = −
1
2

L(ζ , ζ ). (A.5)

Appendix B. Correspondence between experimental and phe-
nomenological values of the damping coefficient ξ

In the Föppl–von Kármán equations, viscous dissipation can be
taken into account with the term ρhγ ∂ζ

∂t , so that the equations of
motion writes:
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Table B.1
Correspondence between the experimentally measured values of damping
coefficients ξ and their dimensionless counterparts ξ̂ used in the simulations.

ξ 0.045 0.072 0.14 0.22
ξ̂ × 105 1.908 3.0528 5.9359 9.3279

ρh
∂2ζ

∂t2
= −

Eh3

12(1 − ν2)
∆2ζ + L(χ, ζ ) − ρhγ

∂ζ

∂t
, (B.1)

∆2χ = −
Eh
2

L(ζ , ζ ), (B.2)

where γ is the damping factor. The equivalent set of non-
dimensional equations becomes:

∂2ζ

∂t2
= −

1
4
∆2ζ + L(χ, ζ ) − γ̂

∂ζ

∂t
, (B.3)

∆2χ = −
1
2

L(ζ , ζ ). (B.4)

γ̂ is the non-dimensional damping factor:

γ̂ = γ τ = γ h


ρ

3E(1 − ν2)
. (B.5)

In [7], the damping law has beenmeasured and behaves as γ =

ξ f 0.6, where ξ is a parameter taking different values, obtained by
changing the configuration of the plate in a given manner. In order
to use the same range of damping values in the phenomenological
model as in the experiment, one has to express the relationship
between the dimensional values of ξ and their dimensionless
counterparts ξ̂ . Thanks to Eq. (B.5), we have

γ̂ = τ(ξ f 0.6) = ξ̂ ω̂0.6 with ξ̂ =
τ 0.4

(2π)0.6
ξ . (B.6)

Table B.1 sums up the numerical ξ values obtained from the exper-
iments (first line, from [15]) and their equivalent non-dimensional
values ξ̂ used previously for the simulations of the phenomenolog-
ical model. Note that in the present paper and for the sake of sim-
plicity, the coefficients used in the phenomenological model were
named ξ .
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