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31. The setting

Consider the modified NLS equation

%u + iAu — v (Ju]* = |lul*)u =0,

(0°/023), =€ Tq =R*/(LZ?),

ﬁ&

g=1
where d > 2, L. > 1 and v € (0, 1]. This is a hamiltonian PDE, obtained by modifying
the standard NLS equation by another hamiltonian equation £-u = —iv||ul|?u, whose

flow commutes with that of NLS. This is a rather innocent modification.

Denote by H the space LQ(T%; C), given the normalised Ly—norm

Ju* = L_dé)%/ lu|*dz;  so |[1] = 1.



We write solutions u as u(t, x) oras u(t) € H. Pass to the slow time 7 = vt:
i+ iv ' Au—i (Jul? = [ulP)u=0, 4= (8/0r)u(r,z), x€TY.
From now on | will use the time 7.

The objective is to study solutions when v — 0 and L — oc.

We write the Fourier series for u(x) as

ulr) = L—d/2 ,08627Tis-$’ Zd _ L—lzd’
( ) ZsEZ%

where v, = L~%/2 Jpa w(x)e ™2™ dy
L



When studying the equation, people talk about “pumping the energy to low modes and
dissipating it in high modes”. To make this rigorous, Zakharov-Lvov in 1975 suggested to

consider the NLS equation, dumped by a (hyper)viscosity and driven by a random force:
W+ Au—ip ([uf® = [Jull)u = —(=A +1)™u + 7 (1, z),

1 .
(1) nw(T’ 33) _ L—d/QZ b863(7)627ms-:c'

Here 7. > 0, p > 1 is an additional constant, needed later, {3,(7), s € Z%} are
standard independent complex Wiener processes, the constants b, > 0 are defined for all
s € R? and fast decay when |s| — oo.



Denoting B = L~ ¢ Zsbg we obtain the balance of energy for solutions of (1):
Ellu(r)]|* + ZE/ I(=A+ 1)™u(s)[|* ds = E[|u(0)[|* + 2B
0

So the quantity IE||u(7)||? — the averaged “energy per volume” of a solution u — is order
one, uniformly in L, how this should be.
Passing to the Fourier presentation, we write eq. (1) as

: 12 . 1 d /12 _ : d
Vs — 1V 8|7 vs + YsUs = ipL E 12533 V203 + bsBs, s € LT,

where vs = (1 + |s]?)"* and

(
512 1, ifs;+ 8o =353+ sand{sy,s2} # {s3, s},
S

0, otherwise.
\



Using interaction representation v, = exp(iv~17|s|?) as we write equations for v, as

as + VsQs = ipys(CL; V_lT) + bsBs , SE& chi, ’

(2) Vs(a;t) dz 55%92&1&2&362%%3,
wss = 517 +[s2]” — [s3]” — || = —2(s1 = 5) - (s2 — 5).

The energy spectrum of a solution u(7) is the function
7% 5 s ng(1) = nlV (1) = Elog(7)|* = Elas (7).

Traditionally the function ns is in the center of attention. We wish to study the solutions of
(1) and their energy spectra ns when

v—0, L — oo.

Exact meaning of this assumption is not clear. Below we specify it as follows:
v —0and L > v~ 2" ¢ forsome € > 0,

or first L — oo and next v — 0.



2. Solutions as formal series in p.

Consider the equations with the initial condition
u(=T) =0, 0<T <400,
and write the solution a4 as formal series in p:
As :ago)+pagl)+....
Substituting this decomposition in the a—equation (2), we see that

ag(’) (1) + fysago) (T) = bsBs(T), s€E Z%.

So the processes a§°> are independent Ornstein—Uhlenbeck processes:

a©)(7) = b, / =D g (1),

=T



while a(1) satisfies
oM (1) + 7,0V (1) = iV (O (1); v ), 7> T,

SO

oV (1) = z/ e =Dy (@ (1); v 1) dl.

=T

That is, agl) (7) is a Wiener chaos of third order. Similar, for n > 2,

a™ (1) =i / S e~ T=DY (a{™ (1), a$) (1), a5 ™) (1); v~ M) dll
—T

ni1+nz2+nz=n—1

is a Wiener chaos of order 2n + 1.



QUASISOLUTIONS. The NLS equation is a model which is used to describe various
small-amplitude nonlinear processes, neglecting the terms, cubic in the amplitude. So
what has real physical meaning rather is not itself a solution CLS(T) of the a—equation (2),

but its quadratic in p part. In the notation above this is :
As(1) = a (1) + pay (1) + p*ag(7).

We call the the process A = { A;(7)} the QUASISOLUTION.

Consider the energy spectrum of A,
N, (1) = E[As(7)]*.

QUESTION: How N, behaves whenv — Oand L — oo, L > 12 ?



Let us write [V as series in p:
Ny (1) = ng(7) + png(1) + p*ng(7) + p*ni(r) + plng(7).
Here nY = [E|a?|? is a quantity of order 1,

nt = 2REa’al =0, n? =El|al|* + 2REa’a?, etc.

S S§$Ss?

CALCULATION: if v < 1and L > 2, then

2 3

~ U, ns,n§§y2.

So the right scaling for pis p ~ v~ /2

p=+ev % ee€(0,1].

. Accordingly let us take p in the form
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3. Wave kinetic equation

For a real function s — x4 on R4 let us consider the Cubic Wave Kinetic Integral

dsy dss |y, T1T2X3%s ( 1 1 1 1 )
. .

_|_ — _
s, v/ 181 — 8|2+ [s2 — 5|2 \ s Y3T3 T Vel

Kq(x.) = 21y,

Here x; = xs., 7 = 1,2, 3, we substitute s3 = 51 + 52 — 5,
Yo =1{(s1,82) : (51 = 8) - (52 —5) = 0},

and dsq ds» |§;8 is the microcanonical measure on . (the volume in RQd, restricted to XJ).

FACT: the Wave Kinetic operator x; — K (x.) is well defined and “good”.
Consider the Wave Kinetic Equation:

(WKE) s (T) = —2ysms(T) 4202+ K, (m. (7)), s € R%

For small € this is a good equation. It has a unique solution, equal 0 at —7'. Let us denote
it {n¥(7)}.
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Theorem. Let p = \/E V_1/2, where ¢ is a small constant. Then the energy spectrum
N (1) is close to the solution 1} (7) of (WKE):

In*(7) — Ny(7T)|| < Ce* V1> -T.

The solution % (7) can be written as
ny(r) =n" () +eni () + O(?),

where n*?(7) ~ 1 solves the linear equation (W K E).—q, and en’!(7) is the

nonlinear part of the solution.

Note that C'e? < |en*!(7)| for small e.
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Remark. If p = \/E V_1/2, then in the original fast time ¢ the equation reeds:

0
—utiAu—iv VE (JulP=lul?)u = —p(~ A+ u i (), )]~ 1

That is,

1) the time-scale which we use to pass to the kinetic limit is 7 = vt, so the time needed to

arrive at the limiting kinetic regime is ¢t ~ v~ 1;

2) the coefficient in front of the nonlinearity is

/2
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34. Higher order in p decompositions

Write the solution in a—presentation as formal series in p:
a:a(0)+pa(1)—|—...,
and accordingly write its energy spectrum as
_ .0 1 2 2
© ns(7) = nl(r) + pry(r) + p*n2(r) + ...

Since

n?~v, n2n: <2

it is natural to assume that

k/2

n® <y for all v and all k.

1/2

If so, then scaling as before p = \/E v -/, we would make (3) a nice asymptotical series

in €.
But this is WRONG:
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Theorem. 1) For each k£ we have
n® < C% (k) max(u[k/21 %),

where [k /2] —the smallest integer which is > k /2.

2) Moreover, if k > 2d, then the sum of the integrals which makes the term n”

5 contains

integrals of order ~v® > plk/2]

The integrals of order v¢ do not cancel each other. So for big k

n? ~ Vd, NOT n? ~ k2]

Then the series
0 1 2 2
nS(T> — ns(T) + pns<7-) + P ns<7-) T
with the right scaling p = /e v—1/2 IS NOT an asymptotical series since

pkni(T) > gk/QVd—k/2’
which is very big for £ > 2d and v < 1.
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