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We study the effects of emergent coastal forests on the propagation of long surface
waves of small amplitude. The forest is idealized by an array of vertical cylinders.
Simple models are employed to represent bed friction and to simulate turbulence
generated by flow through the tree trunks. A multi-scale (homogenization) analysis
similar to that for seepage flows is carried out to deduce the effective equations on
the macro-scale. The effective coefficients are calculated by numerically solving the
micro-scale problem in a unit cell surrounding one or several cylinders. Analytical
and numerical solutions for wave attenuation on the macro-scale for different
bathymetries and coastal forest configurations are presented. For a transient incident
wave, analytical results are discussed for the damping of a leading tsunami. For
comparison series of laboratory data for periodic and transient incident waves are also

presented. Good agreement is found even though some of the measured waves are
short or nonlinear.

Key words: shallow water flows, surface gravity waves, wave—turbulence interactions

J. Fluid Mech. (2015), vol. 768, pp. 572-599. (© Cambridge University Press 2015
doi:10.1017/jfm.2015.110

Surface water waves over a shallow canopy

Benlong Wang', Xiaoyu Guo' and Chiang C. Mei'*+

!Ministry of Education Key Laboratory of Hydrodynamics, School of Naval Architecture,
Ocean and Civil Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
2Dcpan.mcru of Civil and Environmental Engineering, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

(Received 1 September 2014; revised 7 January 2015; accepted 17 February 2015;
first published online 11 March 2015)

Gl G2 Gl1o Gl1

-~
N
‘\ / % %.........Iﬁ ? v /z
\ ] - /
HIK 7
U V%

— L 1 :

T 10m J 28m L nb‘::xer

FIGURE 4. The set-up of the wave flume and canopy.

FIGURE 5. (Colour online) (a) Front view of the canopy. () Top view of the cylinder
array. Station II marks the light sheet for photography.
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FIGURE 4. The set-up of the wave flume and canopy.
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FIGURE 5. (Colour online) (a) Front view of the canopy. (b) Top view of the cylinder
array. Station II marks the light sheet for photography.
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Concluding remarks

e asymptotic analysis provides a simple way to get effective model

(in the time domain, independent of the specific scattering pb.)

e they involve effective parameters

(approximate explicit expressions can be guessed)
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