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ABSTRACT: Solid particles can modify the properties of liquid
interfaces and are therefore widely used to coat drops, bubbles, and
stabilize emulsions and foams. Here, we propose a new, easy, and
affordable method to produce millimetric to centimetric water-in-water
capsules using solid particles. We prevent the coalescence of a water drop
at an oil−water interface using a monolayer of large, dense, and
hydrophobic particles: a “granular raft”. The capsule is then formed by a
mechanical instability occurring when the interface collapses under the combined load of the floating drop and particle weight.
During the destabilization, the water drop sinks into the water subphase through an oil-particle film which covers it to produce
the armored capsule. By modeling the raft as a heavy membrane, we predict the floating drop shape, the raft deformation, its
destabilization and highlight the complex dual nature (solid- and liquid-like) of the capsule shell. Because armored capsules’
content is isolated, transportable, and easily releasable, they are great candidates for applications requiring transport of water-
soluble compounds in aqueous systems such as green chemistry or cell biology.

■ INTRODUCTION

The targeted delivery of active ingredients is of particular
interest for a broad range of applications (from biomedical
technologies to food and personal care). The active ingredient,
for instance, a drug, needs to be shielded from the
environment, transported in a capsule to a desired location,
and released on demand. Today, the large development of
microfluidic systems has enabled the formation of such capsules
at the microscale using different techniques: for example, by
using colloids,1−3 layer by layer deposition,4 or the polymer-
ization of the intermediate phase of double emulsions.5,6 These
methods produce a wide range of tailored capsules but remain
technical, costly, and only work at the microscale. In particular,
water-in-water emulsions are currently being investigated as
they have important potential applications in the food industry,
for green chemistry, or in cell biology. However, they cannot be
stabilized by simply using surfactants and are therefore
challenging to produce.7−9

In parallel, another method to produce millimetric
encapsulated droplets consists in coating them individually
with hydrophobic particles, thus creating the so-called “liquid
marbles”.10,11 Here, the liquid is protected by a rigid shell;
therefore, the drop can be grabbed with tweezers and
manipulated without any spillage or contamination.10,12 By
using engineered particles, liquid marbles can then be
functionalized (with magnetic13 or pH sensitive14 particles,
for example) and become miniature biochemical reactors or
sensors.15,16 Liquid marbles are very affordable and easy to
produce and manipulate. However, they must be produced
manually, and a drop in a miscible liquid cannot be
encapsulated using this technique. To produce cheap

millimetric water-in-water capsules, a method where gelatin
droplets coated with hydrophobic particles are solidified, then
thrown in an aqueous colloidal suspension, and finally melted
was proposed.17 However, this method is limited as it needs
many different chemicals in both phases and is rather
cumbersome.
Here, we propose a new strategy to easily produce

inexpensive millimetric to centimetric stable water-in-water
capsules. We inject water on a monolayer of large, dense,
hydrophobic particles at an oil−water interface: a “granular
raft”. The particles “bridge” the interface:18,19 they are partially
wetted at their top and bottom by water while entrapping a thin
layer of oil, thus preventing the drop coalescence and allowing
the drop to float on the raft. Because the particles are heavy, the
raft can then be destabilized when loading it, either by
increasing the drop size or with an external trigger. It then sinks
and encapsulates the floating water drop in a thin layer of oil
and particles to form what we call an armored capsule (see
Movies S1 and S2). The formed droplet shares many of the
advantages of liquid marbles as they are cheap, easy to produce,
and manipulate under water. However, using this new method
enables the encapsulation of a liquid in a miscible solution,
which can then be released at will. We can predict the floating
drop shape and the spontaneous destabilization of the raft. We
then demonstrate the potential applications of these armored
capsules for liquid transport and delivery.
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■ EXPERIMENTAL SECTION
We fill a glass tank with deionized water (density ρw = 1 g cm−3) and a
thick layer (>1 cm) of light mineral oil from Sigma-Aldrich (density ρo
= 0.838 g cm−3, oil−water interfacial tension γ = 46 mN/m). We then
carefully sprinkle dense particles above the interface. They get trapped
at the oil−water interface and spontaneously aggregate, forming a
monolayer that we call a granular raft.
We use either pigmented glass beads from Sigmund Lindner

GmbH: SiO2 ρp = 2.5 g cm−3 or zirconium oxide beads from Glen
Mills Inc.: ZrO2 ρp = 3.8 g cm−3. They are polydisperse and not
perfectly spherical but are cheap and available in large quantities. We
also used high end very high density yttria-stabilized zirconium oxide
beads from Glen Mills Inc.: VHD ρp = 6.0 g cm−3 which are
monodisperse (d = 200 μm) and spherical (see the Supporting
Information for details on the particles). Their mean diameter and
oil−water contact angle vary in the range 200 < d (μm) < 875 and 120
< θy (deg) < 145.
Once the raft is formed, we place a small drop at its center by

injecting deionized water dyed with food coloring (Figure 1a). The

drop volume is controlled with a syringe pump (PHD ULTRA from
Harvard Apparatus) by pumping in or out small amounts of dyed
water quasi-statically. The experiment is lit and imaged from the top
and the side with two cameras (Nikon D800E, Figure 1b,c). The side
camera is slightly tilted downward (angle ≲ 8 deg) to see the top of
the drop when it is below the water surface. The images are then
analyzed using ImageJ and MATLAB.

■ RESULTS AND DISCUSSION
Figure 2 shows a typical experiment. The drop volume V is
increased gradually until the interface destabilizes. The last
image (Figure 2(6)) shows the droplet shape right before its
destabilization. When its volume reaches V = 11.25 mL, the
droplet sinks. The drop remains axisymmetric during the whole
experiment, but its cross-sectional shape evolves as the liquid is
injected. We first focus on the drop shape and record the drop
radius R (measured from the top view) as well as the drop
height H (Figure 1). Figure 3 shows the measurements
corresponding to the drop in Figure 2. As V is increased, the
drop radius first grows rapidly, the slope then decreases quickly,
and the radius saturates (Figure 3a). The drop height, however,
increases monotonically during a typical experiment and
quickly reaches a linear dependence with the volume (Figure

3b). In Figure 3c, we plot H as a function of R which informs us
about the drop aspect ratio H/2R. At very low volumes, the
drop is spherical (Figure 2(1)), then it takes an oblate shape
(Figure 2(2,3), and Figure 3 for 5 ≲ R (mm) ≲ 10) which
ultimately becomes more complex: the upper part of the drop
and the part in contact with the raft then evolve completely
differently (Figure 2(4−6)).
Because the forces acting on the drop and the raft are gravity,

capillarity, and buoyancy; a natural length scale in our problem

is the capillary length, ρ ρ= γ − ≈g/( ) 5.4 mmc w o . For

drops much smaller than c, capillarity dominates and they stay
spherical, whereas for larger drops, gravity is no longer
negligible and the shape of our floating drops results from a
complex interplay between the drop and raft deformation. The
closest situation to what we observe is perhaps the one of a
bubble trapped below the water surface20 or equivalently a
droplet sustained by a thin gas layer on a liquid bath. The latter
case can be realized by vibrating the bath,21 evaporating the
drop,22 or by using liquid marbles made with very hydrophobic
powders.23 However still, the bath interface is a pure liquid,
whereas in the present case, the raft interface has a more
complex structure. Here, the particles not only prevent
coalescence by forming a bridged interface but also affect the
drop shape through the raft deformation which depends on
their size and density. This is illustrated in Figure 4d,e which
shows two floating drops of the same volume on different rafts
which clearly have different shapes. Figure 4a quantifies these

Figure 1. (a) Experimental setup. Water is injected on top of the raft
with a capillary. The drop volume is controlled with a syringe pump.
The drop height H and the radius R are drawn. Top (b) and side (c)
picture of a typical experiment (ZrO2 d = 250 μm). The drop radius is
R = 6.6 mm.

Figure 2. Drop floating on a SiO2 raft (d = 350 μm). The drop volume
increases from top to bottom: V = 0.05, 0.7, 1.45, 3.4, 5.8, and 9.75
mL. Scale bar: 1 cm.
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drop shape variations for particles of different size and density
(the data are made dimensionless by rescaling lengths with c).
For volumes much below the maximum one, the drop shape is
relatively unaffected by the choice of particles, whereas there is
a small influence on the radius R and a significant one on the
height H close to its maximum volume. Moreover, the
maximum volume itself strongly depends on the particle size
and density: rafts made with smaller and less dense particles are
less deformed and carry bigger drops.
Therefore, we must account for the raft mechanical

properties which are still not well-understood. Modeling rafts
as thin floating elastic sheets explains the propagation of surface
waves24 and their buckling under compression,25 although not
completely satisfactorily.26 To the best of our knowledge,
however, drops deforming thin floating elastic sheets have only
been studied in the capillary regime,27 and azimuthal wrinkles
were observed around the drop. On the other hand, in some
configurations, a simpler approach for granular rafts can be
used: modeling the raft as an heavy axisymmetric membranes

with an effective tension but no bending rigidity.28,29 Even
though this method has also shown its limits, because it does
not account for some elastic properties of the rafts,29 the
absence of wrinkles and compression in our experiments
suggests that bending is not important here. Therefore, this
simpler model is sufficient to capture the pertinent physical
mechanisms.
Following the theoretical work of refs,28,29 we thus model the

raft as a continuous heavy membrane of density ρeff whose
tension T(r) + γ varies along the interface. This tension has
contributions from both the liquid interface γ and the contact
forces between the grains T(r), whereas the density ρeff = (2/
3)ϕ(ρp − ρw) takes into account the (immersed) particle
buoyancy and voids between them through ϕ the two-
dimensional packing fraction (see the Supporting Information).
The liquid surrounding the raft as well as the drop’s upper

surface are treated as pure liquids. The drop’s lower surface
being in contact with the raft forms a bridge. This region of the
raft consists of two liquid interfaces with a monolayer of

Figure 3. Shape of the drop in Figure 2 as its volume is increased. The blue data points correspond to the pictures in Figure 2. The dotted line
represent a spherical shape for which H = 2R.

Figure 4. (a) Dimensionless drop shape (H and R) as the drop volume increases for rafts made with particles of different sizes and densities. The
dashed curves are the results of the model for the same values of , whereas the solid curve represents the limiting case = 0. (b) Schematic of the
model. The upper drop interface z(r) and the bath interface h(r) are drawn. The nature of the bath interface changes from a bridged interface for 0 <
r < Rc to a raft for Rc < r < Rraft and finally to a bare liquid interface for r > Rraft. (c−e) Comparison of theoretical and experimental drop profiles;
scale bars: 5 mm. Drops on a ZrO2 raft ( = 0.38) of two different volumes: =V / 2.01/3

c (c) and close to the maximum volume =V / 2.71/3
c

(d). (e) Drop of the same volume as (d) but on a different raft (SiO2 = 0.28).
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particles and is modeled as one interface (similar to the rest of
the raft) but with an adjusted tension T(r) + 2γ (Figure 4b).
The static equilibrium of the interfaces leads thus to the set of
eqs 2 and 3 (see Theory). It results in coupled boundary value
problems in each region of the space (with no free parameters)
that we solve consistently numerically. We thus obtain the full
drop and raft profiles, as well as the membrane tension. We can
readily see from the rescaling that the particle influence can be
enclosed in the dimensionless parameter

ρ
ρ ρ

=
−

deff

w o c (1)

This parameter stands for the effective weight of the raft that
is both curving the interface and varying the tension between
the grains. Thus, as written, compares the weight of the raft
at the scale of the particles with the effect of buoyancy at the
scale of the capillary length c. In Figure 4a, the drop shapes
depend only on the parameter . For instance, drops on rafts
made with SiO2 d = 500 μm and ZrO2 d = 250 μm particles
behave similarly although the particles have different sizes and
densities because their values are similar, confirming the
relevance of this parameter. As a consequence, the maximum
drop volume that can be supported by the raft (also reported in
Figure 5a) only depends on .
We compare the results of the model with the experiments in

Figure 4a. The drop height H as well as its radius R as a
function of the drop volume are well-reproduced for all values
of . Figure 4c−e shows a direct comparison between pictures
from a typical experiment and the result of the model. Figure
4c,d shows two drops on the same raft (same ) but with two
different volumes, whereas Figure 4d,e shows two drops of the
same volume on different rafts. The complete drop shape as
well as the raft shape and the position of the contact between
the different interfaces are well-predicted in all cases.
This model also enables us to predict the maximum drop

volume that a raft can support. In Figures 3 and 4a, the data
stop at a given volume: at that maximum volume Vm, the drop
sinks, destabilizes the raft, and is encapsulated to form an
armored capsule (Figure 5b). In the numerics, we increase
gradually the drop radius (which indirectly controls V) until we
are unable to find a solution to our system of equations. In
Figure 5a, we plot Vm as a function of . The numerical and

experimental maximum match perfectly, showing that rafts with
a lower carry bigger drops. Because of the simplifying
assumptions used in the model (e.g., monodisperse spheres)
and the experimental uncertainties, we reduce by roughly
10% for polydisperse particles to obtain this very good match
with the experiment. We thus took ϕ = 0.7, about 10% lower
than the expected value from random close packing (see the
Supporting Information).
The limiting case = 0 (no particle weight) never

destabilizes. This case is equivalent to pure liquid interfaces,20

realized for bubbles trapped below water, or drops floating on a
bath of the same liquid. The drop-shape deviation from this
limiting case shown in Figure 4a is prominently close to the
maximum volume. For = 0, the portion of the drop in
contact with the bath is spherical, and the flat raft region below
the water surface does not exist.
In Protier̀e et al.,29 a similar model has been used to describe

the stability of granular rafts (without a drop). There, the
tension decreases with the raft size and weight, and the
destabilization occurs when the overall membrane tension
vanishes (T = −nγ, with n = 1 or 2 the number of liquid
interfaces, see Theory). This can be interpreted as the system
having no capillary pressure to balance the raft weight. In the
model presented here, the destabilization is the result of a
different mechanism. Indeed, two branches of solutions are
observed numerically at large volumes. Figure 6a shows the two
branches on a H = f(V) bifurcation diagram as well as a
representative profile for each one. Figure 6b shows the tension
induced by the grains at the origin T(0) (where its magnitude is
maximum) as the drop volume varies for both branches (the
upper branch in this figure corresponds to the lower one in
Figure 6a). Whatever the drop volume is, we always have T(0)
> −2γ but depending on , we have −1.2 < T(0)/γ < −1.1 at
the maximum volume. Because the overall membrane tension
T(r) + nγ never vanishes, the origin of the destabilization is
thus not straightforward. More branches might exist, and the
complete bifurcation and stability analysis of the system goes
beyond the scope of this article. Yet, the lower branch is the
one we observe experimentally (reported in Figure 4), whereas
we never see the upper one. We thus assume that the lower
branch is stable whereas the upper one is unstable. The
destabilization appears as the result of a saddle node bifurcation

Figure 5. (a) Maximum drop volume as a function of for various rafts. The black line is the theoretical prediction from the model. (b) Schematic
and picture of an armored capsule (water dyed green) after a forced raft destabilization (SiO2, d = 500 μm).
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in our system. The instability of the upper branch remains to be
understood because the usual argument of vanishing surface
tension does not work here (we have checked that T(r) + nγ >
0 everywhere for all of the solutions). However, it is interesting
to focus on the situation near the contact line (at r = Rc), where
the number of interfaces in the raft goes from n = 2 to n = 1.
Therefore, while T(Rc) + γ is small but positive, it varies very
rapidly when entering in the domain n = 2 suggesting that the
instability mechanisms occurs in this region. This is in
agreement with the experimental observations showing that
the raft breaks along Rc in contrast with the raft destabilization
when no drops are present where it appears at r = 0.29

Conversely, when we start to withdraw water from an
existing drop, it does not recover its previous shape. Figure 7
shows the shape of the drop (expressed as H = f(R)) during
injection/withdrawal cycles.
Indeed, in this case, only the upper portion of the drop

deforms at first: the drop radius remains constant while the
height decreases. The bridged portion is pinning the contact
line, thus creating adhesion between the drop and the particles
in this region. Then, depending on the initial drop volume, we
observe three different outcomes. If the drop is small compared

to its maximum size (Figure 7(1a,1b), V ≈ 0.45 Vm), the
contact line finally recedes with a stick-slip motion. The drop
becomes very oblate but it can be completely removed. If the
drop’s initial volume is close to Vm (Figure 7(3a,3b), V ≈ 0.9
Vm), the contact line never moves and the bridged portion of
the raft starts to deform. We observe large azimuthal wrinkles,
indicating that the raft is under compression in that direction
and responds to it similarly to an elastic material.26 Subsequent
liquid withdrawal destabilizes the raft, and the drop either gets
encapsulated or is released in the bath. At intermediate volumes
(Figure 7(2a,2b), V ≈ 0.65 Vm) we find a combination of the
two previous behaviors, indicating a smooth transition between
them. The contact line moves but the raft also deforms and
wrinkles. Nonetheless, it is possible in that case to completely
pump out the drop. These pumping experiments highlight the
complex nature of the bridged interface, which is also the
armored capsule shell. Modeling them goes beyond the scope
of this article, however, we expect the adhesion of the drop to
the particles18 as well as the bending rigidity under compression
of the raft26 to be key parameters.
We finally focus on the destabilization process and the

characteristics of the formed armored capsules. When the raft
destabilizes, the drop sinks and drags down the raft, forming a
multiphase neck that thins out and breaks (Movie S1). The
majority of the initial volume gets encapsulated in what we call
an armored capsule. The structure of the capsule is a single
bridged interface (Figure 5b), which isolates the drop from the
rest of the bath. Moreover, the particles provide some rigidity
to the shell which proves useful for its manipulation.
Altogether, this makes floating drops and armored capsules
great candidates for various applications: they have a lot in
common with liquid marbles which have been successfully used
as chemical or biochemical microreactors and sensors;16,30,31

yet, they allow to work in aqueous systems and have unique
properties (see Movie S2). Indeed, the bare portion of the
floating drop is accessible, allowing control and visualization of
a reaction. The destabilization can be triggered, for instance, by
pushing the drop downward with a stick (Figure 8a), to

Figure 6. Full numerical results for = 0.28 (red circles), = 0.50
(blue squares), and = 0.70 (green diamonds). (a) Drop height as a
function of its volume. (b) Minimum tension as a function of the drop
volume. The first branch of the solution (assumed stable) is drawn
with dark colors, whereas the second branch (assumed unstable) is
drawn with lighter colors. The two numerical solutions for = 0.50
and =V / 21/3

c are drawn (scale bar: 2 c).

Figure 7. Dimensionless drop shape during successive volume increase
(filled/plain) and decrease (open/dashed) for a SiO2 raft (d = 500
μm). The lines and arrows are guide for the eye. The three types of
drop retraction behavior are shown with side pictures.
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produce armored capsules of various sizes. Both the floating
drop and the capsule can be transported, and their content can
be released in the bath by puncturing the shell with a
hydrophilic needle (Figure 8b,c).
Other methods to release or transport the capsule could be

developed. For example, centrifugation could be used to
destabilize the raft and thus form several capsules which can
then be transported with a bulk flow. An acoustic pulse32 or a
voltage difference33 could trigger coalescence and release the
capsule’s content instantly, whereas the use of an oil miscible
with the active ingredient would allow a slow and controlled
release through the shell. The particles used can be cheap or
have various properties (magnetic or pH responsive) which
widens even more the range of possibilities for controlling the
capsule formation, manipulation, and release. This makes
armored capsules ideal candidates for targeted delivery of active
ingredients in a miscible liquid.

■ CONCLUSIONS
We have presented a new easy and affordable method to form
water-in-water capsules through the destabilization of drops
floating on granular rafts and studied their destabilization
mechanism. A small drop deposited on top of the raft does not
coalesce with the underlying water bath because the particles
bridge the two interfaces, entrapping a thin protective layer of
oil. Increasing the floating drop volume deforms the raft more
and more until the raft destabilizes at a critical volume. It sinks
with the drop and encapsulates it in an armored capsule whose
shell is a thin oil-particle layer. The precise floating drop shape
and raft deformation for a given volume as well as the
destabilization volume depend on the raft weight through the
dimensionless parameter , which is a scaled particle-to-fluid
density ratio. By modeling the raft as a continuous heavy
membrane with a varying tension, we are able to predict the
drop shape, the raft deformation, and the maximum drop
volume. However, if we decrease the volume of an existing
droplet, the drop shape and raft deformation are not reversible.
This highlights the complexity of the bridged interface which
constitutes the capsule shell. Finally, we demonstrate the
potential of armored capsules for liquid transport and delivery
as they are easy to produce, transport, and open.

■ THEORY
We consider an axisymmetric drop at equilibrium, floating at
the center of an axisymmetric raft. We use cylindrical
coordinates (r, φ, y) and choose for origin (0, 0, 0) the center
of the drop/raft at the undeformed water level. We introduce
z(r) as the position of the upper drop surface which is not in
contact with the raft and h(r) as the position of the lower,
complex interface (Figure 4b). The nature of the lower
interface changes along r:

• For 0 < r < Rc, the interface is bridged and the particles
are wetted by the two water phases and the oil.

• For Rc < r < Rtaft, the interface is a regular raft and the
particles are wetted by the water bath and the oil.

• For r > Rraft, the interface is a regular liquid interface.

Here, Rc is the radius of contact between the drop and the
raft and Rraft is the radius of the raft.
The shape of the upper portion of the drop z(r) is given by

the balance between the Laplace pressure γC and the
hydrostatic pressure −Δρgz. Here, γ is the oil−water interfacial
tension, C is the curvature of the drop surface, Δρ = ρw − ρo is
the density difference between the oil and the water, and g is
the acceleration due to gravity. Rescaling the lengths with the
capillary length, γ= Δρg/c , the equilibrium shape z(r) of
the drop is then defined by the relation:

− = −z zC Ctop top (2)

where Ctop and ztop are the drop curvature and height at the top
of the drop.
Following the work of refs,28,29 the particle−laden interface

(h(r) for r < Rraft) is modeled as an effective continuous
membrane of density ρeff, thickness d, and tension T(r) + nγ at
the interface between two fluids. The tension consists of two
contributions: one from the liquid interface(s) nγ, where n is
the number of interfaces (n = 2 for r < Rc, n = 1 for r > Rc) and
one from the grains T(r) that we assume independent of φ for
simplicity. This membrane is subjected to its weight and bears a
pressure difference ΔP, which is due to the drop and the
displacement of liquids. The last portion of the interface (h(r)
for r > Rraft) is a regular liquid−oil interface (for which then
T(r) = 0, ρeff = 0 and n = 1).
The equilibrium shape h(r) of the particle−laden interface is

given by a normal and tangential force balance. It reads in
dimensionless form (rescaling lengths with γ= Δρg/c and
tensions with γ)

′ − ′ =

+ ″
+ ′

+ ′ − Δ + ′ − =
⎡
⎣⎢

⎤
⎦⎥

T h

T n
h

h
h
r

P h

0

( )
1

1 02
2

(3)

where ′ ≡( )
r

d
d

and = ρ
Δρ

deff

c
is the dimensionless parameter

accounting for the weight of the membrane.
The effective density of the membrane ρeff = (2/3)ϕ(ρp −

ρw) takes into account the holes in the raft with ϕ = 0.7, the
projected two-dimensional packing fraction, and the buoyancy
of the particles (see the Supporting Information). Because the
particles are immersed differently in the bridged and raft
sections, ρeff slightly varies between them. However, the water
and oil densities being similar, the difference in ρeff is small, and
we neglect it for simplicity. The dimensionless pressure
difference is

Figure 8. Image sequences extracted from Movie S2 (SiO2 particles d
= 500 μm). (a) Encapsulation is forced by pushing the drop with a
Teflon stick (indicated by the red arrow). The coalescence of a floating
drop (b) and opening of an armored capsule (c) are triggered by
puncturing the interface with a hydrophilic needle. The red arrows
indicate the position where the hole opens.
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For r > Rraft, we simply have
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The drop and raft equations are solved numerically using the
MATLAB solver bvp5c in each region with the following
boundary conditions. Axisymmetry imposes h′(0) = z′(0) = 0.
The liquid interface relaxes at infinity: h(∞) = 0. We assume
the continuity of the variables h, h′, z, z′, and T between each
regions. In particular, we have T(Rraft) = 0, that is, the
contribution of the tension because of the particles vanishes at
the border of the raft. We then set the values of some of the
parameters by providing additional boundary conditions. The
drop radius R is provided (z′(R) = ∞), and we assume the
drop reaches the raft (z(Rc) = h(Rc)) with a 180° macroscopic
contact angle (z′(Rc) = h′(Rc)). This sets Ctop, ztop, and Rc.
Finally, because the raft size has a little influence (as long as it is
larger than the drop, see the Supporting Information), we set
Rraft = 10. The control parameters are the dimensionless raft
weight and drop radius R, and they are varied with a
continuation scheme.
The limiting case = 0 (neutrally buoyant particles) is

equivalent to bubbles trapped below the water surface20 or
drops floating on a pool of the same liquid.21 The interface
never destabilizes, and the lower drop interface in contact with
the raft becomes a portion of the sphere. The similarity with the
trapped bubbles is even more striking for giant ones. Recently,
Cohen et al.34 showed that the weight of the liquid film had to
be taken into account in the force balance to predict the shape
of giant soap bubbles. This resulted in similar equations with
the surface tension increasing along the interface (correspond-
ing to < 0). Finally, there is a maximum ≈ 1.4max in the
model, which corresponds to the spontaneous destabilization of
large rafts without any drop.29
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