Turbulent windprint on a liquid surface

Frédéric Moisy ¹ Stéphane Perrard^{1,2}, Marc Rabaud¹, Anna Paquier¹ Michael Benzaquen² ; Adrian Lozano-Durán³ ¹ Université Paris-Sud, FAST ; ² LadHyX ; ³ CTR, Stanford University

Simplest model: Kelvin-Helmholtz (1868)

Linear stability analysis

- piecewise velocity profile
- surface tension
- potential flow (no viscosity)

Threshold:
$$|U_1 - U_2|_{min} = \left[2\frac{\rho_1 + \rho_2}{\rho_1\rho_2} \left(\Delta\rho g\gamma\right)^{1/2}\right]^{1/2}$$

For the air-water interface, $\lambda_c = 2\pi/k_c \simeq 1.7 \ cm$, $|U_1 - U_2| \min \simeq 6.6 \ m/s$ too small!! too large!!

Key models

• Miles (1957)

Linear stability for inviscid Orr-Sommerfeld problem using the (« laminar ») averaged turbulent velocity profile

 Phillips (1957) : resonance between waves and travelling pressure fluctuations in the turbulent boundary layer

 $\overline{\xi^2} \sim \frac{p^{2t}}{2\sqrt{2\rho^2 U_o g}}$

Experimental setup

30.8

30.6

(IIII) 4 4 30.2

30

140

120

100

60

40

20

29.8

-50 (lulu)

0

Paquier et al. Phys Rev Fluids (2015, 2016)

Free-surface synthetic Schlieren (FS-SS)

Moisy, Rabaud & Salsac, Exp. in Fluids (2009)

Transtion from « wrinkles » to regular waves

Paquier, Moisy, Rabaud (2015, 2016)

Growth of deformation amplitude with wind

Influence of viscosity on wind-wave generation

Influence of the liquid viscosity

Scaling of the wrinkle amplitude: phenomenology

Balance between turbulent energy flux and viscous dissipation in the liquid

$$\frac{dE_w}{dt} = P_{inj} - \frac{E_w}{\tau} = 0$$

Wave energy: $E_w \simeq \rho_\ell g \zeta^2$,

viscous time scale: $\tau \simeq \frac{\delta^2}{\nu}$

Work of turbulent stress per unit time: $P_{inj} \simeq p_{rms} \ \dot{\zeta} \simeq \rho_a u^{*2} \dot{\zeta}$

Momentum conservation: $\rho_\ell \dot{\zeta} \simeq \rho_a u^*$

$$\frac{\zeta_{\rm rms}}{\delta} \simeq C \frac{\rho_a}{\rho_\ell} \frac{u^{*3/2}}{(g\nu_\ell)^{1/2}}$$

A spectral theory for the wrinkles

Assumptions

- Viscous flow in the liquid
- Waves of small amplitude: no feedback
 on the turbulent forcing
- No drift current

Stokes Equation + linearized b.c.
$$\partial_t v = -\frac{1}{\rho_\ell} \nabla p_\ell + \mathbf{g} + \nu_\ell \Delta v$$

Space-time Fourier transfom

$$\hat{\zeta}(\boldsymbol{k},\omega) = \mathcal{F}\{\zeta(\boldsymbol{r},t)\} = \int \mathrm{d}^{2}\boldsymbol{r} \,\mathrm{d}t \,\zeta(\boldsymbol{r},t) e^{-i(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t)}$$
$$\zeta(\boldsymbol{r},t) = \mathcal{F}^{-1}\{\hat{\zeta}(\boldsymbol{k},\omega)\} = (2\pi)^{-3} \int \mathrm{d}^{2}\boldsymbol{k} \,\mathrm{d}\omega \,\hat{\zeta}(\boldsymbol{k},\omega) e^{i(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t)}$$

Low-viscosity limit $(k^{-1} \gg \ell_{\nu} = (\nu_{\ell}^2/g)^{1/3})$

$$\hat{\zeta}(\boldsymbol{k},\omega) = \frac{1}{\rho_{\ell}} \frac{k\hat{N} + i\boldsymbol{k}\cdot\hat{\boldsymbol{T}}}{\omega^2 - g'k + 4i\nu_{\ell}\omega k^2}$$

S. Perrard, A. Lozano-Duran, M. Rabaud, M. Benzaquen, subm. to JFM (2019)

Resonance in (2+1) dimensions

$$\hat{\zeta}(\boldsymbol{k},\omega) = \frac{1}{\rho_{\ell}} \frac{k\hat{N} + i\boldsymbol{k}\cdot\hat{\boldsymbol{T}}}{\omega^2 - g'k + 4i\nu_{\ell}\omega k^2} = \frac{\hat{S}(\boldsymbol{k},\omega)}{\hat{D}(\boldsymbol{k},\omega)}$$

Similar to Phillips (1957), but including viscosity & shear stress

Connection to the ship wake problem (Havelock 1908)

$$\hat{\zeta}(\boldsymbol{k},\omega) = \frac{1}{\rho_{\ell}} \frac{k\hat{N} + i\boldsymbol{k}\cdot\hat{\boldsymbol{T}}}{\omega^2 - g'k + 4i\nu_{\ell}\omega k^2}$$

For a rigid traveling pressure patch, $\widehat{N}(\mathbf{k},\omega) = \delta(\omega - U_c k_x) \hat{\mathcal{N}}(\mathbf{k})$

we recover the classical Havelock's ship wake integral

$$\zeta(\mathbf{x}) = -\lim_{\epsilon \to 0} \frac{1}{(2\pi)^2} \iint \frac{k\hat{P}(\mathbf{k})/\rho}{\omega(\mathbf{k})^2 - (\mathbf{k} \cdot \mathbf{U} - i\epsilon)^2} e^{i\mathbf{k} \cdot \mathbf{x}} d^2 \mathbf{k}$$

(b)

Evaluation of source term $S(k, \omega)$ from DNS

Data from A. Lozano Duran (CTR, Stanford)

• Turbulent chanel flow

 $L_x \times L_y \times L_z = (8\pi, 3\pi, 2)H$

- Periodic box in *x* and *y*
- Rigid wall
- No slip boundary condition

Re_{δ}	Δx^+	Δy^+	Δz_{min}^+	Δz_{max}^+	Δt^+	H/u^*	$U_a \ (m \ s^{-1})$
100	10.1	5.7	0.06	3.4	0.63	12.5	1
180	9.1	5.3	0.02	3.0	0.64	14.1	1.8
250	12.1	6.8	0.03	4.0	0.61	10.1	2.5
360	13.1	6.5	0.04	5.8	3.80	21.8	3.6
550	13.4	7.5	0.04	6.7	0.45	6.7	5.5

Normal & tangential stresses from DNS

Normal & tangential stresses from DNS

 $Re_{\tau} = 180 ~(\coloneqq 1.8 ~m/s)$

Statistical properties of turbulent stress fluctuations

Characteristic size of pressure patches: $\Lambda_{x,y} \simeq 250 \delta_{\nu}$

 $(\delta_v = v_a/u^*$: viscous sublayer thickness)

(a) pressure only

(b) shear stress only

True wrinkles vs. Synthetic wrinkles

(a) $\text{Re}_{\delta} = 100$, exp.

(d) $\text{Re}_{\delta} = 250$, exp.

(b) $\text{Re}_{\delta} = 100$, num.

(e) $\text{Re}_{\delta} = 250$, num.

•

Surface response, in $(|k|, \omega)$ plane

Most energy near the dispersion relation: resonant response

Surface response, in the (k_x, k_y) plane

Comparison Experiment/Numerics

Scaling of the wrinkle amplitude

Space-time Parseval theorem (energy conservation)

$$\frac{\overline{\zeta^2}}{\delta^2} = \left(\frac{\rho_{\rm a}}{\rho_{\ell}}\right)^2 \frac{u^{*3}}{\delta} \int d^2 \boldsymbol{k} d\omega \ \frac{|\hat{S}^{\dagger}|^2}{(\omega^2 - \omega_r^2)^2 + \omega_{\nu}^2 \omega^2}$$

+ Assumption: wrinkle energy near the dispersion relation

$$\langle |\hat{\zeta}^2| \rangle_{\omega} = \int \mathrm{d}\omega |\hat{\zeta}(\boldsymbol{k},\omega)|^2 = \left(\frac{\rho_{\mathrm{a}}}{\rho_{\ell}}\right)^2 \frac{u^{*3}}{16g\nu_{\ell}} W(\tilde{\boldsymbol{k}}) \, |\hat{S}^{\dagger}(\tilde{\boldsymbol{k}},\tilde{\omega}_r)|^2$$

Weighting factor $W(\tilde{k}) = \frac{1}{\tilde{k}^3(1 + Bo^{-2}\tilde{k}^2)\tanh(\tilde{k}h/\delta)}$

For $Bo \gg 1$ and $h/\delta > \simeq 1$, $W(k) \simeq k^{-3}$

Shift of the surface response towards the upper bound of the forcing $[\delta_{\nu}, \delta]$

Transient before the wrinkle regime

Space Fourier transform (not time!)

$$\breve{\zeta}(\boldsymbol{k},t) = \int \mathrm{d}^2 \boldsymbol{r} \zeta(\boldsymbol{r},t) e^{-i\boldsymbol{k}\cdot\boldsymbol{r}}$$

Damped oscillator, forced by noise (Langevin equation)

$$\partial_{tt} \breve{\zeta}(\boldsymbol{k},t) + 4\nu_{\ell}k^2 \partial_t \breve{\zeta}(\boldsymbol{k},t) + g'k\breve{\zeta}(\boldsymbol{k},t) = -k\breve{p}_0(\boldsymbol{k},t) - i\boldsymbol{k}\cdot\breve{\sigma}_0(\boldsymbol{k},t)$$

time t

Wrinkle = viscous-saturated Phillips regime!

Breakdown of linear (uncoupled) dynamics

Wrinkle amplitude viscous $\zeta \simeq A \times \text{sublayer thickness } \delta_{\nu} = \nu_a/u^*$

for a critical friction velocity

Wrinkles = base state for regular wave growth

S. Perrard, A. Lozano-Duran, M. Rabaud, M. Benzaquen, subm. to JFM (2019)