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A new approach is introduced for turbidite modeling, leveraging the potential of computational fluid

dynamics methods to simulate the flow processes that led to turbidite formation. The practical use of

numerical flow simulation for the purpose of turbidite modeling so far is hindered by the need to specify

parameters and initial flow conditions that are a priori unknown. The present study proposes a method to

determine optimal simulation parameters via an automated optimization process. An iterative procedure

matches deposit predictions from successive flow simulations against available localized reference data,

as in practice may be obtained from well logs, and aims at convergence towards the best-fit scenario. The

final result is a prediction of the entire deposit thickness and local grain size distribution. The optimization

strategy is based on a derivative-free, surrogate-based technique. Direct numerical simulations are

performed to compute the flow dynamics. A proof of concept is successfully conducted for the simple test

case of a two-dimensional lock-exchange turbidity current. The optimization approach is demonstrated

to accurately retrieve the initial conditions used in a reference calculation.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The modern sea floor in deep water is in large part composed of
turbidites, the deposits of submarine turbidity currents. Turbidity
currents are believed to constitute the principal mechanism of sedi-
ment transport from shallow water into the deep sea (see Meiburg and
Kneller, 2010 and references therein). Over geological time scales,
stacked turbidites may accumulate on abyssal plains and local deep-sea
basins, or form submarine fans fed by river deltas. Deeply buried, sandy
turbidite sheets represent an important class of hydrocarbon reservoirs,
many of which are situated in deep water (Weimer and Slatt, 2007).
Many of these turbidites are essentially sheetlike in nature.

There is a large body of experimental work on gravity and turbidity
currents that has established the dimensional relations (see the
review by Huppert, 2006), and the geometries and properties of their
deposits at laboratory scales (e.g. Luthi, 1981; Laval et al., 1988;
Middleton and Neal, 1989; Bonnecaze et al., 1993; Garcia, 1994;
Alexander and Morris, 1994; Kneller and McCaffrey, 1995; Mulder
and Alexander, 2001; Parsons et al., 2002; Al ja’aidi et al., 2004; Baas
et al., 2005; Violet et al., 2006). Although the results of many of these
experiments have been explicitly applied to submarine deposits at
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natural scales, such extrapolations are subject to considerable scaling
uncertainties, as pointed out by Parsons et al. (2007).

The interaction of turbidity currents with the sea floor, via
deposition and erosion of sediment, leads to complex sedimentary
features that can only be understood by investigating the flow
processes that created them. A recent review of fluid-mechanical
research on turbidity currents is given by Meiburg and Kneller (2010).

The application of computational fluid dynamics (CFD) techniques
to the simulation of marine turbidity currents is severely restricted
due to the length scales involved. High-fidelity simulations that
resolve the full Navier–Stokes equations (e.g. Necker et al., 2002,
2005; Cantero et al., 2007; Gonzalez-Juez et al., 2009) are limited to
laboratory-scale settings; CFD simulations of field-scale turbidity
currents at present are usually based on model equations (see the
review by Parsons et al., 2007). Felix (2002) attempted depth-resolved
two-dimensional simulations of two historical turbidity currents,
based on a Reynolds-averaged Navier–Stokes (RANS) formulation,
and further progress in turbulence modeling as well as computational
performance may be expected to bring 3D field-scale simulations into
the reach of high-fidelity approaches in the future. However, before
any CFD method may be used to simulate an actual turbidity current
event that took place in the past, and thereby reconstruct its deposit,
precise knowledge of the initial flow conditions is required. In reality,
this need only to be a set of notional conditions at some point along
the transport pathway that is sufficient to define uniquely the
subsequent behavior of the flow, and its deposition. Such information
is generally not available.
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Fig. 1. Lock-exchange configuration, initial condition.
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If information about the thickness and the grain size distribution in
a turbidite bed can be inferred from data at a few locations (such as
wells), one may attempt to identify initial conditions for a flow
simulation that provides a best fit in these locations between
measured data and numerical predictions of the sediment deposit.
The present paper outlines an approach, demonstrated in the context
of a simple model problem, to perform such an inversion of localized
sample data in an automated process. To this end, an optimization
problem is formulated, which aims at minimizing the discrepancy
between simulation results and reference data. To our knowledge, no
published literature on turbidity current inversion exists to date.

Towards the long-term goal of accurate field-scale turbidity
current inversion based on well data, the objective of the present
study is to introduce a general formulation of the inverse problem, to
propose an optimization strategy for its solution, and to present test
results for the latter as a first proof of concept. The test presented here
is performed under highly simplified, but very controlled conditions.
The two-dimensional lock-exchange problem is chosen as a test case.
The inversion strategy is used in conjunction with a direct numerical
simulation (DNS) approach. The test objective is to reconstruct a
sediment deposit that has initially been generated with the same
simulation code. The performance of the inversion strategy can thus
be assessed independently of any uncertainties associated with the
simulation model or with the accuracy of reference data.

The physical setup of the two-dimensional lock-exchange
problem and the employed numerical simulation technique
are described in Section 2. The inverse problem is introduced
in Section 3. This includes the formulation of an optimization
objective and the motivation for our choice of the surrogate
management framework (SMF) method as a solution strategy.
A full description of the SMF implementation is given in Section 4.
Inversion results for the present test case are presented and
discussed in Section 5, and conclusions are offered in Section 6.

2. Test configuration: two-dimensional lock-exchange
problem

2.1. Physical setup

Widely used in fundamental research, the lock-exchange pro-
blem represents the elementary archetype of a gravity current. The
specific case of lock-exchange turbidity currents, where density
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Fig. 2. Snapshots of the total concentration field ctot from the direct numerical simulation
differences in the fluid are due to sediment loading, has been
investigated experimentally by Bonnecaze et al. (1993), amongst
others, and numerically by Necker et al. (2005) and Blanchette et al.
(2005). For the purpose of the present study, this generic config-
uration may serve as a testbed for the proposed inversion approach.

Consider a confined volume of sediment-laden water (the
‘‘lock’’), submerged in a rectangular tank filled with otherwise
clear water. The configuration is sketched in Fig. 1. In an experi-
mental setting, the sediment-laden and the clear water are initially
separated by thin plates, and the water inside the lock is stirred, so
as to maintain a homogeneous distribution of suspended sediment
throughout its volume. At time t¼ 0, the separating plates are
suddenly removed, releasing the heavier suspension into the
lighter clear water. Under the influence of gravity, the density
difference drives a turbidity current along the bottom of the tank.
As the current propagates, its sediment is continuously deposited
onto the bottom wall, until the current ultimately comes to rest.

This process is illustrated in Fig. 2, which displays three snap-
shots of the normalized total sediment concentration from the
numerical simulation of a lock-exchange problem. All flow simula-
tions in this study are restricted to a two-dimensional geometry.
The numerical method and specific parameters used in the flow
configuration of Fig. 2 are described in the following sections.
2.2. Numerical model

The flow is assumed to be governed by the two-dimensional
Navier–Stokes equations. Restricting the analysis to moderate
levels of sediment loading, with resulting density variations not
larger than 5%, these equations may be written in the Boussinesq
t = 0

t = 5

t = 40

6 7

0

0.15

0

1

0

1

5 8

6 75 8

6 75 8

of the reference case. The numerical domain extends further downstream to x¼ 10.
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approximation (Necker et al., 2005):
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Eqs. (1)–(3) are given in non-dimensional form. The spatial
coordinates x and y are defined in Fig. 1; they are scaled with the
tank height H. The horizontal and vertical velocities u and v are
normalized with respect to the buoyancy velocity

ub ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH

rp�rf

rf

c0

s
, ð4Þ

where g is the gravitational acceleration, rp and rf are the density
values of the particle material and of clear water, respectively, and
c0 is a reference value for the volume fraction of particles in
suspension (see next paragraph). The Reynolds number is then
defined as

Re¼
ubH

n ð5Þ

n being the molecular kinematic viscosity of water. The gravita-
tional term in the vertical momentum equation (3) with these
conventions reduces to the total sediment concentration, in the
sense of the fraction of volume occupied by sediment particles,
ctot(x,y,t), which is normalized with c0. If N different grain sizes are
present, the total sediment concentration is the sum of their
individual concentrations ci:

ctotðx,y,tÞ ¼
XN

i ¼ 1

ciðx,y,tÞ: ð6Þ

The reference value c0 usually is defined as the initial concen-
tration of sediment inside the lock (e.g. Necker et al., 2005).
However, for the purpose of the present study, quantitative
comparisons will have to be made between simulations with
varying initial sediment loading, and it is therefore convenient
to use a common reference value c0 in all simulations. Without loss
of generality, c0 is chosen to be the initial total sediment concen-
tration in the reference case described in the following section.

Sediment concentration in the present context is modeled as a
scalar field that evolves in time according to an Eulerian convec-
tion–diffusion equation. However, sediment particles do not only
follow the fluid motion, but they are constantly subjected to an
additional downward gravitational force. The effect of this force is
modeled as a constant vertical settling velocity vs, superposed onto
the fluid velocity field (Necker et al., 2005). This settling velocity is
taken to be identical to the Stokes velocity at which a single particle
sinks within a given fluid at rest. If we assume that all particles are
spherical and of identical density rp, then the settling velocity is a
function of grain size only. In the present framework, all suspended
sediment is assumed to be composed of a finite number of grain
sizes, each characterized by its settling velocity vs. One concentra-
tion field ci(x,y,t) is associated with the i-th particle grain size, and
for each of the N grain sizes an additional transport equation
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is solved along with the flow equations (1)–(3). The Peclet number
Pe is defined with the particle diffusion constant k as Pe¼ ubH=k.
The concentration fields ci add up to the total concentration value
(Eq. (6)).
Eqs. (1)–(3), (7) are solved numerically on a rectangular domain,
discretized by a Cartesian grid with constant cell size. Convective
terms are approximated via a third-order ENO (‘‘essentially non-
oscillatory’’) scheme (Osher and Fedkiw, 2003), which is particu-
larly suited for the treatment of propagating sharp fronts. An
implicit scheme of second-order centered finite differences is used
for all diffusive terms, thereby avoiding time-step restrictions due
to low Reynolds or Peclet numbers. Velocities, pressure and
concentration values are solved for on a staggered grid. A projection
method (e.g. Fletcher, 1991) is used to compute the pressure
gradient in (2), (3) in such a way that the continuity Eq. (1) is
enforced. This method involves a Poisson problem in p, which is
solved numerically with a conjugate gradient algorithm. The
equations are advanced in time via a third-order Runge–Kutta
scheme, with time steps corresponding to a CFL number of unity.

No-slip conditions are imposed for the velocities at the left and
bottom boundaries of the domain, and free-slip conditions at the
top surface. An infinitely long tank is modeled by prescribing
convective outflow conditions (Ruith et al., 2004) at the right
domain boundary x¼ xmax. These boundary conditions let flow
structures and suspended sediment exit the numerical domain
with negligible spurious reflections. Sediment is also allowed to
leave the flow domain through the bottom boundary, where it is
assumed to settle out and form the bottom deposit. In the current
model, topographical changes of the bottom boundary due to
deposited sediment are neglected. Neumann conditions are
imposed for all concentration fields at the left boundary. For a
detailed description of the flow solver, the interested reader is
referred to the dissertation of Hall (2009).
2.3. Reference configuration

The lock-exchange configuration that will be used as a test case
for the inverse problem is defined by the following parameters:
�
 lock dimensions xl ¼ 0:4, yl ¼ 0:6, normalized with the tank
height,

�
 three sediment grain sizes with settling velocities vs

1 ¼ 0:001,
vs

2 ¼ 0:005, vs
3 ¼ 0:01, normalized with ub, and initial concentra-

tions c1 ¼ 0:5, c2 ¼ 0:25, c3 ¼ 0:25, normalized such that their
sum is 1,

�
 Reynolds number Re¼ 2000 and Peclet number Pe¼ 20 000.

The sum of the non-dimensional initial concentration values ci is
equal to 1, because all concentration values are scaled with respect
to the initial total concentration in the present reference
configuration.

The flow simulation is performed on a numerical domain of
dimensions 0rxr10 and 0ryr1, with constant grid spacing
Dx¼Dy¼ 0:01. Grid convergence has been confirmed in test
calculations with Dx¼Dy¼ 0:005. The value of the Reynolds
number has been chosen to be on the lower end of typical values
from laboratory experiments. It is large enough to allow the
formation of complex vortical flow structures, but sufficiently
small to permit direct numerical simulations at a reasonable
computational cost. The total number of required grid points
roughly increases linearly with Re. The Peclet number, which
governs the diffusion of particles, should in theory be infinite,
unless indeed the particles were small enough to be subjected to
Brownian motion. This parameter is kept at a finite value only to
ensure numerical stability. One order of magnitude larger than the
Reynolds number, its influence on the simulation results may be
expected to be negligible.

The initial total concentration field ctot of the reference config-
uration is shown in Fig. 2a. As the lock is released, potential energy
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of the suspension phase is converted to kinetic energy during the
early stage of the flow (Fig. 2b), forming a current head that
propagates along the bottom (Fig. 2c). In the simulation, sediment
contained in the computational cells adjacent to the bottom
boundary is allowed to leave the domain at its settling velocity
vs. The non-dimensional rate of change of the bottom deposit
height hi associated with the i-th grain size is given by

dhi

dt
¼

c0civ
s
i

si
, ð8Þ

where si is introduced as the packing density of settled sediment.
The effects of si, i.e. the trapping of fluid within a porous sediment
layer, are not taken into account in the present investigation, and c0

remains an arbitrary scaling parameter within the limits of the
Boussinesq approximation. In the following, the scaled deposit
heights

~hiðx,tÞ ¼
si

c0
hiðx,tÞ ¼

Z t

0
ciðx,0,tÞvs

i dt ð9Þ

will be reported. The time integration in Eq. (9) is performed during
runtime, and the final deposit heights are thus obtained at the end
of the simulation.

As the finest grain size (vs
1 ¼ 0:001) takes a very long time to

completely sink to the ground even after the current has virtually
ceased, a special numerical procedure is introduced at the very end
of the simulation: The computation is stopped after 99.9% of the
medium grain size sediment has been deposited, at time t¼ 83, and
all remaining suspended sediment is added to the bottom deposit
at its current x-location. The convective horizontal sediment flux,
defined as

Fcðx,tÞ ¼

Z 1

0
ctotðx,y,tÞuðx,y,tÞ dy ð10Þ

at t¼ 83 has a maximum value along x of 2:9� 10�5, only 0.024% of
its overall maximum of 0.122 at t¼ 1:46. Further horizontal
sediment transport after t¼ 83 may therefore be neglected.

The resulting final deposit profiles are displayed in Fig. 3. As may
have been expected, the largest grains settle out fairly close to the
flow origin (triangles), medium-size grains are transported some-
what further downstream (squares), whereas some of the finest
grains (circles) remain in suspension all the way down to the final
run-out length of the current. Close inspection of the flow evolution
shows that local irregular features of the deposit profiles (i.e.
deviations from monotonic decay) are associated with large-scale
vortices in the flow field. As a side comment, we note that such
features could not be captured by a depth-averaged simulation
approach.
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Fig. 3. Final deposit profiles in the reference case for each of the three sediment
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heights in the five control points that are used for the inversion.
3. Inverse problem formulation

3.1. Objective

The long-term objective of turbidity current inversion is to
reconstruct the global distribution of turbidite bed properties,
based on available well-log data in only a few locations. The present
paper aims at an optimal reconstruction of the deposit profiles
displayed in Fig. 3, based on their values in five control points. The
true deposit heights for each grain size are assumed to be known at
streamwise locations x¼ 1,3,5,7 and 9. Reconstruction of the full
profiles is then attempted by performing a number of simulations
of the kind described in Section 2.3 with a variety of parameter
settings, and by comparing the final deposit in the control points to
the objective values. Identifying suitable physical parameters for
an optimal match constitutes an optimization problem.

3.2. Cost function

The optimization objective is formally expressed as finding the
global minimum of a cost function JðaÞ, which depends on a set of
physical simulation parameters a, and which measures the dis-
crepancy between the final deposit obtained with these parameters
and the reference solution in the five control points. The cost
function in the present study is defined as a sum of L2-norms:

JðaÞ ¼
X3

i ¼ 1

X5

j ¼ 1

½ ~hiða,xjÞ�
~h

ref

i ðxjÞ�
2

0
@

1
A1=2

: ð11Þ

In this notation, ~hiða,xjÞ is the deposit height (Eq. (9)) of the i-th
sediment grain size computed with the parameters a in the five
control points xj. The reference solution (Fig. 3) is denoted as ~h

ref

i .
The cost function is non-negative and has a global minimum
JðaÞ ¼ 0 where a precisely corresponds to the parameters of the
reference case. For all practical purposes, it seems safe to assume
that JðaÞ40 for all other parameter combinations.

3.3. Free parameters

The choice of free parameters a to be varied in the inverse
problem is guided by what can reasonably be assumed to be known
from an ill-documented laboratory experiment: known are the
height of the tank (reference length H) and the fluid used (viscosity
n, hence Re is defined). The particle grain sizes, and therefore the
dimensional settling velocities, are known from the documented
deposit measurements in the control points. Unknown are:
�
 dimensions xl, yl of the lock,

�
 initial concentrations c1, c2, c3 of each grain size.
These are the five free parameters that are retained for the inverse
problem.

Note that the sum of c1, c2 and c3 in general will not be equal to 1
in the following. The reference values c0 and ub, used to make the
governing equations (1)–(3) non-dimensional, are not required to
denote the total concentration and the buoyancy velocity for each
initial condition. Instead, they are assumed to represent the same
dimensional value in all cases, and it is therefore consistent to use
identical values of the non-dimensional parameters vi

s, Re and Pe in
all simulations.

3.4. Choice of method

A well-suited method for the problem at hand needs to be
chosen from the abundant numerical optimization techniques
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found in the literature. Comprehensive reviews are given by
Bewley (in press) and Kolda et al. (2003). A useful first categoriza-
tion is provided by the distinction between gradient-based and
gradient-free techniques.

Gradient-based optimization methods require both the cost
function value JðaÞ and its gradient JuðaÞ to be computed at each
evaluation. Starting from a given point in parameter space, steepest
descent or conjugate gradient methods are then commonly applied
in order to arrive at a local minimum. In many applications, the
gradient can be efficiently computed by solving the adjoint flow
equations (Gunzburger, 1995), provided that the flow dynamics
may be reasonably represented in terms of linear fluctuations
around a steady mean flow. If no such steady state can be defined,
as in the case of the present flow problem, an adjoint-based
gradient calculation becomes exceedingly expensive with regard
to computational time and storage requirements. Alternatively, the
cost function gradient in a low-dimensional parameter space may
be approximated via a finite-difference method. At any given point
in parameter space, one additional full simulation per free para-
meter is then required, where each parameter in turn is varied by a
small increment.

A particular gradient-free optimization strategy, proposed by
Booker et al. (1999), has become known as the surrogate manage-

ment framework (SMF) method. Rather than searching for a local
minimum along a descent path, the SMF approach first aims at
providing a global approximation of a largely unknown cost
function, by interpolating between a number of points in para-
meter space, where the cost function has been evaluated. Optimi-
zation is then easily and inexpensively performed on the
interpolation function (the cost function ‘‘surrogate’’), and addi-
tional evaluations are carried out in new points of interest. The SMF
method relies on this surrogate-based search step for efficient
exploration of the parameter space that is global in nature and can
be customized to suit particular applications.

The efficiency of the SMF and closely related Kriging-based
techniques has been demonstrated in many fluid mechanical
engineering contexts, such as helicopter rotor optimization
(Serafini, 1998; Booker et al., 1999), aeronautical shape design
(Chung and Alonso, 2002), airfoil noise reduction (Marsden et al.,
2004a, 2004b, 2007) and blood flow in complex vessel geometries
(Marsden et al., 2008).

Unlike in many engineering optimization tasks, e.g. aerody-
namic design or noise reduction, convergence to a local minimum
far away from the global minimum of the cost function represents
no success in the present inverse problem. With regard to the long-
term objective of turbidite modeling, only the best possible match
with well-log data can provide valid predictions with high prob-
ability. Its global approach and its demonstrated efficiency for
numerically expensive flow applications make the SMF method
particularly appealing for turbidity current inversion.
4. Surrogate management framework

4.1. General concepts

Before any optimization can be performed, the SMF method
requires the initial construction of a cost function surrogate. The
first step therefore consists of evaluating the true cost function for a
set of points in parameter space. A surrogate is then found as an
interpolating function that exposes the trends between all cur-
rently known points. Kriging interpolation is the common method
of choice for the construction of a surrogate (Jones, 2001), and is
used in the present study. A pseudo-random, evenly spaced
distribution of initial points across a restricted region of the
parameter space is generated with a latin hypercube sampling
algorithm (McKay et al., 1979). Following the initial surrogate
construction, all further function evaluations are restricted to
points that lie on a discrete mesh in parameter space.

SMF optimization relies on alternating application of two
complementary procedures, named the search and poll steps. The
exploratory search step performs a minimum search on the
surrogate, and it returns points of interest for subsequent cost
function evaluations. In its simplest form, the search step returns a
single optimal value of the current surrogate function. If multiple
points may be evaluated in parallel, the search step can be
configured to return several local minima, as well as exploratory
points in poorly sampled regions of the parameter space. After each
new cost function evaluation, the Kriging surrogate is updated and,
if the previous search was successful, a new search step is
performed.

If the search procedure fails to identify a new optimal point, a
poll step is initiated. By evaluating the cost function on neighboring
mesh points around the current optimal point, the poll step either
confirms its local optimality, or returns an improved point. If an
improved point is found, a new search step is attempted. Other-
wise, the algorithm has successfully converged to a local optimum
on the current mesh. If higher precision is desired, the optimization
may be continued on a refined parameter mesh. Convergence of the
SMF method to a local minimum is formally guaranteed by the poll
step in combination with mesh refinement, as discussed by Audet
and Dennis (2003), Audet (2004) and Lewis and Torczon (1999,
2000).
4.2. Implementation

The parameter space for the present problem is spanned by the
parameters a¼ ðxl,yl,c1,c2,c3Þ. Each dimension is discretized over
the range 0:1rair1 with uniform step sizeDai ¼ 0:05. Zero values
are not included, because the lock volume must be non-zero, and all
three grain sizes must be present in the initial configuration. A
number of 50 initial points is generated via latin hypercube
sampling. These are not required to lie on the mesh. Fifty flow
simulations are then performed prior to all optimization. While this
fairly large number of initial points represents a significant
computational effort (� 500 CPU hours on AMD Opteron 265), it
ensures that all regions of the parameter space are amply sampled,
and that the vicinity of the true global minimum may be retrieved
by the initial surrogate with some confidence. The Matlab toolbox
DACE (Lophaven et al., 2002) is used to perform the Kriging
interpolation.

Five new test points are selected in each search step. Up to three
new points are local minima of the surrogate function. These are
identified by conducting line searches (fmincon in Matlab) from
100 randomly distributed seeding points. The remaining two new
test points, or more if less than three minima are found, are placed
in undersampled parameter regions. A formal selection criterion
for these points proposed by Cox and John (1997) (see also Jones,
2001) makes use of the fact that the Kriging algorithm not only
returns interpolation values, but also provides a local measure of
uncertainty (‘‘mean square error’’, e.g. Jones, 2001). The mean
square error s is large in regions far away from sample points. In
order to place new points in regions where the uncertainty is high,
and where at the same time the predicted cost function value is low,
the criterion of Cox and John (1997) seeks minima of the weighted
combined objective

~f ða,lÞ ¼ ð1�lÞf ðaÞ�lsðaÞ: ð12Þ

Both the surrogate function f ðaÞ and the mean square error sðaÞ are
renormalized to vary between 0 and 1 before the weighted function
~f ðaÞ is formed. The weight factor l is successively stepped up from 0
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Table 1
Numerical values of current optimal parameter settings, optimization based on 50

initial simulations. The associated cost function values JðaÞ correspond to Fig. 4.

Upper part: combination of search and poll steps (solid line in Fig. 4); lower part:

search steps only (dashed line in Fig. 4).

Step xl yl c1 c2 c3 JðaÞ

0 0.23 0.64 0.78 0.73 0.15 0.0146

1 0.4 0.45 0.65 0.3 0.25 0.0084

2 0.35 0.55 0.55 0.3 0.25 0.0046

3 0.35 0.55 0.55 0.3 0.25 0.0046

4 0.4 0.6 0.5 0.25 0.25 0.0000

4 0.35 0.55 0.55 0.3 0.25 0.0046

5 0.35 0.6 0.7 0.25 0.3 0.0044

6 0.35 0.6 0.6 0.3 0.3 0.0015

L. Lesshafft et al. / Computers & Geosciences 37 (2011) 521–529526
(pure cost function minimization) in increments of 0.1, until a total
of five new points has been found. Direct neighbors are not allowed
among new test points in a search step.

If, after evaluation of the cost function in all new test points from
the search procedure, no improved point is found, a poll step is
performed, i.e. the cost function is evaluated in several points
around the current optimum. In this work, the polling set is chosen
using the generalized pattern search (GPS) method. Recent variants
of the SMF method have also been proposed with alternate polling
strategies, including mesh adaptive direct search (MADS, see Audet
and Dennis, 2006). A formal requirement for convergence is that
the polling directions form a positive spanning basis of the para-
meter space (Davis, 1954; Booker et al., 1999). This condition
implies that N+1 polling points are required in an N-dimensional
parameter space. Among the many possible choices, a polling
stencil could be selected randomly. However, in the present
implementation, the choice of polling directions is guided by
physical considerations.

Given the full deposition profiles from a simulation with the
current optimal parameter setting a0, a first-order estimation of the
corresponding profiles for a slightly varied parameter setting a0þe
may be obtained by rescaling the deposit height according to e,
while the deposit shape is assumed to remain unchanged. Varia-
tions in xl and yl affect the height of all three grain size deposits
simultaneously, variations in c1, c2 and c3 affect the height of the
respective deposits individually. For instance, consider a simula-
tion result in which all three deposit curves lie entirely below the
objective points shown in Fig. 3. Clearly, improvement in such a
case must be sought by increasing the total volume of the lock, the
sediment concentration values, or all of the above. In order to select
the most promising candidate points for a poll step, the deposit
curves are estimated on all 35

�1¼ 242 mesh points neighboring
the current optimal parameter setting. Estimations are obtained by
linearly rescaling the deposit height, according to the relative
change in each of the five parameters. Predictions of the cost
function values are then obtained by evaluating Eq. (11) for the
deposit estimates, and all neighbor points are ranked accordingly.

Following Booker et al. (1999), the first five polling directions
must be linearly independent, and the sixth direction is given by
their negative sum. The best five linearly independent neighbor
points, as ranked according to their estimated cost function value,
are therefore selected as polling points, while the sixth is then
generated automatically. Note that this sixth point generally is not
a direct neighbor of the current optimum.
5. Results

A successful inversion technique returns the correct initial flow
conditions as a final result with acceptable accuracy. An efficient

and robust technique must be successful quickly and reliably.
Success and efficiency of the SMF strategy applied to our test
problem are visualized in Fig. 4. The symbols connected by a solid
line represent the cost function value at the current best evaluated
point as a function of optimization steps. The numerical current
optimal values, together with the corresponding parameter set-
tings, are reported in Table 1. Open symbols in Fig. 4 denote results
from a search step, solid symbols mark poll results. Each search step
involves five, each poll step six cost function evaluations, as
explained in Section 4.2. The value at the ‘‘zeroth’’ step is the best
value obtained during the 50 initial simulations. The first three
optimization steps invoke the search algorithm, which yields
improved points during the first two steps, but is unsuccessful in
step 3. During the fourth step, as traced by the solid line, the poll

algorithm is called as a consequence. It can be seen from Table 1
that the optimal setting obtained in step 2 is already a direct mesh
neighbor of the exact reference configuration ðxl,yl,c1,c2,c3Þ ¼

ð0:4,0:6,0:5,0:25,0:25Þ. The poll algorithm (step 4) returns this
point directly among the five best estimates, and the inversion is
completed.

Switching to the poll procedure as soon as one search step fails to
provide an improved point is consistent with the original SMF
algorithm described by Booker et al. (1999). However, one might
choose to iterate the search further, in order to explore more
thoroughly different regions of the parameter space. For compar-
ison, results from a continued sequence of search steps are
displayed in Fig. 4 as open symbols connected by a dashed line.
Since each step provides five new known points for the construc-
tion of a Kriging-based cost function surrogate, the search routine
alone may always be expected to yield further convergence. In the
present case, improved points are indeed found during steps 5 and
6 (see Fig. 4 and Table 1). However, after step 6 the surrogate
predictions appear to become erratic, with all local minima far
removed from the reference configuration. Calculations were
stopped after step 6. A known problem of the Kriging algorithm
is that it requires a set of fairly evenly spaced sample points. If
significant ‘‘clustering’’ of nearby points occurs, the interpolation
tends to become ill-conditioned, resulting in spurious amplitude
variations in less densely sampled regions (Booker, 2000). It
appears that, after the sixth search step, too many sample points
have accumulated in the vicinity of the true optimum, which,
as a paradoxical consequence, is not retrieved anymore by the
Kriging surrogate. As another surprising observation, we note
that all improved points obtained from search steps, including



0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

optimization step

op
tim

al
 c

os
t f

un
ct

io
n 

va
lu

e

Fig. 5. Cost function values of the current optimal parameter setting as a function of

optimization steps. The optimization starts from a reduced set of 25 initial

simulations. Open symbols: search steps; solid symbols: poll steps.

Table 2
Numerical values of current optimal parameter settings, optimization based on 25

initial simulations. The associated cost function values JðaÞ correspond to Fig. 5.

Step xl yl c1 c2 c3 JðaÞ

0 0.23 0.64 0.78 0.73 0.15 0.0146

1 0.3 0.55 0.45 0.25 0.3 0.0102

2 0.25 0.6 0.65 0.3 0.35 0.0072

3 0.25 0.6 0.65 0.3 0.35 0.0072

4 0.3 0.6 0.65 0.3 0.3 0.0045

5 0.3 0.6 0.65 0.3 0.3 0.0045

6 0.3 0.65 0.6 0.3 0.3 0.0025

7 0.3 0.65 0.6 0.3 0.3 0.0025

8 0.35 0.6 0.6 0.3 0.3 0.0015

9 0.35 0.6 0.6 0.3 0.3 0.0015

10 0.35 0.6 0.6 0.3 0.3 0.0015
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Fig. 6. Final deposit profiles returned by the inversion with 25 initial simulations
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steps 1 and 2, have been found as local minima of the mixed

objective function (12) with l40, as opposed to predicted minima
of the pure cost function (l¼ 0).

The fast convergence of the SMF method within only four
optimization steps, and especially the Kriging-based detection of a
direct neighbor of the true optimum in step 2, may be suspected to be
coincidental. Furthermore, the initial sampling with 50 points may be
considered extensive by some readers, although this number corre-
sponds to an average of only 501=5

¼ 2:19 points per parameter
dimension. In order to further test the efficiency of the present
inversion approach, a second series of calculations is performed,
starting from a surrogate function that is based on only 25 initial
points. The first half of the same set of initial points as before is used;
the best out of all 50 points is among these. The optimization results
are presented in Fig. 5, numerical values are given in Table 2.

Just as in the previous series (compare Figs. 4 and 5), the first
two search steps yield significant improvement, but the third
search is unsuccessful. Subsequent convergence is only achieved
through poll steps, each one followed by an unsuccessful search
step. Poll step number 10 finally fails to return an improved point,
and, according to the rule specifications in Section 4.2, the
optimization loop is stopped. The failure of poll step number 10
is an interesting result, because this step includes a simulation with
initial conditions ðxl,yl,c1,c2,c3Þ ¼ ð0:35,0:6,0:55,0:3,0:3Þ, which by
all measures is closer to the reference configuration than the
‘‘optimal’’ point reported in Table 2. However, the cost function in
this case is found not to decrease monotonically in the direction
towards the global minimum, and can therefore be said to be non-
smooth on the scale of the current grid spacing.
With only 25 initial cost function evaluations, the optimization
strategy does not converge to the exact reference configuration. It
must be pointed out that the original SMF method by Booker et al.
(1999) prescribes refining of the parameter grid upon convergence
of the search and poll routines on a given grid. This element is
important in the formal convergence analysis by Audet and Dennis
(2003). Grid refinement is omitted in our study, due to computa-
tional cost considerations.

The final deposit profiles returned by the optimization strategy
based on 25 initial evaluations are compared to the reference
configuration in Fig. 6. Although no perfect matching is achieved,
the results are certainly very close, and for practical purposes the
inversion may be considered successful.
6. Conclusion

A numerical inversion strategy has been proposed for the
reconstruction of complete deposits from turbidity currents, based
on reference data in a small number of control points. The method
consists of an iterative optimization procedure that invokes
successive numerical simulations of the fluid mechanical and
depositional processes in a turbidity current. This automated
procedure identifies suitable initial conditions for the flow solver
in each iteration step, and thus drives the simulation results
towards improved agreement with the reference data.

The strategy has been implemented and tested. The implemen-
tation involves a direct numerical simulation (DNS) method that
includes a model to account for sediment deposition; the inversion
is performed by use of a surrogate management framework opti-
mization strategy (Booker et al., 1999).

A two-dimensional turbidity current at low Reynolds number
Re¼2000 and with three different grain sizes in suspension has
been chosen as a test case to demonstrate the viability of the
approach. Reference data for the inversion are generated from a
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numerical simulation with a given set of initial conditions,
characterized by five parameters. The inversion objective is to
reconstruct the deposit thickness and grain size composition across
the entire deposit, based on the reference information in five
control points as only input. In a first scenario, the inversion is
started with 50 initial ‘‘blind shot’’ simulations, and the complete
deposit profiles are precisely retrieved within only four subsequent
optimization steps. This extraordinary convergence rate com-
mends our strategy, but it must be suspected to be due in part
to lucky circumstances. Therefore a second inversion attempt has
been presented, based on a reduced number of only 25 initial ‘‘blind
shots’’. The final inversion result in this case is computed in the
eighth optimization step, the automated procedure exits after two
subsequent unsuccessful steps. Agreement with the reference data
in this second example is not perfect, but sufficiently close for the
test to be deemed successful.

The tests presented in this study demonstrate that the under-
lying strategy is viable for the inversion of numerically computed
turbidity current deposits, and that the SMF method represents a
suitable optimization procedure for this purpose. However, a few
shortcomings of the present SMF implementation have been
exposed: first, the search routine in both test examples leads to
improvement during the first few optimization steps, but is of little
benefit later on. This behavior seems to be due to a degeneration of
the Kriging surrogate function, which is known to occur as sample
points become increasingly clustered (Booker, 2000). Clustering of
sample points is an unavoidable result of the poll routine as well as
of optimization convergence. Some approaches to remedy this
problem have been proposed (Audet et al., 2000; Booker, 2000), and
should be further explored in order to improve convergence of the
present inversion method. Secondly, in the case with 25 initial
simulations, the non-smooth behavior of the cost function in the
vicinity of the global minimum seems to prevent full convergence
of the present optimization procedure. In principle, the SMF
method should be particularly well-suited for handling non-
smooth cost functions (e.g. Audet et al., 2008). Ongoing develop-
ment of surrogate functions (Wang et al., 2010) and polling
strategies, like MADS (Audet and Dennis, 2006) or non-cubic
lattices (Belitz and Bewley, 2008), may be expected to improve
the robustness of the present method, and will be tested in
future work.

The principal roadblock for an application of the present inversion
strategy to field-scale problems is the necessity for a forward
simulation method that is reliable and efficient at very high Reynolds
numbers. The direct numerical simulation approach employed in the
present study can be trusted to yield reliable results, since it involves
only a minimum of modeling assumptions, but it is clearly not
appropriate for field-scale applications. Simulations based on depth-
averaged equations are computationally inexpensive, but their
reliability and robustness in the context of turbidity currents remains
debatable to date. From a computational fluid dynamics perspective,
large-eddy simulation (LES) and Reynolds-averaged Navier–Stokes
(RANS) models represent established techniques for high Reynolds
number calculations at acceptable computational cost. We plan to
explore these approaches for further progress on turbidity current
inversion. While large-scale 3D simulations involving turbulence
closure and complex bathymetry will continue to present a difficult
challenge, both in terms of computational cost and modeling
accuracy, the performance of the inversion strategy is not related
in any obvious way to the internal complexity of the forward model.
However, more realistic forward simulations will probably involve a
larger number of free parameters, which clearly will add to the
expense and difficulty of the inversion.

One particular difficulty ensues from the coupling between
deposits from successive flow events via erosion. Conceptually, the
effect of erosion can be taken into account by inverting multiple
events simultaneously, although such an approach may prove
prohibitive due to the increased number of free parameters, and
iterative strategies may be preferable. When actual well data is to
be used as input to the inversion, significant difficulties arise from
data uncertainty. Since it is rarely possible to make bed-for-bed
correlations in the subsurface, a geostatistical approach may be
required, rather than a deterministic one, to characterize distribu-

tions of turbidite properties at the well locations. Inversion could
then be based on a finite number of flow archetypes, with the
objective to match the probability density functions of the relevant
properties at the well locations.
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