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Organised structures in turbulent jets may be modelled
as wavepackets. These are characterised by spatial ampli-
fication and decay, both of which are related to stability
mechanisms, and they are coherent over several jet diam-
eters, thereby constituting a non-compact acoustic source
that produces a distinctive directivity in the acoustic field.
In this review we use simplified model problems to discuss
the salient features of turbulent-jet wavepackets and their
modelling frameworks. Two classes of model are consid-
ered. The first, that we refer to as kinematic, is based on
Lighthill’s acoustic analogy, and allows an evaluation of
the radiation properties of sound-source functions postulated
following observation of jets. The second, referred to as dy-
namic, is based on the linearised, inhomogeneous Ginzburg-
Landau equation, which we use as a surrogate for the lin-
earised, inhomogeneous Navier-Stokes system. Both mod-
els are elaborated in the framework of resolvent analysis,
which allows the dynamics to be viewed in terms of an input-
ouput system, the input being either sound-source or non-
linear forcing term, and the output, correspondingly, either
farfield acoustic pressure fluctuations or nearfield flow fluc-
tuations. Emphasis is placed on the extension of resolvent
analysis to stochastic systems, which allows for the treat-
ment of wavepacket jitter, a feature known to be relevant for
subsonic jet noise. Despite the simplicity of the models, they
are found to qualitatively reproduce many of the features of
turbulent jets observed in experiment and simulation. Sam-
ple scripts are provided and allow calculation of most of the
presented results1

1Matlab/Octave scripts are available in ftp://161.24.15.247/
Andre/AMR_Wavepackets, and in the Supplementary Material.

1 Introduction
Jet noise is a fluid-mechanics problem that is both chal-

lenging and fascinating on account of the subtlety of the un-
derlying mechanisms. These demand a modelling finesse
that goes beyond that required in the treatment of most other
turbulence problems: whereas in wall-bounded turbulence
the main quantity of interest is the time-averaged friction co-
efficient, which determines the drag of wings and head loss
in pipes, turbulent jet noise involves small-amplitude pres-
sure fluctuations far from the nozzle, resolved into frequen-
cies that must be considered over two-to-three decades on
account of the high sensitivity of the human ear. A broad
range of turbulent scales must therefore be considered, and,
specifically, in terms of the manner by which they couple
with the acoustic field.

A striking feature of the jet-noise problem is the scale
disparity that exists between hydrodynamic and acoustic re-
gions of the flow. Whereas the energetically dominant tur-
bulence structures are relatively small, scaling with the lo-
cal momentum thickness of the shear layer [1], the acous-
tic field comprises larger scales, that are, furthermore, more
organised. An azimuthal Fourier-series decomposition of
the acoustic field in laboratory experiments reveals that low-
angle radiation (measured with respect to the downstream jet
axis) is predominantly axisymmetric [2, 3, 4, 5], and recent
measurements show that this is also the case for full-scale
jet engines [6]. Large-eddy simulation data shows that while
radiation at higher frequencies does involve higher-order az-
imuthal modes [7], it nonetheless remains significantly more
organised than the turbulence from which it issues. This sit-
uation is beautifully illustrated in Figure 1, where the disor-
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ganised turbulence field, highlighted in colour, is observed
to drive a more coherent sound field, illustrated in grayscale,
and whose shallow-angle component can be seen to be pre-
dominantly axisymmetric.

The said scale disparity between the turbulence and
sound fields hides an underlying organisation in the turbulent
region of the flow. It is the energetic dominance of disparate
wavenumbers in each of the fields that leads to the contrast
that can be observed both in the simulation snapshot of Fig-
ure 1 and in measurements. But careful observation reveals
that the hydrodynamic region of the jet comprises an organ-
ised structure: there exist coherent, high-amplitude oscilla-
tions, saturated in black and white in Figure 1, and that have
the form of a wavepacket. This coherent-structure signature
has been observed and studied experimentally for over 50
years [9, 10, 11, 12, 13, 14]; a recent observation by Breakey
et al. [14] is shown in section 3 (Figure 6).

The underlying organisation is more clearly seen when a
given azimuthal wavenumber is isolated. Figure 2(a), which
shows the axisymmetric component of the pressure field
in the same simulation, highlights the wavelike behaviour
within the jet. Further simplification results if a single fre-
quency is isolated, and its associated dominant spatial struc-
ture educed; the latter can be obtained as the leading mode
of a spectral proper orthogonal decomposition (SPOD), as
will be detailed in section 2.4.2. One such leading SPOD
mode, for Strouhal number, St = 0.3, is shown in Figure
2(b). It takes the form of a wavepacket, with an associ-
ated beam of sound energy directed towards low polar an-
gles. The wavepacket was already apparent in the snapshot
of the axisymmetric pressure shown in Figure 2(a); but iso-
lating the leading SPOD mode at St = 0.3 leads to a cleaner
visualisation.

Numerous signal-processing techniques exist for the
distillation of flow structures associated with a given
frequency-wavenumber pair, and their implementation is fa-
cilitated by the availability of multi-probe sensor arrays [15,
16] or field measurements such as particle image velocime-
try [1, 17]. The availability of high-fidelity numerical sim-
ulation, which allows for the storage of full flow informa-
tion and quantities that can not be easily measured experi-
mentally, further potentiates these analysis tools [7]. It is of
course important to not lose sight of the fact in “isolating” a
given frequency-wavenumber component of the flow, com-
plex underlying mechanisms may remain hidden. As dis-
cussed in section 2, the non-linearity of the Navier-Stokes
system permits interactions between different frequencies
and wavenumbers. Fluctuations with low frequencies or az-
imuthal wavenumbers, with their characteristic wavepacket
shape, may therefore comprise dynamics that are coupled
to higher frequencies or wavenumbers; in this sense, coher-
ent large-scale structures do not have an autonomous evolu-
tion, and are affected, at least to some degree, by incoherent,
smaller-scale disturbances. Once this inherent coupling is
kept in mind, the decomposition of a turbulent flow into fre-
quencies, wavenumbers and SPOD modes can be seen as a
divide-and-conquer strategy, where clearer understanding of
the organised structures and their radiated sound is sought,

further work being necessary to study the relationship be-
tween these and other structures.

The wave-packet shapes revealed by leading SPOD
modes are reminiscent of early flow-visualisation studies of
coherent structures in jets [18, 19], where advecting turbu-
lent “puffs” were seen to undergo spatial amplification near
the nozzle, followed by downstream decay. This behaviour
resembles that of Kelvin-Helmholtz instability in free shear
layers, and indeed the first dynamic-modelling attempts in-
volving linear stability analysis [20, 21] were met with some
success. But the validity of linear theory applied to turbulent
flow, where linearisation is performed by taking the time-
averaged mean as base flow, was always a question of debate;
Crighton & Gaster [21] argued that “it is natural to attempt
an explanation in terms of the instability modes of the mean
velocity profile, on the basis that the turbulence establishes
an equivalent laminar flow profile as far as large-scale modes
are concerned”, but this is clearly a long way from a rigor-
ous demonstration. A twofold approach is therefore neces-
sary, involving a linear stability calculation and an a posteri-
ori check of the degree of agreement with reference data. A
recent detailed attempt has been carried out by Sasaki et al.
using high-fidelity simulation data [22].

The possibility of using linear stability theory to model
turbulence dynamics is clearly attractive. Due to the interest
in laminar-turbulent transition, a substantial body of knowl-
edge exists and has been compiled in monographs [23, 24]
and review articles [25, 26, 27]. Linearisation of the flow
equations simplifies most of the numerical work, and, per-
haps more importantly, leads to a clearer understanding of
relevant flow mechanisms, which become analogous to phe-
nomena seen in transition: the growth of structures near the
nozzle can, for instance, be associated with the equivalent
Kelvin-Helmholtz instability observed in transitional flows.
A further interesting possibility is the application of linear
control theory [28,29,30,31] to the jet noise problem. How-
ever, the said need for an a posteriori validity check of linear
models remains a drawback.

The recent emergence of resolvent analysis in the study
of turbulent flows has provided a more solid link between
linear models and coherent structures. Following early stud-
ies of transitional flows, where the time-domain response of
the linearised Navier-Stokes system to stochastic forcing was
considered [32, 33], the frequency-domain counterpart, re-
ferred to as resolvent analysis, has gained attention recently,
initially for wall-bounded turbulence [34, 35] but more re-
cently for turbulent jets [36, 37, 38]. The underlying idea,
outlined in section 2.5, involves treatment of the non-linear
terms in the flow equations as an external forcing, to which
the most linearly amplified flow responses are sought. If
the non-linear terms can be approximated as spatially white
noise, SPOD modes become identical to the optimal flow re-
sponses [36,37]. This observation suggests a departure point
and guide for modelling based on the linearised equations,
where focus is on the highest amplification between forcing
and response [39]. It also indicates SPOD as the relevant
signal-processing method to extract structures for compari-
son with the results of stability analysis. A detailed com-



Fig. 1: Illustration of a Mach 0.9 jet and its sound radiation. Colours show temperature fluctuations, highlighting turbulent
disturbances, whereas black and white is used for pressure fluctuations, which far from the jet correspond to the acoustic
radiation. The right plot shows a cross section of turbulent and acoustic fields taken at x/D = 20. Figure taken from the
large-eddy simulation of Brès et al. [7], using the compressible solver “Charles” [8].

Fig. 2: Wavepackets from the same Mach 0.9 jet simulation
shown in figure 1: (a) sample snapshot of the axisymmetric
part of the pressure field; (b) pressure from the first SPOD
mode at Strouhal 0.3.

parison for turbulent jets has been presented by Schmidt et
al. [38].

The present review deals with linear modelling frame-
works for turbulent-jet wavepacket dynamics and sound ra-
diation. It is a natural follow-on to the recent review article
by Jordan & Colonius [40], in so far as we present resol-
vent analysis (not considered in that review) as a unifying
framework, suitable for the consideration of sound radiation
by kinematic wave-packet sound-source models (where an
empirically motivated wavepacket form is postulated and its
sound radiation properties evaluated) on one hand, and, on

the other, for the modelling of wavepacket dynamics. In
the interest of illustrating the key aspects of the modelling
frameworks, we restrict our attention to simplified kinematic
and dynamic models. The linearised Navier-Stokes system
is thus replaced by the linearised Ginzburg-Landau equation.
Despite the simplicity of the models, they are found to quali-
tatively reproduce many of the features of the more complex
flows that we are ultimately interested in (and it is this that
motivates their consideration). This facilitates a discussion
of real flow physics and how these are revealed by the resol-
vent framework.

The material is organised as follows. In Section 2 we
review acoustic and dynamic modelling problems, cast as in
terms of forcings and responses that are connected by lin-
ear operators, and we discuss the rationale of applying such
methods for the study of turbulent flows; we do this in both
harmonic and stochastic frameworks. In Section 3 we ex-
plore kinematic wave-packet sound-source models, with an
emphasis on the key mechanisms underpinning acoustic ef-
ficiency. In Section 4 emphasis is on wave-packet dynamics,
modelled via stability and resolvent analyses of the linear
Ginzburg-Landau equation. Finally, in Section 5 we couple
the analyses of Sections 3 and 4, showing how the non-linear
forcing terms can be connected to the radiated acoustic field.

As mentioned above, we have chosen to work with sim-
plified models, in the spirit of numerous previous studies
concerned with transition and turbulence [41, 42, 43], and
supplementary material is provided in the form of scripts for
Matlab/Octave that allow the main results of the paper to
be reproduced, facilitating a thorough understanding of the
underlying concepts and models. Our goal is twofold. On
one hand, the simplicity of the models is such that the ma-



terial may serve as a useful starting point for readers new to
the field; extension of the methods to real jets is a tedious
but straightforward task. On the other, the capacity of the
simple models to provide (a sometimes remarkable) qualita-
tive reproduction of what is observed in Navier-Stokes flow
physics, suggests that they, or suitably enhanced variants, be
seriously considered as a means by which to probe the mys-
teries of the jet-noise problem.

2 Fundamentals of linear models applied to the jet-
noise problem

2.1 Lighthill’s acoustic analogy
Lighthill’s acoustic analogy [44] is based on a rewriting

of the continuity and Navier-Stokes system for a compress-
ible flow such that they take the form of an inhomogeneous
wave equation,

∂2ρ
∂t2 − c2

0∆ρ =
∂2Ti j

∂xi∂x j
, (1)

where Ti j = ρuiu j+δi j(p−c2
0ρ)+τi j is Lighthill’s stress ten-

sor, ρ is the fluid density, ui are the velocity components in
a Cartesian system, t is time, xi are Cartesian coordinates, c0
is the speed of sound and τi j are viscous stresses; Einstein’s
summation is implied. In operator notation, this can be writ-
ten as,

Lwave[ρ(x, t)] = S(x, t). (2)

The basic idea behind the approach is to split the com-
pressible Navier-Stokes system into the linear wave (or
d’Alembert) operator Lwave, with well-known properties,
forced by the right-hand-side source terms S which are more
complex, involving products of flow fluctuations. The so-
lution of the system can be obtained by appealing to the
Green’s function, or impulse response, solution of,

Lwave[G(x, t,y,τ)] = δ(x−y, t− τ), (3)

which can then be used to solve equation 1 for an arbitrary
source distribution, S(x, t), in the absence of solid bound-
aries, via,

ρ(x, t) =
∫

S(y,τ)G(x, t,y,τ)dxdτ, (4)

with an integral over space and time.
Instead of working in the time domain, it is often use-

ful to write Lighthill’s analogy in the frequency domain. It
is straightforward to apply a Fourier transform in time, as
the operator is stable (i.e. an arbitray initial condition does
not lead to exponential fluctuation growth) and has constant

coefficients in time; in this case, time is said to be a homo-
geneous direction. Defining direct and inverse Fourier trans-
form of a function f (t), respectively, by,

f̂ (ω) =
∫ ∞

−∞
f (t)eiωtdt, (5)

and,

f (t) =
1

2π

∫ ∞

−∞
f̂ (ω)e−iωtdω, (6)

Fourier transform of eq. (2) leads to an inhomogeneous
Helmholtz equation, which can be written for pressure fluc-
tuations as,

LHelmholtz[p̂(x,ω)] = Ŝ(x,ω), (7)

with solution given by,

p̂(x,ω) =
∫

S(y,ω)G(x,y,ω)dx, (8)

where here the Green’s function is the impulse response
of the Helmholtz equation. Properties of this equation
have been thoroughly reviewed by Crighton [45], who pro-
vides expressions for the Green’s functions of the wave and
Helmholtz equations in one, two and three dimensions.

Solutions obtained using the Green’s function, such as
eqs. (4) and (8), can be thought of as inversions of the linear
differential operator L , which becomes an integral operator
upon inversion. This operator is referred to as the resolvent.
For instance, eq. (8) can be written in operator notation, as,

p = RHelmholtz[S], (9)

where we have dropped hats and dependent variables in the
interest of keeping the notation compact. The resolvent op-
erator, given by,

R [·] =
∫

[·]G(x,y,ω)dx, (10)

allows the problem to be cast in an input-output frame-
work. For a spatial integration approximated using quadra-
ture weights, W , the resolvent can be approximated as,

R = GW. (11)

With the integral operators above, the effect of a postulated
source distribution S (the input) on the radiated pressure p
(the output) can be studied. Lighthill [44] followed such an
approach by postulating inputs describing compact sources



— eddies with characteristic length much smaller than the
acoustic wavelength. By doing so he obtained approximate
trends for the velocity dependence of the radiated sound.

A more systematic approach for the study of input-
output relationships such as the above has become popular
recently. It is based on finding an input, with unit norm,
that maximises the output [25]. For Lighthill’s analogy this
amounts to finding a source distribution that would maximise
the radiated sound. This will be further explored in section
2.3.

2.2 Resolvent analysis
Lighthill’s idea can be elaborated in a more general con-

text, where one uses the linearised Navier-Stokes operator in-
stead of the d’Alembertian. This can be used to study sound
generation and refraction in a shear flow [46] or to explore
the dynamics of turbulence in a simpler context, aided by a
linear operator [32, 34, 47]. In what follows we consider the
latter approach in the framework of incompressible flow2.

The Navier-Stokes system,

∂ui

∂t
+u j

∂ui

∂x j
=− ∂p

∂xi
+

1
Re

∇2ui, (12)

supplemented by the incompressibility constraint, ∂ui/∂xi =
0, can be Fourier transformed3, leading to,

− iωûi+U j
∂ûi

∂x j
+ û j

∂Ui

∂x j
+

∂ p̂
∂xi
− 1

Re
∇2ûi =−

[
û j ∗

∂ûi

∂x j

]

ω6=0
.

(13)
The Fourier transform of the non-linear convective term in
the time-domain equation (12) leads to a convolution (de-
noted by ∗), which in eq. (13) is split into two parts. Terms
involving the ω = 0 component, which is the mean flow,
U , are written on the left-hand side, and the remaining part
of the convolution is retained on the right-hand side inside
square brackets. The full convolution can be written as,

[
û j ∗

∂ûi

∂x j
(ω)
]
=

∫ ∞

−∞
û j(ω−ω0)

∂ûi

∂x j
(ω0)d,ω, (14)

where we recognise that the integral involves products of
quantities taken at frequencies, ωa = (ω−ω0) and ωb = ω0
whose sum is the “target” frequency ω (the usual triads in
non-linear interactions). We thus see that a given frequency
component depends on others due to the non-linear term.

2This choice is motivated by the more compact system for incom-
pressible flow; however, a similar approach can be taken for compressible
jets [48, 49, 50, 38, 51].

3Besides taking a Fourier transform from time to frequency, whenever
a spatial direction is periodic and homogeneous it is appropriate to take a
further Fourier series. The usual example is the azimuth for jets and pipes,
which can be transformed into azimuthal modes as a function of circumfer-
ential wavenumber m. The present analysis can be extended to other direc-
tions in a straightforward manner, keeping in mind that convolutions should
then be taken in all Fourier-transformed variables.

The underlying idea is the same as Lighthill’s: the left-
hand side is the simpler linearised Navier-Stokes operator,
and the right-hand side involves products of flow fluctua-
tions. In operator notation, this can be written as,

LN-S[q] = f, (15)

where q is a vector comprising velocity and pressure, and the
right-hand side, with all its complexity, has been lumped into
a forcing term, f. The solution can be written schematically
as,

q = RN-S[f], (16)

where RN-S is the resolvent operator, synonymous with the
Green’s function of the linearised Navier-Stokes system. The
solution of the frequency-domain problem is straightforward
if the base flow, U , is globally stable: a periodic forcing,
f(ω), leads to a periodic response, q(ω). Of course one can-
not claim that the Navier-Stokes system has been solved as
such, as the convolution has been replaced by a somewhat
artificial forcing term. However, writing the problem in this
form is useful, as it allows study of the input-output rela-
tionship between the non-linear terms and associated flow
responses.

If the base-flow about which linearisation is performed
is homogeneous in one or more spatial directions, the lin-
earised operator, L , has constant coefficients in these direc-
tions, which can be Fourier transformed. Eq. 16 then relates
a frequency-wavenumber pair in the forcing to the same pair
in the response. The Helmholtz equation is homogeneous in
all spatial directions, and thus a complete analysis can be per-
formed in frequency-wavenumber space; eq. (16) becomes a
scalar equation whose solution is straightforward. Fourier
modes thus become the natural basis in which to express
inputs and outputs. This approach is reviewed in detail by
Crighton [45].

Finding an analytical Green’s function for the linearised
Navier-Stokes operator is not straightforward. Frequency
domain Green’s functions can be derived for parallel base
flows via the signalling problem, outlined by [52], and which
can be extended to slowly-diverging flows using the WKB
method [53, 54]. However, for a more general base flow,
finding the resolvent operator numerically seems the more
suitable approach. Eq. (15) can be discretised as Lq = f,
where L is the matrix representation of the discretised oper-
ator, including the boundary conditions of the problem. The
discretised resolvent operator is then simply, R = L−1.

An important point to note is that restrictions can be im-
posed on the forcing terms, as certain quantities, or regions
of space, in the output may be of more interest than others.
To see how this fits the resolvent framework above, it is use-
ful to recast eq. (16) in state-space form, similar to what is



done in control theory,

∂q
∂t

= Aq+Bf,

y = Cq, (17)

where A is the linearised Navier-Stokes operator (without the
time derivatives of state variables), the operator B imposes
restrictions or weights on possible forcings, and the operator
C selects a relevant output, y. For instance, B can restrict
the forcing to be zero in regions where non-linear terms are
expected to vanish, and C can select a flow quantity and/or a
region of interest, such as the pressure in the acoustic field,
which can be obtained as a relevant output if A is the com-
pressible Navier-Stokes operator.

Writing eq. (17) in the frequency domain, considering
that A is stable, leads to a transfer function between y and f,

y(ω) =
[
C(−iωI−A)−1 B

]
f(ω), (18)

and the resolvent, including B and C operators, can be writ-
ten as R̃ = CRB, where R = (−iωI−A)−1 is the full-
forcing/full-state resolvent (with B = C = I). In what fol-
lows we will most often refer to R, but inclusion of arbitrary
restrictions to inputs and outputs is straightforward, the re-
solvent operator being simply replaced by R̃.

2.3 Harmonic forcing and singular-value decomposi-
tion

We now consider problems cast in the form of eqs. (9) or
(16), the former relating sound radiation to turbulent fluctu-
ations, the latter relating turbulent fluctuations to non-linear
forcing terms. In particular, we evaluate the flow response
to a given time-periodic forcing; we study thus the harmonic
response of the flow, similar to early experiments where jet
turbulence was studied by imposing an external periodic ex-
citation [18, 19, 55].

When discretised, the resolvent operator becomes a ma-
trix, and the input-output formulation can be written as,

q = Rf. (19)

To systematically obtain a relationship between inputs and
outputs, it is useful to consider the singular-value decompo-
sition (SVD) of R, given by,

R = USVH , (20)

where the superscript H indicates the Hermitian transpose of
a matrix. SVD decomposes R into two unitary matrices, U
and V, i.e.,

UHU = VHV = I, (21)

meaning that each matrix has columns forming an orthonor-
mal basis in terms of the standard Euclidean inner product,
〈f,g〉 = gH f4. For reasons that will soon become apparent,
we refer to U and V as output and input bases, respectively.
The matrix S is diagonal, with real, positive values,

S =




σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn


 , (22)

such that σ1 ≥ σ2 ≥ σ3 ≥ ·· · ≥ σn.
From the above, we obtain,

q = USVH f =⇒ UHq = SVH f, (23)

which indicates that the projection of the response, q, onto
each vector of basis U is equal to the projection of the forc-
ing, f, onto each vector of basis V times the correspond-
ing gain, σ. For instance, if the forcing is given by f = v1,
where v1 is the first vector of basis V , the flow response
is, q = σ1u1, i.e. σ1 times the first vector of basis U . The
pair v1,u1 thus comprise the optimal forcing and the most
amplified response, respectively. The gain, σ1, is the ratio
between the norms of response and forcing in this case, and
is therefore the maximum amplification for a given input, f.
It is thus possible to characterise the harmonic input-output
problem by building a hierarchy of orthogonal forcing func-
tions, ordered from the optimal (v1) to the suboptimal forc-
ings (v2,v3, . . .), and a corresponding hierarchy of orthogo-
nal flow responses. Bearing in mind that this comes from
an analysis of the problem with time-periodic forcing, it be-
comes clear that the response of a flow to an arbitrary har-
monic excitation is dominated by the optimal response u1 if
σ1� σn, n≥ 2.

2.4 Response to stochastic forcing
2.4.1 Frequency-domain statistics

The above analysis is meaningful for evaluation of flow
responses when some external forcing, periodic in time, is
imposed. In a general turbulent flow, fluctuations are station-
ary random functions, which can be meaningfully charac-
terised either via single-point statistics such as the mean, the
variance or the autocorrelation function; or in terms of two-
point statistics, via the cross-correlation function. In the fre-
quency domain, the most complete description of two-point
statistics is provided by the cross-spectral density function,

4In the continuous case, one often has an inner product of functions
given by, 〈f,g〉 = ∫

g∗(x) f (x)dx. The discretised form of the integral leads
to, 〈f,g〉 = gH Wf, where W is a diagonal matrix of quadrature weights
that approximates the integral in the inner product. Resolvent analysis and
proper orthogonal decomposition are modified to account for the quadrature
weights. Appropriate equations can be found in [50, 37], for instance. In
what follows we will neglect such quadrature weights to simplify notation;
however, the sample scripts used in the examples of this paper make use of
the weight matrix.



which is the Fourier transform of the cross-correlation func-
tion [56], but can also be defined as the expected value,

Pqq = E(qqH), (24)

where q here denotes a Fourier transform taken for a given
realisation, and E is the expected-value operator, which
amounts to an average of several realisations. Once q is dis-
cretised, Pqq becomes a cross-spectral-density matrix, which
is Hermitian; its main diagonal contains the real, positive
power spectral densities (PSDs) of flow quantities at given
spatial locations. Moreover, the cross-spectral density, Pqq,
for a given quantity at points y1 and z1, can be decomposed
as,

Pqq(y1,z1) =
√

Pqq(y1,y1)
√

Pqq(z1,z1)eiφ12 γ(y1,z1), (25)

i.e. the product of square roots of PSDs at positions y1 and
z1, an exponential of the averaged phase difference, φ12, and
the coherence function, γ, defined as,

γ2(y1,z1) =
|Pqq(y1,z1)|2

Pqq(y1,y1)Pqq(z1,z1)
. (26)

We see that the coherence function is a normalised absolute
value of the CSD, taking values between 0 and 1. Perfectly
periodic oscillations have unit coherence, and thus γ is a met-
ric for the loss of synchronicity between a pair of positions.
In a turbulent flow, when y1 and z1 are sufficiently far from
one another the coherence decays to zero, and one has per-
fectly incoherent oscillations at the two distant points. Such a
description is appropriate when flow statistics are considered
in the frequency domain. Given the use of expected values,
one should think of amplitudes and phases as quantities that
are averaged over realisations, and the amount of variance,
or randomness, between realisations is measured by the co-
herence function.

Finally, for later use, we can define white noise in space
for a given frequency, ω, as the CSD given by,

Pqq(y1,z1) =

{
1 if y1 = z1,
0 otherwise. (27)

Such a CSD implies a constant PSD, equal to 1, everywhere,
and perfectly incoherent fluctuations for any non-coincident
positions. This CSD, once discretised, becomes the identity
matrix I.

2.4.2 Spectral proper orthogonal decomposition
(SPOD)

The cross-spectral density can be decomposed in a use-
ful manner by taking its eigenvalue decomposition, which
is referred to as spectral proper orthogonal decomposition

(SPOD). Its time-domain variant is termed simply POD, and
has been extensively applied in fluid mechanics; see for in-
stance Berkooz et al. [57], or the recent reviews by Row-
ley & Dawson [58], Taira et al. [59]. For our purposes, the
frequency-domain counterpart, SPOD, is preferred, as dis-
cussed above, due to its relationship to resolvent analysis,
which will be explored later. It can be obtained by solving
the integral eigenvalue problem [60],

∫
V

Pqq(x,x′,ω)qSPOD(x′,ω)dx′ = λqSPOD(x,ω), (28)

where integration is performed over a region of space, V ,
a volume in the most general case. The eigenfunction,
qSPOD(x,ω), is an SPOD mode and λ its eigenvalue. The
discretised form of the above equation is,

PqqWqSPOD = λqSPOD. (29)

In the simpler case of uniform integration weigths, W = ∆xI
can be absorbed as a constant multiplying the cross-spectral
matrix Pqq

5, and the problem is then simply written as the
diagonalisation of the Hermitian CSD,

Pqq = QSPODΛQH
SPOD, (30)

where QSPOD is a unitary matrix — an orthonormal basis of
SPOD modes contained in the columns of the matrix, such
that QH

SPODQSPOD = I — and Λ is a diagonal matrix of real,
positive eigenvalues, λi, such that λ1 ≥ λ2 ≥ λ3 ≥ . . .. The
SPOD modes provide an orthonormal basis that is optimal
for representation of the overall power spectra: the first mode
represents an integrated PSD equal to λ1, and so on [57, 60,
37].

2.4.3 Stochastic forcing and resolvent analysis
The response of a flow to stochastic forcing, Pf f =

E( f f H), can also be obtained using the resolvent operator,
via,

Pqq = E(qqH) = E(R f f HRH) = RPf f RH , (31)

which relates the CSD of the flow response, Pqq, to the CSD
of the forcing, Pf f . Singular-value decomposition of the re-

5Even for non-uniform weigths, eq. (29) leads to orthogonal eigen-
functions and real, positive eigenvalues. To see this, eq. (29) can
be rewritten, by pre-multiplication by the Cholesky decomposed weigths
W 1/2, as W 1/2PqqW 1/2W 1/2QSPOD = W 1/2QSPODΛ; considering P̃qq =

W 1/2PqqW 1/2 (a Hermitian matrix) and Q̃SPOD =W 1/2QSPOD, we have the
modified eigenvalue problem P̃qqQ̃SPOD = Q̃SPODΛ, which is the eigenvalue
decomposition of the Hermitian matrix Q̃SPOD. Once the problem is solved
numerically, the SPOD modes are recovered as QSPOD = W−1/2Q̃SPOD,
and satisfy orthonormality with respect to the weighted inner product,
QH

SPODWQSPOD = I. Non-uniform weights appear for a non-uniform grid,
or, for jet problems, due to the appearance of the radius inside the volume
integral, as discussed by Jung et al. [15].



solvent operator gives,

Pqq =USV HPf fV SUH , (32)

where we note that the CSD of the flow response can be writ-
ten as a function of the response modes from resolvent anal-
ysis, once a given forcing CSD has been projected onto the
forcing modes via the term V HPf fV .

An interesting simplification is obtained by considering
spatially white forcing, such that Pf f = I. One then obtains,

Pqq =US2UH , (33)

which, on comparison with eq. (30), reveals and identity
between the SPOD modes and the response modes from re-
solvent analysis, with SPOD eigenvalues equal to the square
of the resolvent gains [36, 37].

A last remark can be made regarding systems in which
the optimal forcing-response pair dominates, i.e. when σ1
is much larger than the suboptimal resolvent gains. In that
case, an arbitrary forcing CSD, Pf f , with non-zero projec-
tion onto the optimal forcing, v1, leads to a response CSD,
Pqq, dominated by the most amplified response, u1. A highly
amplified flow response is thus likely to appear in the flow
statistics regardless of specific forcing statistics.

2.5 Overview of input-output analysis
In the foregoing we have developed the basic tools re-

quired for a simplified analysis of turbulent-jet dynamics and
sound radiation. Inputs (source terms in an acoustic anal-
ogy, non-linear interaction terms in the Navier-Stokes sys-
tem, both treated as external forcings) lead to a flow response
(sound radiation, flow fluctuations) via the resolvent opera-
tor. The properties of the resolvent operator thus determine
the selection of relevant inputs for a given problem, those
that lead to significantly amplified responses.

One should bear in mind that the input terms are them-
selves non-linear functions of the output variables. This is
shown schematically in figure 3 for the linearised Navier-
Stokes system. Inputs are constructed by applying the non-
linear operator N , for given frequency, ω, and azimuthal
wavenumber, m, to the flow fluctuations, q′. This leads to
flow responses q̃ through the resolvent operator R = L−1.
Such flow responses combine in the non-linear convective
term, which thus recycles responses as forcing terms. The re-
solvent operator is based on a linearisation around the mean
flow, q̄, which can be obtained with the Reynolds-averaged
(ω = 0, m = 0) Navier-Stokes, or RANS, equations. Alter-
natively, the mean flow can be separately obtained from an
experiment or high-fidelity simulation.

Solution of the system requires a simultaneous solution
for all frequencies and wavenumbers, in a procedure that
would not be simpler than direct numerical or large-eddy
simulation. However, the analysis of a single row of the
system — i.e. a given frequency-wavenumber pair — pro-
vides relevant information, especially if the resolvent oper-
ator has a gain separation, with σ1 � σ2,3,.... Such a gain

����

L−1
q̄,ω1,m1

Nq̄,ω1,m1(q
′) q̃ω1,m1

��
�

��
�

L−1
q̄,ωN ,mN

q̄

Nq̄,ωN ,mN
(q′) q̃ωN ,mN

�����
�����
����

���	

q′−(q′.∇)q′

Fig. 3: Schematic representation of resolvent analysis for a
turbulent jet. FT and IFT stand for the Fourier transform and
its inverse, respectively. Figure taken from Tissot et al. [50]
.

separation may occur when the system is forced with a given
(ω,m) pair close to an eigenvalue of the linearised operator,
for which L(q) = 0 has a non-trivial solution q 6= 0: if (ω,m)
are close to such an eigenvalue, L is close to singular, lead-
ing to high gains corresponding to the usual phenomenon of
resonance. This is more clearly observed in the system writ-
ten in state-space form (17), where the transfer function in
eq. (18) approaches infinity if the frequency ω is close to
an eigenvalue ω0 of the system, such that Aq0 =−iω0q0 for
some non-zero eigenfunction q0; in this case, the linear op-
erator L = (−iωI−A) becomes singular at ω→ ω0 (i.e. it
has a zero singular value, associated with the eigenfunction,
q0) and the leading gain of R = (−iωI−A)−1, which is the
inverse of the smallest singular value of L, goes to infinity.

If the linearised operator is non-normal, or not self-
adjoint, eigenfunctions are not orthogonal and significant
gains may be obtained even far from resonance. Detailed dis-
cussion of non-normality can be found in [32,61,25,29,27].
The linearised Navier-Stokes operator with a sheared base
flow has a marked non-normal behaviour at high Reynolds
numbers. This leads to the aforementioned high gains be-
tween forcing and response, with the optimal forcing leading
to an amplification significantly higher than that produced
by the suboptimals. As a consequence, a general stochastic
forcing tends to lead to a flow CSD dominated by the lead-
ing response mode, as discussed in section 2.4.3, and in this
case a turbulent flow would have a clear presence of coher-
ent structures, which can be thought of as the most likely
response to stochastic forcing that would arise in a turbulent
field, on account of its high relative gain, or amplification.
For jets, the most prominent structures are Kelvin-Helmholtz
wavepackets, which have been observed since early flow vi-
sualisation experiments [18, 19], and today can be charac-
terised in detail thanks to more advanced experimental diag-
nostics [16, 1, 17] or simulations [22, 38]; as we discuss in
section 4, such wavepacket structures can be obtained accu-
rately as the leading response mode of the resolvent operator.
For modelling purposes, to obtain such a dominant response
the specific details of the forcing statistics, Pf f , are not so rel-



evant, as discussed by Farrell & Ioannou [32,62] and Bened-
dine et al. [63]. However, if a detailed characterisation of the
response CSD is necessary, then an accurate model of Pf f is
also likely to be necessary.

As discussed in the Introduction and in section 2.2, non-
linear interactions are implicit in the forcing term, which
involves a convolution. For given (ω0,m0), the forcing
term will be formed by all pairs of frequencies (ωa and
ωb, say) and wavenumbers (ma and mb) whose sums satisfy
ωa +ωb = ω0 and ma +mb = m0, referred to as triads. Re-
solvent analysis, as we describe it here, does not elucidate
the relevant non-linear interactions associated with the dy-
namics of turbulent structures, since it lumps all interactions
into a single forcing term. Some work on jet noise, such as
Wu & Huerre [64] and Suponitsky et al. [65,66] have looked
more directly into the role of nonlinearity in jet dynamics
and sound radiation, by taking one or more triads and ex-
ploring how wavenumber-frequency pairs can lead to sound
radiation. This is a promising but challenging approach, as it
is crucial to restrict the ensemble of nonlinear interactions to
some manageable size; otherwise, the complexity and com-
putational cost may rise to those of a large-eddy simulation.
Another possibility is to probe the non-linear terms of a full
simulation, to evaluate how the forcing term in the resolvent
analysis is built from the bulk of interactions in the turbu-
lence. Some analysis of this kind has been performed by
Towne et al. [67].

In what follows we use the input-output characteristics
of acoustic (eq. 7) and hydrodynamic (eq. 15) systems to ex-
plore the responses that arise due to particular forcings. For
the acoustic problem, the simplicity of the linearised opera-
tor, whose Green’s function is available analytically, allows
an analysis of the sound radiation by a wavepacket source,
chosen to mimic the Kelvin-Helmholtz structures that are
observed in turbulent jets. The hydrodynamic problem is
comparatively more complex, but the non-normality of the
linearised operator simplifies the analysis, due to the dom-
inance of the leading forcing-response pair. These meth-
ods will be elaborated using simplified model problems, that
qualitatively represent the essential features of jet dynamics
and sound radiation, as discussed in the Introduction. We
start by studying the acoustic problem in section 3, followed
by analysis of the hydrodynamic system with a model prob-
lem in section 4.

3 Kinematic wavepacket models
As discussed in the Introduction, the first observations

of coherent structures in turbulent jets [68, 10, 18] were ac-
companied by the proposition that these might be important
for sound generation [69, 9, 11, 12], on one hand, and dy-
namically underpinned by the stability properties of the mean
flow [21], on the other. The former idea can be explored us-
ing acoustic-analogy-based (kinematic) wavepacket sound-
source models [9, 70, 71, 45, 72, 5, 73, 74]. These are fre-
quently considered in the form of a line distribution, the jus-
tification of which will be discussed. Using the line-source
model as a workhorse, we will focus on two aspects: (1) the

wavepacket features that underpin acoustic efficiency; and,
(2) the extent to which this simple model has been useful in
explaining/interpreting experimental observations.

Discussion of the first point requires that we consider
the notion of acoustic matching, first evoked by Ffowcs-
Williams [75], later by Crighton [45], and which has been
used to perform numerous analyses of numerical [76,77] and
experimental [17] data, or to interpret behaviour observed in
model problems [74, 78, 79]. Acoustic matching is a partic-
ular case of the more general filtering operation that under-
pins the action of the resolvent operator, discussed in sec-
tion 2.The central idea, details of which will be given later,
can be summarised as follows. The solution of the inhomo-
geneous wave equation, Eq. 4, connects the source field,
Ŝ(y,τ), to the sound field, p̂(x, t), via a convolution. It is
useful to see the convolution as a filtering of the source by
the Green’s function. The filtering extracts from the source
field those space and time scales that match (or drive) those
supported by the wave equation (propagating sound waves).
In the more general case of the inhomogeneous, linearised
Navier-Stokes system, the resolvent operator similarly filters
the non-zero-frequency, non-linear dynamics that match (or
drive) linear dynamics supported by the linearised Navier-
Stokes equations.

In what follows we elaborate the line-source wavepacket
modelling framework, from its single-point, time-periodic
form to its two-point, stochastic form, using simple examples
to illustrate the key ideas. On account of an intriguing and
important difference between subsonic and supersonic jets,
and with a view to elucidating the underlying mechanisms
and consequences for dynamic modelling, we systematically
compare wavepackets in jets of Mach number, M = 0.6 and
M = 2; the associated convective Mach number Mc, given by
the ratio of the phase speed of the wavepacket and the am-
bient speed of sound, is approximated here as 0.6M. This
gives, for the subsonic and supersonic cases, respectively,
Mc = 0.36 and Mc = 1.2.

3.1 The line-source model
The complete sound-source term of equation 1 is a nine-

component tensor involving the double divergence of veloc-
ity products. The difficulty of clarifying its link with the
sound field is nicely resumed by Mollo-Christensen: “An ex-
perimenter looking at Eq. (3) [cf. Fig 4] is not going to be
very happy. It tells him that the pressure time correlation
in the far field, which he can measure using a single micro-
phone and some electronic gadgetry, can also be found by
measuring quadruple space-time correlations of the velocity
fluctuations for all pairs of points~x and~y within the jet, and
then evaluating the sextuple integral [9].”

Simplification is necessary, and, in the spirit of another
of Mollo-Christensen’s comments, perhaps even a quasi-
moral obligation: “If you think you know some of the features
of a random function, for goodness sake put them in.” [9].
With that in mind, the following observations are of interest:

1. As mentioned in the foregoing discussion of figure 1, the
sound field of a turbulent jet is dominated by only three



Fig. 4: Mollo-Christensen’s handwritten solution of equation
1 for the farfield sound-pressure auto-correlation [9].

azimuthal Fourier modes, m = 0, ±1 & ±2, suggesting
that the same three azimuthal modes of the sound source
dominate the generation of sound [3, 80, 5].

2. A theoretical analysis by Michalke & Fuchs [11] in-
dicates why this is: higher-order azimuthal modes are
acoustically inefficient because of destructive azimuthal
interference.

3. Coherent structures in turbulent jets, illustrated in fig-
ure 2 , are observed to comprise convected, wave-
like disturbances whose amplitudes grow and then de-
cay over space scales considerably larger than the inte-
gral turbulence scales, but comparable with the wave-
length of sound at similar frequencies; this makes the
jet acoustically non-compact in the streamwise direc-
tion [68, 60, 16, 13, 81, 82, 1, 14].

4. In the radial direction, on the other hand, the jet is acous-
tically compact for the most energetic, low-frequency,
sound radiation [5].

5. For low-frequency radiation to low polar angles the ax-
isymmetric mode of the i j = 11 component of the lin-
earised Lighthill stress tensor dominates [83].

These are the pivotal arguments that motivate use of
the simplified model functions we explore in what follows,
which are intended to qualitatively replicate the dominant
sound-producing source features. Noting that the highest
levels of sound are radiated at low-frequency to low polar an-
gles, points 4 & 5 justify that the model function be restricted
to a line, while point 3 suggests a form for its streamwise
dependence. Point 5, furthermore, suggests that the model
be restricted to the streamwise component of the linearised
source term, which is proportional to the streamwise veloc-
ity fluctuation. The jet as a sound source can thus be mod-
elled as a line distribution of longitudinal, axially aligned
quadrupoles. However, extension of the following ideas for
a source on a cylindrical [84, 85] or conical surface [81] is
straightforward; the latter option is particularly attractive, as
it allows a representation of the near-field pressure, measured
in the irrotational vicinity of the jet.

Harmonic and stochastic variants are discussed in what
follows, using, as departure point, the form proposed origi-
nally by Crow [70]. While the primary goal of the discus-
sion will be to illustrate the main sound-generating features
of turbulent jets, the pertinence of the model will be demon-
strated, where appropriate, by comparison with experimental
observations.
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Fig. 5: Model time-periodic line sources

3.2 Time-periodic wavepackets (example1.m)
Based on the experimental observations of Mollo-

Christensen [68] and Crow & Champagne [18], Crow [70]
(see also [45] and [5]) proposed the line-source model,

Sxx(y) = exp(ikhy)exp
(−y2

L2

)
, (34)

with kh the hydrodynamic wavenumber, L the length scale
of the wavepacket amplitude envelope, and where an expo-
nential time dependence, exp(−iωt), is implicit. The source
is thus a time-periodic, harmonic perturbation, whose ampli-
tude grows and decays as it evolves in the positive x-direction
with phase-speed, c = ω/kh. The number of spatial oscilla-
tions that arise between the beginning of perturbation growth
and the end of its decay depends on the value of khL. When
this parameter is small the source is compact, as per figure
5(a); when it is large, on the other hand, the source is an
extended wavepacket, as per Figure 5(b). 6.

Early sound-source models, such as proposed by
Lighthill for instance, were based on an assumption of com-

6The figures were generated using the matlab script, example1.m, with
the source interval, y∈ [−5,5], discretised with N = 1001 equispaced points.
Subfigures (a) and (b) are produced by changing the value of kh appropri-
ately.



Fig. 6: Axisymmetric hydrodynamic pressure signature of a
turbulent jet [14]

pact sources. This was motivated by the 1950s view that tur-
bulence was comprised of disorganised eddies characterised
by the integral turbulence scales. Experimental observations
since, such as that presented in Figure 6 for instance, show
coherent structures in jets to be characterised by large values
of khL, which is consistent with the directivity of jet noise,
as we will see in the next section.

3.2.1 Compact and non-compact sources (example2.m)
The solution of Lighthill’s wave equation for the farfield

sound pressure fluctuation is, in the frequency domain, given
by,

p(x,ω) =
∫

S(y,ω)G(x,y,ω)dy , (35)

where G(x,y,ω), the Helmholtz-equation Green’s function
for an observer situated at x, regarding a line-source distri-
bution on y, takes the form [45],

G(x,y,ω) =
eik|x−y|

4π|x− y| , (36)

with k = ω/a the acoustic wavenumber and a the speed of
sound. The sound radiation by the model source is obtained
by substituting equations 34 and 36 into equation 35 and per-
forming the integration, which can be done analytically for
the far acoustic field in this case, whence the power spectral

density of the sound field is obtained,

〈p(x,ω)p∗(x,ω)〉 ≈ 1
16π|x− y|2 L2e−

1
2 k2

hL2(1−Mc cosθ)2
.

(37)
The sound fields radiated by the compact and extended-

wavepacket sources of figure 6, shown in figure 7, have
very different characteristics.7 Compact sound sources radi-
ate omnidirectionally, whereas extended wavepackets beam
sound energy to low polar angles due to interference between
the spatially distributed, convected oscillations.

As equation 37 shows, this beaming effect leads to an
exponential dependence of the radiated sound on the modi-
fied polar angle, Θ = (1−Mc cosθ)2. For jets with super-
sonic convective Mach number, the peak radiation occurs for
θ = cos−1(1/Mc), which is the Mach angle, associated with
Mach waves emitted by wavefronts moving downstream su-
personically; this is a feature of the acoustic field of super-
sonic jets [86,87], which has been modelled, for instance, by
Tam and coworkers [88, 89]. For subsonic convective Mach
numbers, the peak radiation is towards the downstream jet
angle, θ = 0, and there is exponential decay of sound radia-
tion with increasing polar angle, a behaviour first observed in
experiments by Laufer & Yen [90], and later given the term
superdirectivity by Crighton & Huerre [72]. The superdirec-
tivity of the extended wavepacket source is made clear by
plotting the sound pressure level as a function of Θ, as in
figure 8, where it is compared with measurements of the ax-
isymmetric part of the sound radiation of a turbulent jet of
Mach number, M = 0.6, issuing from a round nozzle whose
internal boundary layer was tripped and fully turbulent [5].
Sound radiation to low polar angles of this jet is indeed su-
perdirective, indicating that it is driven by an extended source
structure characterised by large values of khL. Such strong
directivity of the axisymmetric radiation of subsonic jets has
been verified in tests of actual jet engines by Faranosov et
al. [6]

3.2.2 Acoustic matching (example3.m)
As discussed earlier, not all sound-source activity drives

sound waves, and this complicates identification of the
acoustically relevant source parameters: a source field may
have high amplitude and yet be utterly silent. The notion
of acoustic matching, mentioned earlier and which we now
consider more closely, helps understand why this is so.

If the observer, at x, is far from the source (|x| � |y|),
such that the source can be considered a point, the following
farfield assumptions hold: |x−y| ≈ |x−ycosθ|, for the phase
component of the Green’s function that appears in the inte-
grand of equation 35, and |x−y| ≈ |x|, for the decay compo-
nent associated with the spherical spreading of sound waves.

7The source domain, y ∈ [−10,10], was discretised with 401 equispaced
points. The sound field was computed on a polar arc of radius, R = 20(Mc ∗
kh ∗ L)−1, at 10 degree intervals in the domain, θ ∈ [0,180]. The plots in
figure 7 can be generated using matlab script example2.m by modifying the
parameters M and khL accordingly.
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Fig. 7: Sound radiation by a time-periodic, harmonic line-
source.
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Fig. 8: Superdirectivity. Blue line: extended wavepacket
model; Black circles: sound pressure level of the axisym-
metric mode at St=0.2, from [5]

The Green’s function can then be approximated as,

G(x,y,ω)≈ 1
4π|x|e

ik|x−ycosθ|, (38)

(39)

which has equation 35 take the form,

p(x) =
eik|x|

4π|x|
∫

S(y)e−ikycosθdy. (40)

This can be recognised as a Fourier transform with modified
Fourier modes, e−ikycosθ: only source modes with non-zero
projection onto these can contribute to the farfield sound, i.e.,

|ky|= k cosθ, (41)

→ |ky|
k
≤ 1, (42)

→ |ky|
kh
≤Mc, (43)

where we have made use of the fact that hydrodynamic and
acoustic wavenumbers are related by the convective Mach
number, Mc = k/kh. Equation 43 is the acoustic-matching
criterion for a line source. It identifies those components of
the source field that are active in the generation of propa-
gating sound waves, and can thus be used to understand the
acoustic importance of source parameters. Eq. (42) shows
that only components with supersonic phase speeds in x are
acoustically matched.

The effects of M and khL on acoustic emission are shown
in figure 9(a). Increasing the Mach number (red to green)
clearly enhances the radiated sound levels, as might have
been intuitively expected. The effect of khL is more sub-
tle, and quite different depending on whether the convec-
tive Mach number is subsonic or supersonic. In the former
case (red), sound radiation is enhanced if the value of khL is
decreased (dash-dot to solid), whereas in the latter case the
strongest sound levels remain largely unchanged.

These behaviours can be understood by considering the
source structure in wavenumber space, as shown in figure
9(c) (the associated signature in physical space is shown in
figure 9(b) for comparison)8, where the acoustic-matching
criterion of equation 43 is indicated by the vertical lines
(red for M = 0.6, green for M = 2): only source wavenum-
bers to the left of these (the radiation regime) are acousti-
cally matched. It can be seen how for convectively sub-
sonic wavepackets only a small fraction of the fluctuation en-
ergy is acoustically matched, and how decreasing khL, which
narrows (respectively spreads) the source structure in physi-
cal (respectively wavenumber) space, considerably increases
the energy content in the radiation regime. In the case of
convectively supersonic wavepackets, on the other hand, the
peak of the wavenumber spectrum already lies in the radia-
tion regime, and so the spreading of the spectrum that occurs
when khL is decreased does not have so dramatic an effect.
The situation of the wavenumber peak in the radiation regime
means that the most energetic wavelength of the wavepacket
is acoustically matched: it has the same wavelength as the
sound field it radiates, something that is visible in numerical
simulations, as for example in figure 10 (from [91]). Con-
versely, the sound field radiated by convectively subsonic jets
has wavelength larger than those of their wavepackets, as is
also visible in figure 10.

Note that, as discussed in section 2, the integral solution
of Lighthill’s equation, Eq. 35, once discretised, comprises

8The figures were generated using matlab script example3.m, for a
source domain, y ∈ [−10,10], discretised with 401 equispaced points.
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Fig. 9: Acoustic matching

a resolvent, or input-ouput model. The filtering operation of
the integral in Eq. 35 is then embodied in the action of the
resolvent matrix on the sound-source vector 9.

9As discussed in section 2, for the specific case of the line-source model,
singular-value decomposition of Rwave is problematic, because the natural
forcing modes are Fourier modes in y, which are difficult to obtain on ac-
count of the inevitable numerical truncation of the source domain. Further-
more, the remedy for this problem, which would involve very long source
domains, is incompatible with the requirement that observers be placed in
the far field. In the more general case, where streamwise and radial direc-
tions are inhomogeneous, SVD of the resolvent operator of eq. (20) allows

Fig. 10: Axisymmetric wavepackets, at St = 0.2, educed
from LES data. Top: M = 0.9 (courtesy of O. Kaplan); bot-
tom: M = 1.5 (from [91]).

3.3 Stochastic wavepackets
The harmonic, time-periodic wavepacket model consid-

ered in the previous section, while it serves to illustrate some
important features of wavepacket sound radiation, is prob-
lematic if we wish to consider the more realistic stochastic
source fluctuations characteristic of turbulent jets. In that
case, as the fluctuations are described by a stationary random
function, the Fourier transform that would provide S(y,ω),

S(y,ω) =
∫ ∞

−∞
S(y, t)exp(iωt)dt, (44)

is ill-defined, as S(y, t) is not square integrable. In order then
to consider additional, acoustically relevant, effects associ-
ated with source stochasticity, it is necessary to work in terms
of PSD and CSD (see section 2.4.1):

〈p̂(x,ω)p̂∗(x,ω)〉=∫
y

∫
z
〈S(y,ω)S∗(z,ω)〉 G(y,z,ω)G∗(y,z,ω)dydz, (45)

where 〈〉 denotes ensemble average. The equation shows
how the PSD of the sound field is underpinned by the CSD of
the source. The double integral that connects the two again
involves a filtering of the CSD by the Green’s function: the
notion of acoustic matching is again central, and it is this
that clarifies the acoustic importance of the source parame-
ters, where in this case source stochasticity is accounted for
in a statistical manner. Using the resolvent operator and the
definitions of section 2.4, eq. (45) can be compactly rewrit-
ten, in matrix form, as Ppp = RPSSRH , where Ppp and PSS
are CSDs of pressure and source, respectively.

the sound-radiation problem to be explored in input-output form, which con-
stitutes a useful means by which to explore, on one hand, the details of
acoustic matching, and, on the other, the possibility of low-rank models.



3.3.1 Jitter (example4.m)
The following line-source CSD model has been pro-

posed by Cavalieri & Agarwal [74],

〈S(y,ω)S∗(z,ω)〉= eikh(y−z)e

(
− y2

L2− z2

L2

)

×e

(
− (y−z)2

L2c

)

, (46)

where y and z are positions on the same line, kh and L are,
as before, respectively, the hydrodynamic wavenumber and
the wavepacket amplitude-envelope length scale, and a new
parameter, Lc, accounts for stochastic effects. The term
exp(−(y−z)2

L2
c

) models loss of coherence between wavepacket
source fluctuations separated by distance |y− z|, this being
due to a desynchronisation of fluctuations that must occur
on account of the stochastic nature of the motion of turbu-
lent jets. The effect, which in the time domain is manifest in
a spatiotemporal modulation of wavepacket amplitudes (cf.
Figure 6(c)), has been termed jitter by Cavalieri et al. [73],
who demonstrated the central role it plays in determining the
acoustic efficiency of wavepackets.

The effect of Lc on the line-source CSD is shown in fig-
ure 1110. Note that the diagonal of the CSD matrix (line
from (−3,3) to (3,3)) represents the PSD of the source,
while the off-diagonal terms reflect the level of synchroni-
sation between separated points. For Lc� L (Fig 11(a)) the
source is highly decorrelated: stochastic effects are such that
the wavepacket becomes almost entirely desynchronised as
it evolves between adjacent points. This is a behaviour char-
acteristic of the kind of stochastic, uncorrelated eddies of
which turbulence was thought to be entirely comprised in the
1950s [92]. In the other extreme, Lc � L, the wavepacket
remains highly synchronised as it evolves in space; its be-
haviour in this case tends towards that of the time-periodic
wavepacket considered earlier, which is perfectly synchro-
nised over its entire extent. The intermediate case, which is
closer to what is observed in a real flow, involves a partial
desynchronisation of the spatially evolving wavepacket fluc-
tuations: the wavepacket remains largely intact, but jitters.

3.3.2 Acoustic effects (example5.m)
The acoustic implications of the stochastic effects con-

sidered above can be explored by substituting eq. (46) into
eq. (45) and solving for the farfield PSD, which can again be
done analytically, to give [74],

〈p(x,ω)p∗(x,ω)〉 ≈ 1
16πx2 LmLe−

1
2 k2

hL2
m(1−Mc cosθ)2

, (47)

where a modified, effective length, Lm, is given by,

L2
m =

L2L2
c

2L2 +L2
c
. (48)

10The figures were generated using matlab script example4.m, with both
dimensions of the two-point source domain, y1 ∈ [−6,6], z1 ∈ [−6,6] dis-
cretised with N = 1201 points.

(a) Lc = L/10

(b) Lc = L

(c) Lc = 10L

Fig. 11: CSD (real part) of model wavepacket sources, with
khL = 5.

The directivity shape is now characterised by khLm. The im-
plications are shown in figure 12 for convectively subsonic
and supersonic Mach numbers.11 The following observa-
tions can be made. In both subsonic and supersonic cases, the
Lc� L limit, synonymous with the stochastic-eddy view of

11The figures can be generated using matlab script example5.m, which
performs the acoustic computation numerically, using the free-space
Green’s function. The source domain, y1 = z1 ∈ [−10,10], was discretised
with N=401 points and the sound field computed on a polar arc of radius,
R = 20(Mc ∗ kh ∗L)−1, at 10 degree intervals in the domain, θ ∈ [0,180].
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Fig. 12: Sound radiation by stochastic model sources

turbulence, leads to omni-directional sound radiation, since
the modified length, Lm → 0 in this case. The effect of
near-perfect spatial coherence, Lc � L, leads to sound ra-
diation such as that produced by the harmonic, time-periodic
wavepacket model, as Lm → L. In the intermediate range,
Lc ∼ L, which is representative of what is observed in real
turbulent jets [14, 17], subsonic and supersonic cases differ.
In the former case, superdirective radiation is again observed
(albeit less marked than in the time-periodic model), but with
SPL levels boosted by almost 30dB (three orders of magni-
tude). It is here that we see the crucial role played by the jitter
of subsonically convecting wavepackets: jitter leads to a spa-
tial desynchronisation of flow activity, whence a reduction
of cancellation between different regions of the line source,
and, consequently, higher sound levels. When the convective
Mach number is supersonic, on the other hand, the effect is
dramatically different. Jitter has almost no impact on the
highest SPL, radiated to low polar angles; its effect is, rather,
to boost levels at high emission angles (θ > 60◦).

3.3.3 Acoustic matching (example6.m)
This curious behaviour can again be understood by ap-

pealing to the notion of acoustic matching. As before, the
assumption of farfield radiation allows the PSD of the radi-

ated sound to be written,

〈p̂(x,ω)p̂∗(x,ω)〉=
1

16π2R2

∫
y

∫
z
〈S(y,ω)S∗(z,ω)〉e−iyk cosθ eizk cosθdydz, (49)

which we recognise on this occasion as the double Fourier
transform of the source CSD and which shows that only CSD
wavenumbers satisfying |ky| = |kz| = k cosθ contribute to
the farfield PSD. These are the acoustically matched source
wavenumbers, those that drive, or can couple with, propagat-
ing sound waves. To obtain sound radiation at some direction
θ, these wavenumbers satisfy the inequalities,

|ky|
kh
≤Mc, (50)

|kz|
kh
≤Mc. (51)

With this in mind, it is useful to perform a double
Fourier wavenumber transform of the source CSD, two ex-
amples of which are shown in figure 13, for Lc = 10L and
Lc = L12. The squares correspond to the radiation criteria of
Eqs. 50 & 51: the red and green squares correspond, respec-
tively, to subsonic and supersonic cases. Only source CSD
wavenumbers lying within the radiation squares are acous-
tically matched and this allows us to better understand the
farfield sound features observed in figure 12. For large values
of Lc, which correspond to near-time-periodic wavepacket
dynamics, the CSD energy lies almost entirely outside the
subsonic radiation square, meaning that most of the source
activity is uncoupled from the acoustic farfield; the source
mostly generates evanescent, nearfield pressure fluctuations.
In the case of supersonic convective Mach number, on the
other hand, a significant portion of the source CSD lies
within the radiation square, explaining the higher acoustic
efficiency of the near-time-periodic, supersonically convect-
ing wavepackets.

As the value of Lc is reduced to more realistic values,
Lc = L, the source CSD gets stretched such that it pene-
trates into the subsonic radiation square, thereby providing
a larger range of acoustically matched wavenumbers. This
explains the large difference in radiation levels observed in
figure 12(a). A lesser effect is manifest with respect to the
supersonic radiation square, as much of the source CSD is
already acoustically matched when Lc� L.

This difference has important implications for jet-noise
modelling. It suggests that time-periodic wavepacket so-
lutions of the homogeneous linearised Navier-Stokes equa-
tions are sufficient to describe the dominant sound-source
activity in supersonic jets provided the initial amplitude is
correctly determined—and this is indeed what is observed,
in [91] for instance. Whereas in subsonic jets the stochastic

12The figures can be generated using matlab script example6.m, which
plots the analytical expression for the twice-Fourier-transformed source, as
calculated by [74].



(a) Lc = 10L

(b) Lc = L

Fig. 13: Source CSD in frequency wavenumber space.
Colour scale is logarithmic. Wavenumbers inside the in-
ner red square satisfy |ky|, |kz|/kh ≤ Mc for a subsonic jet
(M = 0.6,Mc = 0.36); wavenumbers inside the outer green
square satisfy the same conditions for a supersonic jet (M =
2,Mc = 1.2)

jitter of wavepackets is an essential ingredient that must be
incorporated in a jet-noise model. In a dynamic linear mod-
elling framework, this can be done by means of a volume-
distributed forcing that corresponds to non-linear turbulence
and/or wavepacket interactions.

We thus have the following, rather odd-sounding, cor-
rollary: the dominant features of supersonic jet-noise may be
captured using the Navier-Stokes equations linearised about
the time-averaged mean, without requiring what has tradi-
tionally been referred to as a source term. All that is required
is an initial amplitude, that can be imposed via an upstream
boundary condition; convectively subsonic jets, on the other
hand, clearly require volume forcing.

Similar to the harmonic, time-periodic case, we note
again that the integral solution for the farfield PSD, equa-
tion 45, once discretised, takes a resolvent, or input-ouput
form. And again an equivalence exists between the filter-

ing operation by which the Green’s function couples acous-
tically matched stochastic source activity with the acoustic
farfield (eq. 45), and the discretised version, which involves
a projection of the discretised source CSD into the orthogo-
nal space of input (or forcing) modes, that then connect with
the orthogonal space of output (or response) modes via the
SVD. The acoustically relevant source activity will thus be
contained in the matrix,13

E = ΣVHPssVΣ. (52)

3.3.4 Spectral Proper Orthogonal Decomposition (ex-
ample7.m, example8.m)

We now further evaluate the statistics of the stochastic
source by taking spectral POD of the CSD in eq 46, using
the approach described in section 2.4.2. Figure 14(a) shows
eigenspectra for a line-source CSD with M = 0.6 & khL = 5
for three values of the coherence length scale, Lc = L/10,
L & 10L. Figure 14(b) shows the amount of source energy
captured as a function of the number of modes retained. The
stochastic-eddy source model (Lc = L/10), due to its lack
of organisation, requires a large number of POD modes for
a faithful representation (in terms of source fluctuation en-
ergy). The near-perfectly coherent wavepacket model (Lc =
10L), on the other hand, can be almost entirely captured with
a single POD mode. The intermediate case, which is closer
to what is observed in experimental data [14, 17], shows that
rank reduction is possible with a small number of modes.
The first four modes for this case are shown in figures 15 and
1614.

The first POD mode (cf. Figs 15(a) and 16(a)) is what
might be referred to as the average wavepacket. The higher-
order modes, which involve progressively larger numbers of
streamwise oscillations and phase jumps of π (this being due
to the orthogonality of the POD basis), reflect the variance of
the average source behaviour captured by the first mode. Fig-
ure 17 shows how similar behaviour is observed in turbulent
jets.

But how much, and what quality, of this variance is re-
quired for a given precision in terms of wavepacket jitter and
radiated sound? Reconstruction using limited numbers of
POD modes provides insight. Figures 18 and 20 show low-
rank reconstructions of, respectively, the two-point coher-
ence and the radiated sound15. The single-mode reconstruc-
tion has unit coherence (Fig. 18(a)), like the time-periodic

13As mentioned in discussing the single-point source, the streamwise-
homogeneity of the model source we have considered makes use of this
matrix problematic. But in the more general case of inhomogeneous stream-
wise and radial directions, this matrix is the key to identifying acoustically
important source features and modelling them with a reduced-rank system
that may be obtained, for instance, by only retaining the forcing modes that
truly contribute to the farfield PSD.

14Figures 14, 15,16 and 18 can be generated using matlab script exam-
ple7.m, which performs an eigendecomposition of the source CSD defined
on y1 = z1 ∈ [−10,10] discretised with N = 400 points.

15The figures can be generated using matlab script example8.m, which,
following eigendecomposition of the source CSD, computes the sound ra-
diation from low-rank CSD matrices obtained by n−mode POD reconstruc-
tions.
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Fig. 14: SPOD eigenvalues for line-source CSD, Sss.
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Fig. 15: Source POD modes
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Fig. 16: Phase of POD modes
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Fig. 17: Comparison of four most energetic modelled (solid
lines) and measured (dashed lines) SPOD mode shapes. The
first mode is shown on the bottom, and subsequent modes
are plotted with the upper curves. SPOD modes taken from
the measurements of Jaunet et al. [17], radially integrated to
obtain an equivalent stochastic line source.

model considered earlier, and captures, as a consequence,
only a small fraction of the radiated sound for the subsonic
case (Fig. 20(a)). With three modes (Fig. 18(c)), the coher-
ence in the region where the wavepacket has significant am-
plitude (−2< y/L< 2) is similar to that of the complete CSD
(Fig. 18(d)), and the dominant sound radiation (Fig. 20(a)),
to low polar angles is, as a consequence, almost perfectly
captured; we can say that most of wave-packet jitter has been
captured by superposition of the three leading SPOD modes.
Such reconstruction of source coherence is similar to what
is obtained using experimental data: figure 19 shows similar
reduced-rank reconstructions based on pressure fluctuations
measured in the nearfield of a subsonic turbulent jet [14].



(a) Mode 1 (b) Modes 1–2

(c) Modes 1–3 (d) All modes (full CSD)

Fig. 18: Two-point coherence of reconstructions of the
model source CSD
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Fig. 19: Two-point coherence of reconstructions of measured
nearfield pressure CSD, from Breakey et al. [14]. White rep-
resents zero and black shows unit coherence.

The supersonic case is again different, for reasons already
evoked: the results of figure 20(b) show that a single POD
mode, with its unit coherence, is sufficient to describe the
dominant sound radiation.

These results, obtained using a simplified model source,
highlight something that has been observed in the analysis of
subsonic jet noise: while SPOD provides an optimal modal
decomposition of the turbulent kinetic energy, the leading
SPOD modes often have a marginal contribution to the radi-
ated sound, and superposition of a larger number of modes is
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Fig. 20: Sound radiation by stochastic model sources, de-
composed into POD modes. Results for khL = 5 and Lc = L.

required to obtain sound radiation close to what is observed
in the acoustic field. This has been observed by Freund &
Colonius [93] using POD (without going to the frequency
domain), and, more recently, by Towne et al. [94] with SPOD
taken for a Mach 0.9 jet.

4 Dynamics of wavepackets
While the kinematic model presented in section 3 is in-

tended to represent idealised wavepacket shapes in jets, dy-
namically, these wavepackets arise from the instability of jet
flows. These unstable dynamics may be characterised using
linear analysis. Accepting the usefulness of the line source
hypothesis for the conceptual investigation of jet acoustics,
we now employ a one-dimensional dynamical law for the
modelling of near-field fluctuations.

The Ginzburg–Landau equation provides a classical
model problem for instability-driven flow dynamics. In its
linear form, it is written as

∂tq+U∂xq− γ∂xxq−µq = 0. (53)

The complex-valued function q(x, t), defined over x ∈
(−∞,∞) and t ∈ [0,∞), is considered to represent flow fluc-
tuations; its real part can be identified with any observable
fluctuation quantity, as for example Lighthill source terms.
The first three terms in (53) represent one-dimensional con-
vection and diffusion, whereas the last term allows the sta-



bility characteristics to be controlled according to our needs.
Assuming for the moment that all parameters are constant in
x, one can insert normal-mode solutions, q(x, t) = q̂eikx−iωt ,
into (53). The dispersion relation is then readily obtained as,

ω = kU− iγk2 + iµ. (54)

Instability, characterised by ωi > 0 for k ∈ R, can only be
achieved if (i) U is complex, (ii) the diffusion coefficient γr
is negative, or (iii) µr is positive. The first two choices are
difficult to justify as an analogy for the Navier–Stokes equa-
tions; it is therefore convenient to choose U ∈ R, γr > 0 and
µ ∈R. The dispersion relation (54) shows that such a system
is stable for µ < 0 and unstable for µ > 0.

The group velocity of oscillations is found from (54) to
be,

∂ω
∂k

=U−2iγk. (55)

Dispersion, characterised by a dependence of the real part of
the group velocity on the wavenumber, is therefore governed
by the imaginary part of γ; for γ ∈ R, the linear Ginzburg–
Landau equation is non-dispersive. In what follows, we fix
U = 1 and γ = (1− i)/10.

The absolute frequency/wavenumber pair, which
evolves at zero group velocity, is found from (54,55) to be
given by,

ω0 = i
(

µ−U2

4γ

)
, k0 =−

iU
2γ

. (56)

4.1 Modal stability properties of the Ginzburg–Landau
system

The Ginzburg–Landau equation must be calibrated, via
the tuning parameter, µ, for our purpose to use it as a model
problem for wavepacket dynamics in a jet. This is done by
prescribing a streamwise variation for µ, such that the prin-
cipal stability properties of a typical jet are qualitatively re-
produced. We start with a local analysis of these properties,
in order to motivate the choice of µ(x), and then describe the
global stability behaviour in terms of temporal eigenmodes.
In a local analysis, it is assumed that propagating waves at
any given station x evolve according to the dispersion rela-
tion (54), with the local parameter values, as if these were
constant in an infinite domain. In the context of flow prob-
lems, this is known as the locally parallel flow assumption.
A global analysis of the Ginzburg–Landau equation fully ac-
counts for the effects of streamwise parameter variations on
the evolution of waves.

4.1.1 Local stability and the choice of µ(x) (example9.m)
The linear Ginzburg–Landau equation has often been

used as a model for the study of instability in spatially de-
veloping shear flows [95, 29]. The spatial variation of local

stability characteristics of a given flow, in particular the max-
imum temporal growth rate, ωmax

i , over all values of k at a
streamwise station, x, can be reproduced in the Ginzburg–
Landau model by a prescribed variation, µ(x). Two partic-
ular variations have been widely used in the literature: a
parabolic function, µ(x) =−ax2 +b, with a > 0 and defined
over x ∈ (−∞,∞), yields a system that is locally stable to
both sides far from the origin, and, depending on the param-
eter b, may present a locally unstable region around x = 0. A
linearly decaying variation, µ(x) = −ax+ b, with (a,b) > 0
and defined over the interval, x ∈ [0,∞), defines a system
that is locally unstable at the boundary, x = 0, but in which
the maximum growth rate decays linearly in x, such that local
stability is reached at a distance, xs = b/a.

A parabolic variation of µ(x) therefore provides a model
for a flow problem characterised by a pocket of (poten-
tially absolute) local instability embedded in a stable envi-
ronment [95], as for instance a bluff-body wake. Recently,
such models have been used by Bagheri et al. [29] and Towne
et al. [37] for illustrations of instability dynamics. In the
present paper, we seek a Ginzburg–Landau system that mim-
ics the dynamics of jets; a linearly decaying variation of µ(x)
is appropriate in this case. Within the potential core, for as
long as the shear-layer thickness, θ, is small compared to the
nozzle diameter, the local maximum growth rate, ωmax

i , is
proportional to the inverse of θ [96]. Since θ grows linearly
in x in a turbulent jet [97], ωmax

i decays monotonously in the
downstream direction.

In what follows, we prescribe

µ(x) = A(1− x/10), A > 0, (57)

such that the system is locally unstable for x< 10, and locally
stable for x > 10. With the choice, U = 1 and γ = (1− i)/10,
absolute instability at the upstream boundary arises when A
is greater than 1.25; with lower values of A, the system is
only convectively unstable over the interval, 0 ≤ x < 10. In
jets, absolute instability only occurs in the presence of signif-
icant density differences [98]. The local analysis examples in
this section are limited to values, A≤ 1.25.

For three values, A = 0.6, 1 and 1.25, the spatial vari-
ation of the growth rate, −ki, is traced in Figure 21a as a
function of x, for a constant frequency value, ω = 1. Figures
21b,c show the corresponding real parts of the wavenum-
ber k, and of the phase velocity c = ω/k. Real and imag-
inary parts are denoted by subscripts r and i from here
on. Two branches, k+ and k−, are obtained for each pa-
rameter setting: the k+ branch (shown in red) describes
downstream-propagating waves, while the k− branch (shown
in blue) describes upstream-propagating waves emanating
from a source placed inside the domain (see Huerre [95] for
the definition of k+ and k− branches based on the impulse re-
sponse of the system). It is seen in figure 21a that higher val-
ues of A lead to higher growth rates of the k+ branch near the
upstream boundary16, and overall stronger streamwise vari-
ations of all curves. While the influence of A on the real part

16With the normal mode convention exp(ikx− iωt), one has a spatial de-
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Fig. 21: Local spatial instability branches of the Ginzburg–
Landau equation, for ω = 1. Solid lines: A = 0.6; dashed
lines: A = 1; dotted lines: A = 1.25.

of the wavenumber seems to be modest, the phase velocity
of the k+ branch is quite strongly affected.

The spatial growth rate, −ki of the k+ branch decays
monotonously in x at all values of ω and A≤ 1.25, and in the
case, ω = 1 and A = 0.6 this decay is approximately linear.
Based on this local analysis of spatial amplitude growth, a
first-order estimate for the amplitude envelope of an instabil-
ity wave, developing in response to harmonic forcing at the
upstream boundary, would predict a Gaussian shape, with
its maximum at the location where k+i = 0, and with an en-
velope length that depends on the rate of streamwise decay
of k+i . This is precisely the type of harmonic source term

pendence of exp(ikrx− iωt)exp(−kix). Negative ki indicates thus spatial
growth for increasing x, and thus a spatial instability for the k+ branch. On
the other hand, the k− branch is an upstream-travelling wave, and thus its
spatial growth rate, in the direction of propagation, would be ki. This mode
thus decays in the direction of propagation for the parameters chosen here.

distributions discussed in section 3.2.

4.1.2 Global instability eigenmodes of the Ginzburg–
Landau system

Global eigenvalues, ωn, and associated eigenfunctions,
qn(x), are defined as solutions of the eigenvalue problem,

ωnqn(x) =−i [U∂x− γ∂xx−µ(x)]qn(x), (58)
qn(0) = 0, (59)

derived from the Ginzburg–Landau equation (53) with the
ansatz, q(x, t) = qn(x)e−iωnt . For the particular case of a
linearly decaying parameter, µ(x) = A(1− x/10), the eigen-
value solutions on the semi-infinite domain, x ∈ [0,∞) are
known analytically [99] to be given by,

ωn = i

{
A−U2

4γ
+ γ

1
3

(
A
10

) 2
3

ζn

}
, (60)

where ζn denotes the countable set of roots of the Airy func-
tion. The largest growth rate among this set of eigenvalues
is found for ω1, generated with ζ1 ≈ −2.338; its variation
with A is shown in figure 22a. Global instability arises for
A > 1.6, and the spectrum for this critical value is displayed
in figure 22b: red symbols mark the exact values according
to (60), whereas black circles represent a numerical approxi-
mate solution of the eigenvalue problem (58), computed with
the routine, example10.m.

The interval x ∈ [0,20] is discretised with N = 200
points, given by the roots of the Chebyshev polynomial of
order 200; the Chebyshev collocation method that is used for
the discrete representation of derivatives in x yields spectral-
like accuracy [100]. As the infinite domain of the original
problem (58) needs to be truncated for the numerical rep-
resentation, Dirichlet boundary conditions, qn(x) = 0, are
imposed at both boundaries, x = 0 and 20. It is found that
the seven eigenvalues with highest temporal growth rates,
which dominate the long-time dynamics, are accurately re-
covered in the numerical solution. Subsequent eigenvalues
differ between the continuous and the discrete systems; this
is due to spurious upstream feedback, generated by the artifi-
cial downstream boundary condition. The same effect is ob-
served in global eigenmode calculations of jet flows in trun-
cated domains [101].

The numerically computed eigenfunction, q1(x), corre-
sponding to the marginally stable eigenvalue, ω1 for A = 1.6,
is displayed in figure 22c. Its real and imaginary parts rep-
resent snapshots of the wavepacket, ℜ[q1 exp(−iω1t)], at
two instances separated by a temporal phase difference, π/2.
The amplitude envelope, |q1(x)|, approximately of Gaussian
shape, has zero group velocity, i.e. it remains at its location
at all times. In this particular case of marginal stability, its
magnitude is also constant in time. The model flow fluctu-
ation, q, forms waves that travel downstream, with positive
phase velocity, under this envelope function.
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Linear global instability is typically associated with the
onset of nonlinear limit-cycle oscillations [52], as for in-
stance the von Kármán vortex street in a cylinder wake [102].
In this case, any initial condition, without further excitation,
would give rise to a global instability that saturates due to
non-linear effects; this is referred to as a self-excited oscilla-
tion, or as oscillator behaviour [52]. In jets, such behaviour
is only observed in the laminar regime, when the density
of the jet fluid is significantly lower than the ambient den-
sity [103, 104]. Weakly stable eigenmodes of a different na-
ture may occur in turbulent jet mean flows [105], without
however leading to limit-cycle behaviour. Globally unstable
settings of the Ginzburg–Landau model (A > 1.6) are there-
fore excluded from this paper, and global stability of a linear
system is a strict requirement for the following analysis of
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Fig. 23: Resolvent gain values of the Ginzburg–Landau sys-
tem for ω = 1: (•) A = 1, (◦) A = 0.6.

its response to sustained forcing, where we examine the case
of an amplifier flow: even though there is global stability,
external forcing may be significantly amplified.

4.2 Global response of the Ginzburg–Landau system to
harmonic forcing

A harmonic forcing term, f (x, t) = f̂ (x)e−iωt , is now
added to the right-hand side of the Ginzburg–Landau equa-
tion (53), in analogy to the separation of nonlinear terms in
the Navier–Stokes system, discussed in section 2.2. In the
frequency domain, with the definition of a Fourier transform
and its inverse given by eqs. (5) and (6), the input-output
relation between the forcing, f̂ (x), and the associated linear
response, q̂(x), in the asymptotic limit, t→ ∞, has the form,

q̂(x) = (−iω+U∂x− γ∂xx−µ)−1 f̂ (x), (61)

with boundary conditions, q̂(0) = q̂(20) = 0, at both ends of
the domain, x∈ [0,20]. After spatial discretisation, and with-
out imposing any restrictions on the forcing support and the
output selection (B = C = I in the state-space form of eqs.
17 and 18), the matrix-vector form (19) of the Ginzburg–
Landau input-output system is recovered. The singular value
decomposition (20) of the resolvent matrix, R, is easily con-
structed17.

The gain values, σi, corresponding to A = 1 and a fre-
quency, ω = 1, arranged in descending order as explained in
Section 2.3, are plotted in Figure 23 as red symbols. A strong
separation, by more than two orders of magnitude, between
the first and all subsequent σi is observed in this case. For
comparison, A = 0.6 leads to a gain separation by only a fac-
tor, σ1/σ2 ≈ 10 (black symbols).

Forcing and associated response structures of the first
four singular modes, obtained for A = 1, are shown in figure
24. The optimal forcing (mode 1) is concentrated near the
upstream boundary: forcing in this region optimally exploits
the spatial instability of the k+ mode, as given in figure 21b
(red dashed line). Very near the boundary, the Dirichlet con-
dition, q̂(0) = 0, is felt via the effect of diffusion, such that
forcing is not efficient. The optimal response wavepacket has

17This computation is carried out in example11.m. The same discreti-
sation as in example10.m is used. Note that the Chebyshev point distribu-
tion leads to non-uniform weights, which are accounted for according to
the equations provided in [50, 38, 51]. Weights were obtained considering
Clenshaw-Curtis quadrature [106].



a nearly Gaussian bell shape, with its maximum at x = 8.55;
this compares well with the station, x = 8.73 where the lo-
cal k+ mode becomes stable for ω = 1. In particular, the
optimal response mode in figure 24b should be compared
to the kinematic model wavepackets in figure 5. The dy-
namic model provided by the Ginzburg–Landau system, with
a linear variation of µ(x) on a half-infinite domain, is indeed
fully consistent with the kinematic model discussed in sec-
tion 3.2, which has been demonstrated to represent a number
of trends seen in jet experiments. Note also that the optimal
response of the Ginzburg–Landau equation has the features
of the leading SPOD mode of a turbulent jet shown in figure
2(b), with amplification, saturation and decay of a coherent
wave.

The second response mode, shown in figure 24d, must
be orthogonal to the first by construction. The most efficient
way to achieve this is to create a structure consisting of two
symmetric lobes, one of which is in phase opposition with
the first response wavepacket. Incidentally, the forcing that
is required for such a response structure (figure 24c) is very
similar in shape to the first response mode. The same pat-
tern is repeated in subsequent resolvent modes: forcing and
response structures feature an increasing number of lobes
in phase opposition, the forcing of one mode mirroring the
shape of the previous response. Note that only the optimal
mode fully thrives on the k+ instability dynamics for achiev-
ing strong energy gain; once this mechanism is exploited,
all suboptimal modes only involve an alternating generation
and cancellation of the k+ wave, with gain values of order
unity. The very same shapes of suboptimal orthogonal flow
response structures have been shown to arise as spectral POD
modes in the kinematic model discussion of section 3.3 (see
figure 15).

While the optimal resolvent mode of the Ginzburg–
Landau model is largely analogous to that found in jet flows,
which also present a single unstable local k+ branch that pro-
vides the most potent mechanism for energy gain [39,38,51],
important differences between the two arise from the fact that
the Ginzburg–Landau system only permits one k+ solution.
Jet flows, due to their transverse spatial dimensions, possess
an infinite number of stable non-orthogonal k+ local eigen-
modes, which can combine to create transient spatial growth
via the Orr mechanism [107]. This mechanism provides an
alternative means of generating energy gain, and may in cer-
tain cases dominate the suboptimal resolvent modes in jets
[38, 51]. The one-dimensional Ginzburg–Landau model is
not capable of reproducing such dynamics.

4.3 Global response of the Ginzburg–Landau system to
stochastic forcing

In analogy to the kinematic description of stochastically
jittering wavepackets in section 3.3, we now consider the re-
sponse of the Ginzburg–Landau system to stochastic forcing
input. The Gaussian factor in eq. (34), which carries over
to the kinematic CSD model (46), is produced by the re-
solvent of the dynamic model in a deterministic way. The
stochasticity that is contained in the coherence decay term in

eq. (46), however, must be inherited from stochastic forcing
in the Ginzburg–Landau model. We prescribe the CSD of
stochastic forcing input in non-discrete form as,

〈 f (x1,ω) f ∗(x2,ω)〉= eikh(x1−x2)e

(
− (x1−x2)

2

L2c

)

, (62)

and obtain the matrix Pff by evaluating that forcing CSD
at discrete x-positions. The corresponding response CSD is
then found directly from the relation (31) via the resolvent
operator in eq. (61). Fixing kh = 1, and varying the coherence
variance between Lc = 0.1 (weak spatial coherence) and 10
(strong spatial coherence), three cases are presented in figure
25. Values ω = 1 and A = 0.6 are used in these examples.18

It appears from the plots in figure 25 that the coherence
of the forcing has little effect on the response statistics; only
slight differences can be spotted at the tails of the response
CSD. A finer analysis of the differences between high- and
low-coherence forcing is based on an inspection of the first
four SPOD modes, found as the leading eigenvectors of the
response CSD. Only the two extreme cases, Lc = 0.1 and 10,
are represented in figure 26.19 Black dotted lines in the plots
of the Lc = 0.1 results indicate the amplitude envelope of
the corresponding resolvent response modes for A = 0.6. It
is seen that the stochastic response to weakly coherent forc-
ing, indeed very close to the assumption of ‘spatially white
noise’, reproduces with high accuracy the resolvent response
modes obtained for harmonic forcing, as predicted in sec-
tion 2.4.3. Strongly coherent forcing, in contrast, only re-
produces the optimal resolvent response mode; subsequent
SPOD modes differ significantly from the resolvent subopti-
mals. This is due to the dominance of the leading response.
Since the gain of the first mode, σ1, is ten times larger than
those of the higher modes, it tends to dominate the response
CSD even if the forcing is not white, as discussed in section
2.5.

Several studies have shown that jets do exhibit a strong
separation between the optimal gain value and suboptimal
ones, in a band of Strouhal numbers around St ≈ 0.4 (the
“preferred mode”) [39, 63, 49, 36, 37, 38, 51]. A comparison
between an experimentally measured leading SPOD mode
and the optimal resolvent mode, at St = 0.4 in a turbulent jet
at Ma = 0.4 and Re = 460000, is given in figure 27. While
the optimal resolvent mode, computed on the experimental
mean flow, very well reproduces the first SPOD mode, no
good matching is obtained for suboptimal structures [51].
The above discussion of figure 26 suggests that high coher-
ence in the Reynolds stress fluctuations may explain this ob-
servation.

We see that the response of the Ginzburg–Landau equa-
tion to stochastic forcing leads to a jittering wave-packet,
with features similar to those of the kinematic model de-
scribed in section 3.3.1. In the next section, we couple

18These results can be obtained using example12.m with the above choice
of parameters.

19 These results were obtained with the script example13.m. A numerical
interval x ∈ [0,30] is chosen for the calculations, in order to fully resolve the
SPOD structures at least in the low-coherence case.
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Fig. 24: The first four resolvent modes of the forced Ginzburg–Landau system, for ω = 1 and A = 1. Legend: ( ) real part,
( ) imaginary part, ( ) modulus.
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Fig. 25: Forcing and response CSDs (real part) of the stochastically forced Ginzburg–Landau system, for parameters A= 0.6,
ω = 1, kh = 1 and Lc as indicated.
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Fig. 27: First SPOD mode (measured) and first resolvent mode (computed) in a turbulent jet at St = 0.4, Ma = 0.4 and
Re = 460000. Results show the real part of axial velocity fluctuations. Made with data from [51].

the Ginzburg–Landau and wave equations, building another
model problem that allows us to explore how dynamic fea-
tures studied in this section couple with the acoustic field.

5 Extending dynamic models to the acoustic field

5.1 Model problem

We here combine the model problems of sections 3 and
4 in order to have a simplified view of the coupling between
wavepacket dynamics and sound radiation. The basic idea is



to consider the wave equation forced by a line source, q(x, t),

∆p− 1
c2

0

∂2 p
∂t2 = q(x, t), (63)

which, in turn, comes from a forced Ginzburg-Landau equa-
tion,

∂tq+U∂xq− γ∂xxq−µq = f . (64)

This coupled problem is akin to hybrid methods in aeroa-
coustics, where a flow solution is obtained, sometimes as-
suming incompressible flow, and subsequently used to build
Lighthill’s stress tensor, which in turn can be used to obtain
the radiated sound field. Such methods have been reviewed
by Colonius & Lele [108] and Wang et al. [109]. However,
since a compressible Navier-Stokes computation leads di-
rectly to the radiated sound, a resolvent analysis using the
compressible linearised operator directly relates non-linear
terms to the radiated sound once an observation operator, C,
is chosen to take the radiated sound as the output, as dis-
cussed in section 2.2. Garnaud et al. [48] and Jeun et al. [49]
use this approach for the analysis of sound radiation of sub-
sonic and supersonic jets. We here use the coupled problem
for its simplicity, with two equations whose inputs are dis-
tributed over a line. This leads, nonetheless, to results con-
sistent with the many trends observed in jet dynamics and
sound radiation.

Each problem can be separately solved using the resol-
vent formalism, such that,

p = RHelmholtz[q], (65)

and

q = RG-L[ f ]. (66)

In matrix form, p and f can be directly related as,

p = RHelmholtzRG-L f , (67)

and we thus define Rcoupled = RHelmholtzRG-L as the resol-
vent operator of the coupled problem, going from forcing
terms in the Ginzburg-Landau equation to an acoustic field.
A singular-value decomposition of Rcoupled shows optimal
forcing for generation of an acoustic radiation measured in
p.

5.2 Acoustic radiation due to a stochastic forcing term
(example14.m)

The methods elaborated in section 2 can be applied to
the coupled resolvent operator defined above. As an exam-
ple, we use the Ginzburg–Landau system with the same pa-
rameters used in section 4.3 A = 0.6, kh = 1, ω = 1, and with
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Fig. 28: Acoustic radiation of the coupled Ginzburg-
Landau/acoustic problem. The thick black line shows the
full sound radiation considering the model forcing Pf f from
eq. (62). Lower lines show sound radiation with increas-
ing number of SPOD modes of q considered in the acoustic
problem (from 1 to 8 SPOD modes).

a short coherence length scale, Lc = 0.1. Our attention will
be restricted to the subsonic case, M = 0.6, due the higher
relevance of jitter for subsonic jet-noise.20

With the above considerations, the radiated sound field
is shown in figure 28 as a thick black line, indicating the
SPL corresponding to the radiated power spectral density.
Given the Gaussian wavepacket shape of q, resulting from
the forced Ginzburg–Landau equation discussed in section
4, the calculated sound field has a directivity shape similar to
what was given by the model sources in section 3.

The contributions of individual SPOD modes in the
source wavepacket, q, to the radiated sound can now be eval-
uated. Partial reconstructions of Pqq, using a limited number
of leading SPOD modes, can be used to obtain the acoustic
field; these results are shown in figure 28 as thin coloured
lines. We notice that there is a slow convergence to the full
radiated sound, indicating that wavepacket jitter is relevant.
The first SPOD mode of q leads to an underprediction of
peak radiation of about 17dB, and a superposition of 5 SPOD
modes of q is necessary to obtain a sound field close to that
produce by the full source for low polar angles.

5.3 Resolvent modes of the coupled problem
Instead of using an SPOD of the “flow” variable,

q, which serves as a source term in the inhomogeneous
Helmholtz equation, one may take the SVD of the coupled
resolvent operator, Rcoupled, to obtain the optimal relation-
ship between forcing terms, f and the response in the ra-
diated sound; the forcing CSD, Pf f , may then be projected
onto the forcing modes to reconstruct the acoustic field. Such
a reconstruction is shown in figure 2921. When compared to
the acoustic radiation of SPOD modes of q shown in figure

20Results were obtained using the script example14.m. The acoustic field
is discretised from 0 to 180◦ in steps of 10◦, with observers placed at R =

200/k, where k is the acoustic wavenumber.
21Figure also generated with script example14.m. Note that weight ma-

trices need to be included in resolvent analysis, as in section 4.
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Fig. 29: Reconstruction of the radiated sound from a forc-
ing CSD Pf f using resolvent modes of Rcoupled. The thick
black line shows the full PSD of pressure, and remaining
lines show reconstruction with 1, 2 or 3 resolvent modes.

28, the convergence to the full radiation in figure 29 is much
faster: a single mode already gives an accurate low-angle ra-
diation, and three modes recover virtually all of the radiated
sound.

The resolvent modes of Rcoupled, shown in figure 30,
highlight a different mechanism when acoustic radiation is
taken as the relevant flow response. The first forcing mode
of the coupled problem has a slight peak near the inflow
at x = 0, but also includes distributed forcing through the
domain, with a large wavelength, and thus a large phase
speed. This leads to supersonic components in the flow
mode, which has a basic wavepacket shape similar to the
standard Ginzburg-Landau responses (compare with figure
24), but with changes in the amplitude envelope. The super-
sonic forcing function leads to supersonic components in the
flow response, increasing the acoustic matching and leading
to the beamed radiation seen in the acoustic response mode
1 of figure 29. This effect is even more pronounced for the
second mode: here, the forcing has nearly constant real and
imaginary parts, which is indicative of a near-infinite phase
speed in x. This also leads to changes in the basic wavepacket
shape of flow mode 2, which now has components with high
phase speed that match the acoustic dispersion relation, lead-
ing to significant sound radiation. The infinite phase speed
appearing in the flow mode due to the forcing matches the
phase speed of acoustic waves radiated in the sideline direc-
tion, θ = 90◦, and this is observed in the acoustic response
mode 2.

These results, taken from a model problem, are similar
to what Jeun et al. [49] found in their resolvent analysis of a
Mach 0.9 jet, using the acoustic radiation as the output. The
first two forcing and response modes for St=0.56, taken from
that work, are shown in figure 31. We note that, unlike resol-
vent analysis that considers flow fluctuations as the output (as
done by Schmidt et al. [38] and Lesshafft et al. [51]), which
lead to optimal forcing modes near the nozzle exit or inside
the pipe, the forcing modes seen in figure 31 are spatially
extended. For St = 0.56 and M = 0.9, the acoustic wave-
length is equal to 2 jet diameters, or 4 radii; the wavelengths

in figure 31 are of about 6 jet radii, and we thus have forc-
ings with supersonic speeds, similar to what we observed for
the forcing modes in the coupled Ginzburg-Landau/acoustic
problem shown in figure 30. The optimal response shows
superdirective radiation towards the downstream direction,
while the first suboptimal has a double-beam structure.

A final remark concerns supersonic jets. As would
be expected from the discussion in section 3, a supersonic
wavepacket has Mach-wave radiation, and the standard am-
plification mechanism of the Ginzburg-Landau equation, ex-
plored in section 4, leads to a wavepacket with supersonic
phase speed radiating directly to the acoustic field, with a
comparably minor role of jitter. Upstream forcing near x = 0
is thus efficient for the generation of acoustic radiation if
the Mach number is supersonic, and the resolvent modes
of the coupled problem (with Rcoupled) are very similar to
the standard Ginzburg-Landau response modes; they are not
shown here, but can be easily obtained using the provided
scripts. The dominance of the leading resolvent mode in
the Ginzburg-Landau system, associated with the convective
amplification, translates thus directly to the acoustic field
when the coupled problem is considered. This is shown
in figure 32. Subsonic Mach numbers have relatively flat
leading gains, with no clear dominance of the optimal forc-
ing/response pair; we have illustrated the mechanisms in fig-
ure 30. However, when the Mach number is increased to the
supersonic range, the first gain becomes significantly higher
than the suboptimals, and the first mode is related to Mach-
wave radiation. Figure 32 is quite similar to the correspond-
ing result for jets in Jeun et al. [49], reproduced in fig. 32(b).

6 Conclusion and outlook
We have considered coherent structures in turbulent jets,

with respect both to their dynamic underpinnings and the
mechanisms by which they generate sound. Both are dis-
cussed in a framework provided by the resolvent of the lin-
earised Navier-Stokes equations, this being found to pro-
vide a unifying fabric that connects aeroacoustic and linear-
stability theories. This is discussed in section 2, where the
problems are considered in input-output form, the input be-
ing either an acoustic-analogy source term or the non-linear
terms from the governing equations, and the output, accord-
ingly, either farfield sound-pressure fluctuations or hydrody-
namic near-field flow fluctuations.

Our treatment of the problem involves consideration of
two simplified models. In Section 3 the inhomogeneous
Helmholtz equation that results from Lighthill’s acoustic
analogy is used to explore kinematic sound-source models
that mimic wavepacket activity observed in turbulent jets.
While in section 4, simplified dynamic models are consid-
ered, these being based on the inhomogeneous, linearised
Ginzburg-Landau equation, that we use as a surrogate for the
inhomogeneous, linearised Navier-Stokes system. A cou-
pled system, where the output from the dynamic, Ginzburg-
Landau model is used as an input for the kinematic, acoustic-
analogy model, is presented in section 5, illustrating a sim-
plified setting that involves both wavepacket dynamics and
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Fig. 31: Optimal and first suboptimal x-momentum forcing modes and corresponding responses for a Mach 0.9 jet at St=0.56,
considering acoustic pressure as the output. Grey lines in subfigures (a) and (b) mark the nozzle, and rectangles in subfigures
(c) and (d) highlight the domain considered for the acoustic response. Results from Jeun et al. [49].

sound radiation. Despite the simplicity of the models, they
are found to reproduce many relevant features observed in
experiments and simulations of turbulent jets. The models
are accompanied by Matlab/Octave scripts in the supplemen-
tary material, and we propose the ensemble as a platform for
the development of understanding both of the modelling ap-
proaches discussed and the flow physics they mimic.

We close this review with a discussion on the practi-
cal relevance of wavepacket models, especially given that
current large-eddy simulations allow accurate predictions of

sound radiation of turbulent jets, with errors of less than 1dB,
with relatively low computational cost [7,110]; in such a sce-
nario, one may question the need or the relevance of sim-
plified, reduced-order models when an accurate simulation
can be carried out. In our view, linear wavepacket mod-
elling frameworks reviewed here can be useful in diverse
ways. They provide a basis for the estimation of sound radia-
tion with reduced computational cost (in comparison to high-
fidelity simulations). Examples include the use of kinematic
wave-packet sound-source models by Neilsen et al. [111],
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who use ground acoustic measurements of military aircraft
to calibrate source models that are then used to obtain far-
field radiation; or the work of Papamoschou [85], who uses
self-similar kinematic wave-packet models, calibrated with
measured spectra, to obtain sound radiation at other posi-
tions. Dynamic modelling approaches, such as that of Towne
et al. [67], on the other hand, aim to determine models for the
statistics of non-linear forcing terms from high-fidelity sim-
ulation data, and that would allow the dynamics of coher-
ent structures and sound to be obtained from the linearised
Navier-Stokes equations using the resolvent framework.

The frameworks also provide a basis for analysis and
understanding of the mechanisms that underpin both the dy-
namics of coherent structures in jets and the sound these radi-
ate; as such they constitute a foundation on which to develop
jet-noise reduction methodologies. Devices for open-loop
control, such as tabs and chevrons [112] or microjets [113],
are known to reduce the sound radiated by subsonic and su-
personic jets, but they are often developed on a trial-and-
error basis in laboratory experiments, and their effeciveness
in flight conditions has been questioned [114]. The develop-
ment of such technologies would benefit from the more solid
theoretical footing that is provided by the dynamic modelling
framework discussed. Indeed, dynamic wavepacket models
have been successfully used to understand noise-control re-

sults [115, 116, 117, 118], and may serve in the design of
low-noise nozzles. Examples of how they may guide im-
provement in microjet design can be found in the work of
Le Rallic et al. [119] and Sinha et al. [120]. Their use
for the elaboration of closed-loop control strategies is also
a promising future direction. Wavepacket models have al-
ready been used for the estimation of turbulent-jet fluctua-
tions from limited numbers of sensors [121, 122], and this
is the basis for the definition of control laws, actuation be-
ing driven by sensor measurements so as to cancel incom-
ing wavepackets. A proof of concept of wave cancellation
for harmonically excited turbulent jets has been provided by
Kopiev et al [123], and a closed-loop control study was suc-
cessfully implemented by Sasaki et al. for the simpler case
of a low Reynolds number mixing layer [124]. The forego-
ing approaches for both open- and closed-loop control of jet
noise have been reviewed by Cavalieri [125].

Perhaps the most important outcome, however, is the
provision of deeper understanding of the flow physics that
underpin coherent structures in jets and the sound they pro-
duce. The analysis of non-linear systems is a difficult task,
and, while progress may be made using methods from non-
linear dynamical-systems theory [126], simplification of the
problem as a linear system with stochastic forcing, reviewed
in section 2, has led to substantial progress in the study of
jet turbulence and sound radiation, and is likely to open new
research directions. Some recent examples exist in which
these simplified linear modelling frameworks have led both
to new insight, and to the anticipation or prediction of how a
complex system will behave subject to a given modification.
The kinematic [127, 79] and dynamic [128, 129] modelling
approaches have, for instance, provided substantial clarifi-
cation of the sound-source mechanisms associated with in-
stalled jet-noise, i.e. sound radiation of jets in the vicinity
of wings. The studies show how the near pressure field of
jet wavepackets is scattered by the wing trailing edge, lead-
ing to significant increases in sound radiation. The results
were based on the use of a tailored Green’s function that ac-
counts for the presence of the neighbouring surface and may
be dealt with using the formalisms outlined in sections 2 and
3, either by replacing the free-space Green’s function with
its tailored counterpart, or by incorporating the wing trailing
edge as a boundary condition for the linear operator of the
dynamic model. The results of the studies allowed an an-
ticipation of a beneficial effect that would be produced by
inclining the trailing edge relative to the jet, and this was
confirmed both by models and experiment in the work of Pi-
antanida et al. [130].

Another example is the detection of trapped acoustic
waves (informally known as “punk modes”) in the poten-
tial core of high-subsonic jets. This phenomenon could be
thoroughly modelled using simplified linearised models, al-
beit with an approach different to that described in section
4: the main mechanisms can be described by simplifying the
jet as a compressible vortex sheet, or even further by con-
sidering it to behave as a soft acoustic duct with uniform
flow [131]. The simplified linear models led to a rather com-
plete explanation of the physics involved both in the more



complete global analysis [105], the high-fidelity simulation
and the experiments [7]. Understanding of the fundamen-
tal physics of these trapped waves provided by the simpli-
fied models led, again, to a rather complete explanation, by
Jordan et al. [132], of the flow physics involved in the gen-
eration of high-amplitude tones that result when a turbulent
jet grazes a sharp edge [133], such as the trailing edge of
a wing. Similar analyses for supersonic jets have provided
more complete understanding of tonal dynamics associated
with impinging [134, 135] and screeching jets [136, 137].

We close our discussion with an emphasis of the fact
that, while simplified descriptions of the complex flow be-
haviour involved in jet noise are essential, there remains a
need for accurate, detailed experiments and carefully vali-
dated numerical simulation of jet noise. The validity of sim-
plified models can only be determined by comparison with
high-fidelity data from experiments or simulations, and such
data require dedicated post-processing to extract quantities
directly comparable to wavepacket-model predictions. These
comparative studies require considerable organisation and
forward planning in order to ensure that perspicacious use be
made of the enormous datasets produced by experiment and
simulation. Such was the case for the recent experiment by
Jaunet et al. [17] and the simulation and experiment by Brès
et al. [7], both of which now serve as a basis for new devel-
opment of wavepacket models. The relevance of wavepacket
jitter for sound radiation, that we have reviewed, poses a
challenge in terms of data analysis, as the convergence of
two-point statistics, with accuracy sufficient for modelling
purposes, is slow and requires huge quantities of data, as il-
lustrated by applications using simulation [138] and exper-
imental data [51]: increasing the number of samples leads
to a slow convergence of higher-order SPOD modes, which,
while secondary in terms of their energetic contenance, are
crucial for the description of wavepacket jitter and sound
radiation. Collaborative efforts in the research community,
with strong interaction between theory, simulation and ex-
periment, are the key to progress in future jet-noise research.
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[3] Juvé, D., Sunyach, M., and Comte-Bellot, G., 1979.
“Filtered azimuthal correlations in the acoustic far
field of a subsonic jet”. AIAA Journal, 17, p. 112.

[4] Kopiev, V., Zaitsev, M., Velichko, S., Kotova, A.,
and Belyaev, I., 2008. “Cross-correlations of far
field azimuthal modes in subsonic jet noise”. In 14th
AIAA/CEAS Aeroacoustics Conference (29th AIAA
Aeroacoustics Conference), p. 2887.

[5] Cavalieri, A. V. G., Jordan, P., Colonius, T., and Ger-
vais, Y., 2012. “Axisymmetric superdirectivity in sub-
sonic jets”. Journal of Fluid Mechanics, 704, p. 388.

[6] Faranosov, G. A., Belyaev, I. V., Kopiev, V. F., Za-
ytsev, M. Y., Aleksentsev, A. A., Bersenev, Y. V.,
Chursin, V. A., and Viskova, T. A., 2016. “Adapta-
tion of the azimuthal decomposition technique to jet
noise measurements in full-scale tests”. AIAA Jour-
nal, 55(2), pp. 572–584.

[7] Brès, G. A., Jordan, P., Jaunet, V., Le Rallic, M., Cav-
alieri, A. V., Towne, A., Lele, S. K., Colonius, T., and
Schmidt, O. T., 2018. “Importance of the nozzle-exit
boundary-layer state in subsonic turbulent jets”. Jour-
nal of Fluid Mechanics, 851, pp. 83–124.

[8] Brès, G. A., Ham, F. E., Nichols, J. W., and Lele,
S. K., 2017. “Unstructured large-eddy simulations of
supersonic jets”. AIAA Journal, pp. 1164–1184.

[9] Mollo-Christensen, E., 1967. “Jet noise and shear
flow instability seen from an experimenter’s view-
point(Similarity laws for jet noise and shear flow in-
stability as suggested by experiments)”. Journal of
Applied Mechanics, 34, pp. 1–7.

[10] Lau, J. C., Fisher, M. J., and Fuchs, H. V., 1972. “The
intrinsic structure of turbulent jets”. Journal of Sound
and Vibration, 22(4), pp. 379–384.

[11] Michalke, A., and Fuchs, H. V., 1975. “On turbulence
and noise of an axisymmetric shear flow”. Journal of
Fluid Mechanics, 70, pp. 179–205.

[12] Armstrong, R. R., Fuchs, H. V., and Michalke, A.,
1977. “Coherent structures in jet turbulence and
noise”. AIAA Journal, 15, pp. 1011–1017.

[13] Tinney, C. E., and Jordan, P., 2008. “The near pres-
sure field of co-axial subsonic jets”. Journal of Fluid
Mechanics, 611, pp. 175–204.

[14] Breakey, D. E., Jordan, P., Cavalieri, A. V., Nogueira,
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