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Strong turbulence for vibrating plates: Emergence of a Kolmogorov spectrum
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In fluid turbulence, energy is transferred from one scale to another by an energy cascade
that depends only on the energy-dissipation rate. It leads by dimensional arguments to the
Kolmogorov 1941 (K41) spectrum. Here we show that the normal modes of vibrations in
elastic plates also manifest an energy cascade with the same K41 spectrum in the fully
nonlinear regime. In particular, we observe different patterns in the elastic deformations
such as folds, developable cones, and even more complex stretching structures, in analogy
with spots, swirls, vortices, and other structures in hydrodynamic turbulence. We show
that the energy cascade is dominated by the kinetic contribution and that the stretching
energy is at thermodynamical equilibrium. We characterize this energy cascade, the validity
of the constant energy-dissipation rate over the scales. Finally, we discuss the role of
intermittency using the correlation functions that exhibit anomalous exponents.
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I. INTRODUCTION

Turbulence has remained a central problem in fluid dynamics since the early experiments of
Reynolds [1]. Perhaps the most salient feature is an energy cascade that redistributes the energy
among different Fourier modes of the velocity fluctuations that are independent of the dissipation
caused by viscosity at small scales. This energy cascade depends only on the energy-dissipation rate
per unit mass, P, and the wave number k leading to the Kolmogorov K41 [2] spectrum:

Ek ∼ P2/3k−5/3.

Despite a century of effort, turbulence still remains a major challenge from the experimental,
theoretical, and numerical points of view, and the very essence of the phenomenon has not yet
been revealed satisfactorily [3–5]. For instance, if the K41 law can be deduced using dimensional
arguments, the statistical description of the turbulence fails to correctly describe the general
correlation functions of the velocity fields. In fact, to date, there is only a single analytical result
that may be derived from the original Navier-Stokes (NS) equations for incompressible fluids,
the so-called von Kármán–Howarth relation [6], that links the second- and third-order correlation
functions of some component of the fluid velocity with the energy-dissipation rate. Higher moments
of these quantities differ from mean-field-based predictions. Experimental and numerical data reveal
extreme events, exhibiting heavy-tailed distributions, that are usually associated with intermittency.
Moreover, one can argue that the difficulty of describing turbulence may come from the fundamental
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issues raised by the fluid mechanics equations, witnessed in particular by the Clay millennium
problem on the regularity of the NS equations in three space dimensions. Similarly, fluid turbulence
is a hard problem because it is on the same footing as the Euler equation for perfect fluids which
is ab initio a nonlinear partial-differential equation without any small parameter that may justify an
asymptotic scheme nor a rational closure for the statistical correlations [7]. Since fluid turbulence
is studied in the framework of the NS equations, it is important to question whether such cascade
dynamics transporting the energy from the large injection scales to the small dissipative ones can be
observed in different contexts and whether the turbulence features described in fluids are universal
or dependent on the dynamical equations. In particular, while the quadratic nonlinear term of the NS
equation is responsible for the mixing between scales at the heart of the cascade process, nothing
in the theoretical description of turbulence takes into account the details of the nonlinearity itself.
Fluidlike turbulence has also been observed in different contexts such as magnetohydrodynamics
where the magnetic field is coupled with the flow [8] or viscoelastic turbulence in polymer solutions
at low Reynolds numbers [9]. In these cases, even though the nonlinearity may differ from the one
of NS equations and different spectra can be measured, they have similar properties as the original
Kolmogorov phenomenology.

In this paper, we propose to investigate a turbulent regime in a totally different physical system:
the vibrations of elastic plates in the full nonlinear limit. The dynamics is deduced from the Föppl–
von Kármán equations [10,11] (described below) in the limit of vanishing plate thickness. Here, the
nonlinearity of the equation comes from the geometry and is cubic, in contrast to the usual quadratic
advection nonlinearity in fluids. However, such system has recently revealed a strong analogy with
hydrodynamic turbulence through the derivation of an exact law equivalent to the Kolmogorov’s
4/5 law [12]. For finite plate thickness, the small-scale dynamics are always dominated by
elastic waves, and wave-turbulence regimes have been predicted theoretically, as well as observed
numerically [13] and experimentally [14,15]. Such wave turbulence can be described using the weak
or wave-turbulence theory (WTT), developed originally in the 1960s [16–26] and applied afterwards
in many physical contexts such as surface gravity, capillary waves, plasmas [20–23], nonlinear
optics [27], and, recently, gravitational waves in general relativity [28]. In the present work, the
wave dynamics vanishes but a turbulent, fully nonlinear regime is still expected to exist and will
be studied here precisely. For instance, this system will allow us to question the robustness of the
statistical properties of a turbulent field when the nonlinearity varies. Such results should therefore
reveal the role and the influence of the different terms of the NS equations in fluid turbulence.

II. THEORETICAL MODEL: THE ZERO-THICKNESS FÖPPL-VON KÁRMÁN EQUATIONS

The vibration of a bending-free elastic plate comes from the usual dynamical version of the
Föppl–von Kármán equations [29] for the vertical amplitude of the deformation ζ (x, y, t ) and for
the Airy stress function χ (x, y, t ) that describes the three in-plane stresses:

ρ
∂2ζ

∂t2
= ζxxχyy + ζyyχxx − 2ζxyχxy + F + D, (1)

1

E
�2χ = −(

ζxxζyy − ζ 2
xy

)
. (2)

Here, � = ∂xx + ∂yy is the usual Laplacian and ρ and E are, respectively, the mass density and the
Young modulus E of the plate. F and D are the forcing and dissipation, respectively.

This derivation assumes that the in-plane displacements are negligible and a quasistatic force
balance holds. This is taken into account through the Airy stress function χ (x, y, t ) which follows
the dynamics through Eq. (2). Finally, although the Föppl–von Kármán equation are valid for large
deformations, the local curvature must be smaller than the inverse of the thickness of the plate.

When F = D = 0, Eqs. (1) and (2) derive from a Hamiltonian principle [13,30]. More impor-
tantly, it is a well-posed system, in the sense that the energy E = Ekin + Estret is composed of two
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positive (hence bound from below) quantities, namely, the kinetic energy and the stretching energy
per unit mass, yielding, respectively,

Ekin = 1

2S

∫
ζ̇ 2dr, (3)

Estret = E

8ρS

∫ [
�−1

(
ζxxζyy − ζ 2

xy

)]2
dr, (4)

where S is the area of the plate. For dimensional purposes, we use everywhere the energies per unit
mass, E , Ekin, and Estret , with dimensions of the square of a speed.

Contrary to fluid turbulence, where the energy, 1
2

∫
v2dr, comes from a single quadratic

contribution, the energy in our system is composed of two contributions. In what follows, we will
quantify the role of each contribution separately, but keep in mind that only the total energy is
conserved. Finally, it is important to notice that the nonlinearity of Eq. (1) is cubic since the Airy
function depends quadratically on the deformation field ζ . Our system of equations can thus be
considered as the cubic counterpart of the NS equation and it will be interesting to investigate if and
how it can exhibit turbulent behavior.

III. TURBULENT BEHAVIOR

We performed numerical simulations of Eqs. (1) and (2) by using a standard pseudospectral
method in a periodic domain with an additive random forcing at large scales and a viscous damping
acting at small scales. The explicit form of forcing and dissipation is discussed below. Turbulent
states should not depend explicitly on these details, provided that these mechanisms are well
separated in wave-number space.

We solve the Föppl–von Kármán equations (1) and (2) with a standard pseudospectral code in a
square domain of size 2π with periodic boundary conditions. The forcing F is white noise in time
of variance f 2

0 and its Fourier modes are nonzero only for wave vectors 1.5 � |k| � 3. De-aliasing
is made by using the standard 2/3 rule that is applied after computing each quadratic term. The
dissipation is acting at small and large scales in the following way:

D = −ν(−�)nν ζ̇ − α(−�)−nα ζ̇ . (5)

Figures 1(a) and 1(b) show the surface plate deformation ζ (x, y) and the plate vertical speed ζ̇ (x, y),
respectively.

The displacement field displays a coarse scale, superimposed with fine scale fluctuations
composed of a large number of wrinkles of various sizes. Such multiscale states are the most
prominent characteristic of turbulent systems. The local speed of the plate in Fig. 1(b) demonstrates
that the elastic plate is not at equilibrium, as it displays a myriad of excited modes. When bending
is absent, it is natural to expect the appearance of highly nonlinear geometrical structures. Such
structures are visible in Fig. 1(c), which shows a closeup of the plate deflection. The small-scale
wrinkles consist of a random assembly of moving ridges and conical points. Ridges and conical
points are, in fact, the fundamental equilibrium configurations of elastic plates in the bending-free
limit. These structures have been extensively studied since the pioneering works performed in
the 1990s [31–33]. In the bending-free limit, the elastic deformations favor the bending modes
because they cost no energy. However, because of geometrical constraints, it is not always possible
to have a fully developable surface everywhere and the system thus creates singular structures:
linear ridges [31] and pointy developable cones or, more commonly named, D cones [32]. The
deformations of the plates are then controlled by the stretching that modifies the locally plane metric
of the sheet since these geometrical structures concentrate the plate curvature and the stretching
energy. If the plate thickness is small but finite, these singular structures are eventually regularized
by the bending. Here, in the absence of bending, the viscous term appears to be the only possible
mechanism for regularization. The dynamics of a bending-free elastic plate thus corresponds to a
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(d)

FIG. 1. Turbulent states of a bending-free plate. (a) Surface plot of the plate deformation ζ (x, y).
(b) Surface plot of the plate vertical velocity ζ̇ (x, y). (c) Detail of the wrinkles in a zoom of the surface plot of
the plate deformation ζ (x, y). (d) Snapshot of the G(x, y) (6) of the respective area. The density plot displays
the values of ln10 |G|. Simulations were made at resolution of 40962, and the parameters values are nν = 3,
ν = 2 × 10−12, nα = 2, α = 100, and f0 = 1.

myriad of singularities regularized by the dissipation and moving (apparently) randomly over the
sheet. See Supplemental Material [34] for a movie of these defect-induced dynamics. It shows the
plate deformation ζ (x, y) surface plot for turbulent states of a bending-free plate. Simulations were
made at resolution of 40962 with an additive random forcing.

To precisely catch these singular structures of dimension 1 (ridges) and 2 (D cones), we have
plotted in Fig. 1(d) the Hessian written in the right-hand side of Eq. (2), which is also the dominant
order correction to the instantaneous Gaussian curvature,

G(x, y, t ) = ζxxζyy − ζ 2
xy, (6)

which, after (2), is the source of the in-plane stresses via the Airy function, χ (x, y, t ). This quantity
exhibits the expected complex network of ridges and D cones.

An immediate analogy can be established with hydrodynamic turbulence. Fully nonlinear elastic
plate turbulence seems to be characterized by a “crumpling cascade,” where wrinkles play the role
of whirls and, instead of vortex filaments and sheets, the localized singularities come in the form
of ridges and D cones. To illustrate this idea further, we integrate the system (1) and (2) starting
from a flat state, with no forcing (F = 0), but with an initial velocity at large scales, and let the
system decay. Snapshots of the velocity field, shown in Fig. 2, exhibit the dynamics of this decaying
turbulence configuration.

Initially, all the velocity fluctuations are contained at large scales; see Fig. 2(a). Then, due to the
nonlinear interactions, instabilities appear creating smaller and smaller structures [see Fig. 2(b)].
After this transient, a turbulent state is observed where fluctuations at all scales coexist [Fig. 2(c)].
Finally, at large times, the dissipative terms acting at small scales kill the turbulent state, smoothing
out the fluctuations [see Fig. 2(d)].

A. Kolmogorov spectrum

By forcing at large scales and dissipating at small scales, a turbulent out-of-equilibrium steady
state is obtained, such as the one observed in Fig. 1. A quantitative measurement of these steady
turbulent states is obtained through the spectral densities of the plate velocity. As in fluid turbulence,
here we compute the average kinetic-energy spectrum and the kinetic-energy flux for different wave
numbers. The kinetic-energy spectrum per unit mass, Ekin(k), is defined through the kinetic energy
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(a) (b)

(c) (d)

FIG. 2. Simulations for decaying turbulence. Snapshots of ζ̇ . Time goes as (a) t = 0, (b) t = 0.5, (c) t =
65, and (d) t = 100 [in time units of (1) and (2)]. The simulations were performed with 10242 collocation
points, F = 0, nν = 2, ν = 4 × 10−6, α = 0, and a random initial condition at large scale only on ζ̇ .

per unit mass by

Ekin =
∫

Ekin(k) dk,

where Ekin(k) = 2πk〈|ζ̇k|2〉, the velocity-field Fourier transform is ζ̇k (t ) = ∫
ζ̇ (r, t )eik·rdr, and

isotropy is assumed. In addition, the kinetic-energy flux Pkin(k) is defined through the transfer
equation,

∂

∂t
Ekin(k) = − ∂

∂k
Pkin(k). (7)

Since Ekin(k) has dimensions of L3/T 2, the dimensions of Pkin(k) are L2/T 3. Notice that the
stretching energy (4) is also a quadratic quantity, and analogous definitions can be given for its
spectrum and flux (see Appendix A for explicit definitions).

We have directly measured the energy fluxes for various turbulent runs with different forcing
amplitudes. Figure 3(a) shows the time-averaged kinetic-energy (solid lines) fluxes, normalized by
their mean value P̄kin in the well-defined transparency window where they are flat.

This transparency window is usually called the inertial range in the context of hydrodynamic
turbulence. At small scales, dissipation takes place and produces, at high forcing, a bottleneck that
invades the inertial range as the mean energy flux increases, although an inertial range is still clearly
present. Such a bottleneck effect has already been observed in hydrodynamic turbulence [7,35] and
is usually attributed to an insufficient inertial range. We suggest that in our numerics, the observed
bottleneck is probably a consequence of the hyperviscosity and the strong energy transfer inhibition
that leads to partial thermalization. Figure 3(a) also displays the stretching energy fluxes (dashed
lines), which are notably smaller than the kinetic-energy fluxes. Therefore, numerical simulations
indicate that the pertinent energy flux for the cascade is the kinetic-energy one because it shows a
constant energy flux along scales in an inertial range. A constant energy flux is usually associated
with a turbulent regime that leads to a power-law behavior for the corresponding energy spectrum.
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FIG. 3. (a) Time-averaged kinetic-energy flux (solid lines) and the stretching energy flux (dashed lines).
Different markers (and colors) are for different runs with increasing forcing amplitude or fluxes [see arrow
in (b)]. The fluxes have been normalized by their total mean flux value in the inertial range (see methods for
values). The inset displays the same plot but in log-log. (b) Time-averaged kinetic-energy spectra normalized
by P2/3. The dashed line displays the Kolmogorov scaling. Inset: Time-averaged stretching energy. The dashed
line displays the thermalization energy scaling. The arrow indicates the different runs with increasing values of
the flux P. The simulations were performed with the same parameters of Fig. 1 for different forcing amplitudes,
f0 = 1, 8, 27, and 100, and the measured values of the fluxes were P̄kin = {0.0284, 0.0354, 5.3358, 16.5325},
respectively.

This is indeed the case for the kinetic-energy spectrum, as shown in Fig. 3(b), where the k−5/3

Kolmogorov law is apparent.
The kinetic turbulent spectrum can be discussed on dimensional grounds in the footsteps of

Kolmogorov. However, here in addition to the constant energy flux per unit mass P and the wave
number k (with dimension inverse of a length), the spectrum should depend a priori on the additional
material parameter E/ρ. Since a characteristic length can be defined, namely, λ = (E/ρ)3/2/P, one
generically gets

Ekin(k) = P2/3

k5/3
�

[
k

(E/ρ)3/2

P

]
, (8)
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where �(·) is an arbitrary function of the dimensionless argument kλ. Contrary to fluid turbulence,
the existence of this extra length λ does not allow us to uniquely determine a fixed exponent for
the power-law spectrum. Remarkably, numerics suggest that the kinetic-energy and the stretching
energy spectra can be treated independently. Considering that for the kinetic energy the elastic
property of the material does not intervene, the kinetic-energy spectrum should follow

Ekin(k) = CkinP2/3k−5/3, (9)

with Ckin = �(0) �= 0 a constant. The numerical simulations indeed show good agreement with this
predicted scaling (9) for both k and P, with λk spanning over four orders of magnitude (0.24 <

λk < 2.8 × 103).

B. Stretching energy flux

Because the total energy combines two different contributions (3) and (4), we address the role of
the stretching energy (4). In the following, we show, via a simple argument, that the stretching
energy flux related to the stretching energy must vanish in a statistically steady state under an
additive forcing and a viscouslike dissipation, as the one considered in this work.

Following [12], we introduce the spatial correlation function

Estret(�) = 1

2E
〈�rχ (r)�r′χ (r′)〉, (10)

with � = r′ − r, which in the limit of � → 0 converges to the mean value of the stretching energy.
Considering a homogeneous and isotropic system, it can then be shown that the time derivative of
the correlation function (10) follows

Ėstret(�) = −〈χ (r′){ζ (r), ζ̇ (r)}〉
= 1

V

∫
χ (r + �){ζ (r), ζ̇ (r)}dr. (11)

The last equality considers that for a homogeneous system, the statistical average can be taken as
a spatial average. From the convolution theorem, we have that the Fourier transform Ėstret(p) =
χp{ζ , ζ̇ }−p. In a steady state, the time derivative of the correlation function Ėstret(p) must be zero,
and hence also χp{ζ , ζ̇ }−p = 0. By definition, the stretching energy flux (see Appendix A) is

Pstret (k) =
∫ k

0
〈χp{ζ , ζ̇ }−p〉d p,

and therefore Pstret (k) must be zero.
This result follows directly from the observation that the stretching energy flux appears to be the

time derivative of the stress correlation function, which must be zero in a statistically steady state.
This is indeed the case, as is apparent in Fig. 3(a). Therefore, one would expect the stretching modes
to eventually thermalize. Since the stretching energy (4) is quadratic in γ (r) = �−1(ζxxζyy − ζ 2

xy),
the equilibrium distribution corresponds to equipartition of the Fourier modes of γ . In particular, it
leads to the equipartition spectrum of the form

Estret (k) = Cstretk, (12)

with Cstret a constant proportional to the mean energy, which plays the role of an effective
temperature. In the inset of Fig. 3, the stretching spectra for different forcing amplitude are shown
to be consistent with the equipartition law (12), for the scales where the dissipation is negligible.

C. Intermittency and beyond Kolmogorov phenomenology

The Kolmogorov phenomenology discussed in the previous section is based on dimensional anal-
ysis and mean-field assumptions that neglect the existence of extreme fluctuations. Nevertheless, it is
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well known that deviations exist to such predictions and they become very important when looking
at higher-order statistics [7]. These deviations are associated with the intermittent statistics of the
fields and are somehow inherent to fluid turbulence, although a complete understanding of such
fluctuations is still missing. Unlike hydrodynamic turbulence, the theory of weak wave turbulence
predicts Gaussian statistics for the distribution of wave amplitudes; therefore no intermittency can
be observed within the range of validity of the theory. However, when the nonlinearities become
of the same order of the linear dispersive terms, the wave-turbulence theory breaks down and
can manifest intermittent statistics [36]. Such intermittencies have been experimentally observed
in gravity-capillary waves [37] and suggested for thin elastic plates [38]. Moreover, numerical
simulations of elastic plates at strong forcing have shown important deviations from the WTT
predicted scalings for the plate deformation [39,40], leading to intermittency signatures [38,40].

Intermittency is usually addressed looking at the moments of the so-called structure functions of
the fields, which provide information on the variation of the fields at a given scale [7]. For elastic
plates, because of the fast decay of the deformation spectrum, a second-order difference is needed
to observe an intermittent scaling [40]. In our system, where bending waves are absent and the
dynamics is thus fully nonlinear, the intermittent behavior is expected to occur at any forcing.
Following [40], we introduce the (second variation) increments δ2

� ζ of the plate deformation and
their corresponding structure functions Sp(�), namely,

Sp(�) = 〈∣∣δ2
� ζ

∣∣p〉
, (13)

with

δ2
� ζ = ζ (x + �) − 2ζ (x) + ζ (x − �).

At very small scale, the regularity of ζ (x) implies the scaling Sp(�) ∼ �2p. However, in the inertial
range, a nontrivial scaling appears. We define then the anomalous exponents (in the spirit of
hydrodynamic turbulence) ξp, from the moments following Sp(�) ∼ �ξp . From our numerics, we
measure that ξ2 ≈ 2.2. In Kolmogorov theory as well as for WTT, a linear relation between the
different exponents is expected, ξp = ξ2

2 p, witnessing the self-similar nature of the dynamics. For
vibrating elastic plates, however, a deviation from this linear law has been observed, indicating the
presence of intermittency that breaks the self-similarity of crumpling dynamics [40]. In the bottom
inset of Fig. 4, we present the local slope of the structure functions defined as ξp(�) = d ln Sp(�)

d ln �
for

different orders p. A relatively flat behavior is observed in the inertial range and the anomalous
exponents ξp are measured by averaging ξp(�) in this window. Figure 4 shows ξp as a function of p,
exhibiting a clear departure from the linear behavior (dashed line) and thus intermittent statistics.

Moreover, we have verified the exact result derived by two of us (G.D. and G.K.) for thin elastic
plates that is valid for both weak and strong wave turbulence [12]. This result is equivalent to the
only exact result of hydrodynamic turbulence, known as the 4/5 Kolmogorov law of turbulence.
It relates increments of the field with the energy flux and the scales. In the case of a thin elastic
plate, a similar relation was found for a different structure function, called Z (�), that depends on the
first-order variation of the fields χ , ζ , and ζ̇ (see Appendix B). In analogy with the 4/5 Kolmogorov
law, this relation was called the 1 law and reads

Z (�) = −P�. (14)

The structure function Z (�), normalized by P�, is displayed in the (top) inset of Fig. 4. An excellent
agreement with the prediction (14) is observed over a decade in space with no adjustable parameter.
Finally, we have also studied the vertical speed structure function 〈[ζ̇ (r + �) − ζ̇ (r)]3〉. Unlike
hydrodynamic turbulence, it does not scale linearly with the distance �. This difference can be
explained by the existence of the extra-length λ, suggesting that the exponent cannot be uniquely
determined by dimensional analysis. In addition, this third-order correlation function is not as
simply related to the energy transfer as in the case of hydrodynamics. This fact is due to the
complexity of the nonlinear term, which is precisely taken into account in (14).
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FIG. 4. Intermittency exponents ξp as a function of p clearly showing a departure from a linear law,
indicating the existence of anomalous exponents and intermittency. The lower-right inset shows the local slopes
of the structure functions as a function of �. The inertial range is delimited by the two vertical green lines. The
upper-left panel shows evidence of the 1 law (14). The numerics were done under the same conditions as the
previous figures.

IV. DISCUSSION

Our results suggest that strong turbulence is a rather universal phenomenon, where a clear
analogy can be established at least between ordinary fluids and crumpling vibrations of elastic plates
in the zero-limit thickness. As presented, both exhibit an energy cascade with the well-known K41
spectrum, Ek ∼ P2/3k−5/3. More importantly, a myriad of randomly interacting, highly nonlinear
crumpling structures (folds, ridges, and D cones) at all relevant scales dominates the dynamics. They
induce intermittency that we have quantitatively investigated by studying high-order correlation
functions that confirm the appearance of an intermittent behavior. Nevertheless, the underlying plate
dynamics differ notably from those of ordinary fluids: while in incompressible fluids the total energy
consists purely of kinetic energy, in elastic plates the energy is composed of two separately (positive)
energies: the kinetic and the stretching energy. We have observed in our numerics that the cascade
of energy was in fact a cascade of the kinetic contribution. This is because the forcing is additive to
the deformation acceleration (1), imposing a kinetic-energy flux [see Fig. 3(a)] resulting in a K41
cascade. On the other hand, the stretching energy flux vanishes [see Fig. 3(a)] and, consequently,
Gibbs equipartition is observed for the stretching spectrum, as shown in the inset of Fig. 3(b).
Naturally, it is expected that other forcing may display either a stretching energy cascade without
any kinetic-energy cascade or perhaps two distinct cascades simultaneously, i.e., a kinetic-energy
K41 cascade and a stretching one.

Finally, one may wonder whether a similar picture can be observed for other wave systems in the
strong nonlinear limit. The first example that comes to mind is the dynamics of surface waves in the
special limits of zero gravity and zero surface tension so that no linear waves exist. Interestingly,
only the kinetic bulk energy contributes:

H = ρ

2

∫ ζ (x,y,t )

−∞
dz

∫∫
|v|2 dx dy,

so that, by pure dimensional analysis, the K41 spectrum (9) should be expected.
Although the mathematics looks similar, the physical situation is more subtle. First, the interface

motion is typically considered as an irrotational and incompressible flow in three dimensions, in
which case the underlying equations of such free boundary problem are tractable theoretically.
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Second, the kinetic energy considered above is the one of the total fluid volume that cannot be
linked directly to a “surface kinetic energy” or to any spectrum.

Naturally, the nonvortical character of strong wave turbulence under such approximation is
questionable with regards to the usual fully developed turbulent behavior expected here. It raises
different questions for this fluid analogy that might be worth investigating in future works: can a
K41 spectrum arise in this zero gravity and surface tension limit? How can such K41 spectrum be
compatible with the three-dimensional flow? Finally, such physical situation could be encountered
experimentally by considering superfluid helium in the 0 K temperature limit and in a low- (ideally
zero-)gravity context.
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APPENDIX A: THE ENERGY SPECTRA AND ENERGY FLUXES

The energies in Eqs. (3) and (4) may be seen as a quadratic contribution of ζ̇ and

γ (r) = −�−1
(
ζxxζyy − ζ 2

xy

)
.

The final quadratic contributions read

Ekin = 1

2

∫
|ζ̇k|2dk,

Estret = E

2ρ

∫
|γk|2dk.

Thus, we define the kinetic-energy and the stretching spectra by averaging over the angular variables
in the wave-number space; hence,

Ekin(k) = πk〈|ζ̇k|2〉,
Estret (k) = π

E

ρ
k〈|γk|2〉, (A1)

where we have defined 〈·〉 = 1
2π

∫
. . . dϕk by the angular average.

Because the energy is quadratic in ζ̇ and γ , the energy flux can be straightforwardly defined as
in hydrodynamic turbulence. By making a scale-by-scale energy budget, the energy fluxes are

Pkin(k) = −
∫ k

0

∂Ekin(p)

∂t

∣∣∣∣
0

d p = −
∫ k

0
〈ζ̇p{ζ , χ}−p〉d p,

Pstret (k) = −
∫ k

0

∂Estret (p)

∂t

∣∣∣∣
0

d p =
∫ k

0
〈χp{ζ , ζ̇ }−p〉d p, (A2)

where the subscript 0 stands for the free of forcing and dissipation time variations of the fields
through (1) with F = D = 0. For simplicity, we define { f , g} ≡ fxxgyy + fyygxx − 2 fxygxy. We have
also used the fact that the angular averages satisfy 〈(�−1 f )p(�−1g)−p〉 = 〈(�−2 f )pg−p〉. The total-
energy flux results from the addition of these previous expressions.
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APPENDIX B: LAW FOR THIN ELASTIC PLATE TURBULENCE

In Ref. [12], an exact result for turbulence of thin elastic plates was found. It provides a Kármán-
Howarth-Monin-type relationship for the energy flux,

1
2∇� · 〈J[δχ,δζ ]δζ̇ 〉 = −P, (B1)

where δ stands for the first difference of the field, e.g., δζ = ζ (x + �) − ζ (x). The vector J is defined
by

J[ f ,h] = fyhyx − fxhyy, fxhxy − fyhxx.

Under the assumption of isotropy, (B1) implies the 1 law (14) for the structure function,

Z (�) ≡ 〈J[δχ,δζ ]δζ̇ 〉 · �̂ = −P �, (B2)

where �̂ is the unit vector along �.
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