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reflection-less shifter

Community of metamaterials

Transformation media for linear liquid surface waves
EPL, 85 (2009) 24004  doi: 10.1209/0295-5075/85/24004

Experimental realization of a water-wave metamaterial shifter
PHYSICAL REVIEW E 88, 051002(R) (2013)

Numerical and experimental study of an invisibility carpet in a water channel
Phys. Rev. E 91, 023010 – 2015

Manipulating Water Wave Propagation via Gradient Index Media
Scientific Reports 16846 (2015)

cloaking e↵ect

control of the wave propagation: rotator
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We establish, both theoretically and experimentally, that metamaterials for water waves reach a much higher
degree of anisotropy than the one predicted using the analogy between water waves and their electromagnetic
or acoustic counterparts. This is due to the fact that this analogy, based on the two-dimensional shallow water
approximation, is unable to account for the three-dimensional near field effects in the water depth. To properly
capture these effects, we homogenize the fully three-dimensional problem and show that a subwavelength
layered structuration of the bathymetry produces significant anisotropic parameters in the shallow water regime.
Furthermore, we extend the validity of the homogenized prediction by proposing an empirical anisotropic
version of the dispersion relation.
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I. INTRODUCTION

The design of metamaterials for water waves has generated
in the past 10 years an increasing interest for applications
including the realization of lenses [1–3], the control of the
ocean wave energy flow [4–6], or the cloaking able to produce
a protected free wave region [7–13]. For most of the cases,
these metamaterials require anisotropic effective parameters
that can take extreme values, a task that can be challenging.
One strategy to design artificial anisotropic media consists
of using a bathymetry varying at the subwavelength scale.
The waves propagating over such a structured medium feel
effective water depths differently depending on its direction
of propagation. Often, heuristically, the effective water depths
have been evaluated using the homogenization of the two-
dimensional wave equation under the linear shallow water
approximation (2D SWE)

div(h∇η) + ω2

g
η = 0, (1)

thus benefiting from the analogy with equations of the
Helmholtz type valid for polarized electromagnetic waves and
acoustic waves [1,5,6]. In (1), η(x,y) is the surface elevation,
h(x,y) is the local water depth, ω the frequency, and g the
gravity constant. Note that, starting from an initially 3D water
wave problem, the shallow water approximation allows us to
reduce the effect of the third dimension z in the inhomogeneous
factor h. For structurations made of layers [5,6], this modeling
predicts an effective water depth tensor related to the arithmetic
and geometric averages of the actual water depths; the effective
tensor is diagonal with

2D SWE hx = ⟨h−1⟩−1, hy = ⟨h⟩, (2)

in (x,y) the directions across and along the layers and with
⟨.⟩ the volume average [⟨f ⟩ = θf − + (1 − θ )f + with θ the
filling fraction of the layers, Fig. 1]. In this study, we show
that the actual anisotropy due to a layered structuration of the
bathymetry is much larger than the one predicted by (2). In-
deed, even if the SWE (1) is valid for wavelengths much larger
than the depth, it is unable to account for the near field effects

in a subwavelength structure. In order to properly model these
effects, the homogenization of the full 3D linear water wave
problem needs to be considered. Following Ref. [14], we shall
see that the effective water depths (hwx,hy) are of the form

3D problem hx = ℓ

∫

Y

∂&

∂xr
, hy = ⟨h⟩, (3)

where ℓ is the periodicity of the bathymetry and & is the
velocity potential associated to a simple potential flow
problem, see (11). Comparing (2) to (3), it appears that
only hx is impacted by 3D effects and we shall see that hx
in (3) may be much smaller than ⟨h−1⟩−1. The important
consequence is that the resulting anisotropy of the effective
medium can be much larger than the classical homogenization
of layered media, due to 3D near field effects.

The homogenized model of the linear 3D wave problem
is presented in Sec. II; it is shown that the price to pay
for the effective depth hx in (3) is the resolution of a
static problem on & which can be done once and for all
(a simple script to do so is provided in the Appendix A).
The validation of the model is presented in Sec. III. We
built a metamaterial structure in laboratory experiments and
inspected the anisotropic propagation of water waves over
such a structure. First, a Floquet-Bloch analysis of the 3D
linear problem is presented which allows us to validate the
model in the very low frequency regime and to propose an

y
x

z

xz

h+h-

FIG. 1. Metamaterial for water waves, consisting of a subwave-
length layered variation of the bathymetry. In the experiments, a thin
tip excites water waves propagating over the metamaterial structure.
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I. INTRODUCTION

The design of metamaterials for water waves has generated
in the past 10 years an increasing interest for applications
including the realization of lenses [1–3], the control of the
ocean wave energy flow [4–6], or the cloaking able to produce
a protected free wave region [7–13]. For most of the cases,
these metamaterials require anisotropic effective parameters
that can take extreme values, a task that can be challenging.
One strategy to design artificial anisotropic media consists
of using a bathymetry varying at the subwavelength scale.
The waves propagating over such a structured medium feel
effective water depths differently depending on its direction
of propagation. Often, heuristically, the effective water depths
have been evaluated using the homogenization of the two-
dimensional wave equation under the linear shallow water
approximation (2D SWE)

div(h∇η) + ω2

g
η = 0, (1)

thus benefiting from the analogy with equations of the
Helmholtz type valid for polarized electromagnetic waves and
acoustic waves [1,5,6]. In (1), η(x,y) is the surface elevation,
h(x,y) is the local water depth, ω the frequency, and g the
gravity constant. Note that, starting from an initially 3D water
wave problem, the shallow water approximation allows us to
reduce the effect of the third dimension z in the inhomogeneous
factor h. For structurations made of layers [5,6], this modeling
predicts an effective water depth tensor related to the arithmetic
and geometric averages of the actual water depths; the effective
tensor is diagonal with

2D SWE hx = ⟨h−1⟩−1, hy = ⟨h⟩, (2)

in (x,y) the directions across and along the layers and with
⟨.⟩ the volume average [⟨f ⟩ = θf − + (1 − θ )f + with θ the
filling fraction of the layers, Fig. 1]. In this study, we show
that the actual anisotropy due to a layered structuration of the
bathymetry is much larger than the one predicted by (2). In-
deed, even if the SWE (1) is valid for wavelengths much larger
than the depth, it is unable to account for the near field effects

in a subwavelength structure. In order to properly model these
effects, the homogenization of the full 3D linear water wave
problem needs to be considered. Following Ref. [14], we shall
see that the effective water depths (hwx,hy) are of the form

3D problem hx = ℓ

∫

Y

∂&

∂xr
, hy = ⟨h⟩, (3)

where ℓ is the periodicity of the bathymetry and & is the
velocity potential associated to a simple potential flow
problem, see (11). Comparing (2) to (3), it appears that
only hx is impacted by 3D effects and we shall see that hx
in (3) may be much smaller than ⟨h−1⟩−1. The important
consequence is that the resulting anisotropy of the effective
medium can be much larger than the classical homogenization
of layered media, due to 3D near field effects.

The homogenized model of the linear 3D wave problem
is presented in Sec. II; it is shown that the price to pay
for the effective depth hx in (3) is the resolution of a
static problem on & which can be done once and for all
(a simple script to do so is provided in the Appendix A).
The validation of the model is presented in Sec. III. We
built a metamaterial structure in laboratory experiments and
inspected the anisotropic propagation of water waves over
such a structure. First, a Floquet-Bloch analysis of the 3D
linear problem is presented which allows us to validate the
model in the very low frequency regime and to propose an
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length layered variation of the bathymetry. In the experiments, a thin
tip excites water waves propagating over the metamaterial structure.
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Concluding remarks

• asymptotic analysis provides a simple way to get e↵ective model

(in the time domain, independent of the specific scattering pb.)

• they involve e↵ective parameters

(approximate explicit expressions can be guessed)
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• kh ⌧ 1 ! e↵ective 2D model

• kh = O(1) ! e↵ective boundary condition in the 3D model

wave breakers
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Concluding remarks

• asymptotic analysis provides a simple way to get e↵ective model

(in the time domain, independent of the specific scattering pb.)

• they involve e↵ective parameters

(approximate explicit expressions can be guessed)


