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1 Introduction

1.1 My research activities
The study of instability dynamics in jets, already the topic of my Ph.D. thesis [L65],
has remained the focus of my research over the last nine years. My postdoctoral work
(2007–2008) was concerned with sedimentation from river outflows and from near-
coastal turbidity currents, and occasional collaborations with Eckart Meiburg’s group
at UC Santa Barbara on these topics continue [L20], but these studies are not included
in the present manuscript for the sake of a coherent presentation of my main line of
research.

My interests lie in the conceptual description of instability dynamics in jets and in
jet-like open shear flows, based on a variety of methodological approaches befitting
the different aspects of flow behaviour that these flows can exhibit. These aspects in-
clude oscillator and amplifier behaviour, laminar deterministic and turbulent stochas-
tic dynamics, primary as well as secondary instability phenomena. The methodology
employed for their characterisation relies on local and global formulations, modal and
non-modal perturbation growth, statistical state dynamics, and Floquet theory. In all
instances, the objective in my research is to uncover physical mechanisms and to iden-
tify the most appropriate framework for a conceptual modelling of the flow dynamics.

This first section of the manuscript provides a short overview of the flow phenom-
ena that have been treated in my past research projects since 2009, and how these have
been approached from a methodological point of view. A brief chronological account
is attempted in §1.2, offering a deliberately subjective perspective on the context in
which our current understanding of jet instability has evolved. This context is pre-
sented in broad strokes; references to the literature outside of jet studies are given
sparingly and only in so far as they influenced my own direction of research.

1.2 Trends in jet instability over the last ten years
Global eigenmode analysis Scientific development, even within one discipline as
close-knit as open flow instability, does not usually advance in lockstep. When I took
my position at LadHyX in 2009, global eigenmode analysis (or “BiGlobal” in the diction
of [57]) was the fashion of the time. This framework, which is based on the computa-
tion of temporal eigenmodes of the linear operator formulated for a non-parallel base
flow, had been introduced already in the late 1980s (see the review by Theofilis [57]),
yet its application to jet flows remained virgin territory. The Ph.D. work of Nichols
[44], Coenen [12] and myself [L65] on jet instability was still entirely built on the local
analysis of laminar steady base flows, even though all these works were concerned
with self-sustained global oscillations in low-density jets. Our studies demonstrated
that such oscillator behaviour is well characterised by the onset of absolute instability
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above a critical ambient-to-jet density ratio, although the general validity of such a
critical value was challenged [13], and by means of adjoint-based optimisation indeed
was shown not to exist [L6].

Meanwhile, the success of linear global eigenmode analysis of flows exhibiting
self-sustained oscillations generated great enthusiasm in the instability community.
Noack et al. [46], Barkley [3] and Sipp & Lebedev [55] had demonstrated that linear
global instability in a laminar cylinder wake sets in at 𝑅𝑒 = 47, in perfect agreement
with experimental observations. Marquet et al. [35] showed how adjoint-based sensi-
tivity analysis of global eigenmodes can be leveraged for passive control design, and
Giannetti & Luchini [20] proposed a global “wavemaker” definition that served as a
basis for the physical discussion of instability mechanisms. Global eigenmode anal-
ysis, base flow sensitivity and the “wavemaker” formalism provided the blueprint for
instability studies over many years.

The study of jets has benefited from this global toolbox with significant delay: lin-
ear global eigenspectra of supersonic jets were finally presented by Nichols & Lele [45],
and for subsonic settings by Garnaud et al. [L10]. Both of these studies were carried
out in parameter regimes where jets behave as amplifiers of external noise, as opposed
to their oscillator behaviour in the presence of strong density gradients. Linear global
spectra of jets in their oscillator regime, at low Reynolds number and high density
ratio, have been published only very recently [L16],[L18].

Input-output analysis For several years, global eigenmode analysis was the stan-
dard tool of choice for the study of oscillator- as well as amplifier-type flow configu-
rations. On the one hand, the qualitative characterisation of amplifier flows as being
stable from this point of view is certainly a matter of poor semantics; on the other
hand, decaying eigenmodes are not particularly useful objects for a quantitative anal-
ysis of amplifying flow behaviour. The least stable eigenmodes describe the asymptotic
perturbation dynamics at long times after an initial perturbation, and in an amplifier
flow that asymptotic limit is ultimately zero1. Short-time growth is non-modal and
can be characterised by the gain of the optimal initial perturbation, as done for jets in
references [45] and [L10].

In the context of local theory, it had been established long ago that amplifier be-
haviour is consistently described in the frequency domain (the “spatial problem”, see
Michalke [37]). A non-modal formalism in the frequency domain, suitable for non-
parallel flow instability problems, had been introduced by Trefethen et al. [59], but it
was only hesitantly accepted in the global instability community, following its appli-
cation to boundary layers [34, 42, 24]. Based on singular value decomposition (SVD)

1“But this long run is amisleading guide to current affairs. In the long runwe are all dead. [Scientists]
set themselves too easy, too useless a task if in tempestuous seasons they can only tell us that when the
storm is past the ocean is flat again.” Keynes [27].
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of the resolvent operator, this analysis method is known under many names in the
literature: optimal forcing, frequency response, resolvent or input-output analysis —
the latter will be used throughout this manuscript. Garnaud et al. [L11] performed
such input-output analysis of jet flows, both in incompressible and in compressible
settings (see [L46] for compressible jets with acoustic radiation). These studies used
laminar steady solutions as well as turbulent mean flows as base flows, even though
the theoretical justification for mean flow analysis seemed unclear at the time.

Linear wavepackets in turbulent mean flow Frequency-domain analysis of lin-
ear perturbation wavepackets in turbulent jet mean flows has been pursued at Pprime
and at Caltech over the last ten years, motivated by the prospect of obtaining dynam-
ical models for the prediction and the control of jet noise.

The classical framework of flow instability analysis is based on the linearisation of
governing equations about a steady flow state, which provides a consistent description
of small-amplitude perturbation dynamics. In practice, however, such a steady solution
is often replaced with a time-averaged mean flow; the motivation may be simply that
a mean flow is more readily available, or that a laminar steady state poorly represents
the spatial features of a turbulent flow. In the case of a turbulent jet at high Reynolds
number, the mean flow spreads much more rapidly than the corresponding laminar
steady state, and it seems inappropriate to model perturbations as if they evolved in a
nearly parallel base flow.

A large body of literature suggests that the dominant large-scale fluctuations in
turbulent jets behave like linear instability waves developing in the jet mean flow [26].
Such instability waves, or indeed “wavepackets”, have in the past been modelled by
local spatial theory [56] and by PSE [21]. Application of resolvent-based input-output
analysis to an experimental mean flow at high Reynolds number, and validation of the
results against unsteady flow measurements, was the proposition of the “Cool Jazz”
project (2013–2016). Cool Jazz was funded by the Agence Nationale de la Recherche,
and associated researchers at LadHyX, Pprime and Limsi. Towards the end of this
project, it was realised that the analogy between spectral POD modes of the turbu-
lent jet and linear input-output modes has a clear mathematical foundation. The the-
ory of statistical state dynamics, pioneered by Farrell & Ioannou [16], provides the
adequate formalism for the analysis of mean flow and “jittering” wavepackets [9] as
statistical objects. The implications of this description for turbulent shear flows are
currently being explored by various research teams [5, 8], particularly for the case of
jets [L57][58, 53][L22].

Instability and control of periodic flows The above developments indicate that
trends are driven to a large extent by available methodology. The current Ph.D. work
of Léopold Shaabani Ardali aims to extend the established techniques for non-modal
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instability analysis and optimal control to the class of periodic base flows. Similar
efforts are currently being conducted by other research groups [50, 43]. A pulsed jet
is chosen as the object of our study; subject to axisymmetric harmonic forcing, such
a jet forms ring vortices at the forcing frequency. Secondary instabilities arise in the
form of vortex pairing, which may be analysed by way of Floquet theory. Additional
non-axisymmetric forcing is known to give rise to the phenomenon of “bifurcation”
[49]. Optimisation of such active control requires strategies different from singular
value decomposition, as it is used in the case of steady base flows.

Tools developed in this context may prove useful in a wide array of applications,
such as periodic flow in turbo engines, behind flapping wings, and in blood vessels.

1.3 Organisation of this manuscript
Results of my research on jets and plumes from the past nine years are summarised in
the following sections, grouped into the three categories

1. Extrinsically driven oscillations (§2), described by input-output relations devel-
oped around a steady base flow,

2. Intrinsic oscillations (§3), described by modal instabilities of a steady base flow,

3. Secondary instabilities (§4), described by the modal and non-modal evolution of
perturbations in a periodic base flow.

Perspectives on the application of these concepts, to reacting flows and to jet noise pre-
dictions in complex settings, are given in §5. Publications and conference presentations
that I have co-authored are listed in §6, followed by general literature references.
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2 Extrinsically driven oscillations in jets
The amplifier behaviour of jets, i.e. their linear response to external perturbation in-
put, in the absence of strong density variations, was the topic of Xavier Garnaud’s
Ph.D. work [19]. Laminar steady states as well as turbulent mean states were con-
sidered, both under incompressible and under compressible conditions. These studies
were continued by Onofrio Semeraro, during his postdoc project 2013–2016, who used
experimental mean flows and compared quantitatively the linear flow response to ex-
perimentally measured spectral POD modes.

Note that all flow configurations in this section represent jets that are of the same
chemical composition and the same temperature as the ambient fluid. If furthermore
the incompressible limit 𝑀𝑎 = 0 is considered, the density is strictly constant in these
flows; however, at non-zero Mach number, small density variations arise from com-
pressibility effects. In the following, these configurations (incompressible as well as
compressible) will be denoted as homogeneous jets, in order to distinguish them from
the inhomogeneous settings investigated in §3, which involve strong density variations
between the jet interior and the ambient atmosphere.

2.1 Linear eigenmodes of homogeneous jets
[L9] X. Garnaud, L. Lesshafft, P. Schmid & J.-M. Chomaz (2012): A relaxation method

for large eigenvalue problems, with an application to flow stability analysis. J.
Comp. Phys. vol. 231, p. 3912–3927

[L10] X. Garnaud, L. Lesshafft, P. Schmid & P. Huerre (2013): Modal and transient
dynamics of jet flows. Phys. Fluids vol. 25, art. 044103

Motivation Xavier Garnaud’s investigation of the forcing response in jets set out
from the hypothesis that a slightly damped eigenmode exists, which would be easily ex-
cited by low-amplitude forcing input. This conception, suggested by Huerre &Monke-
witz [23], would be consistent with the typical observation of a “preferred mode” in
amplifier jets, characterised by a distinct maximum of perturbation amplitude in a tur-
bulent jet around a Strouhal number of 0.3 [14].

Methodology The computation of converged global jet eigenmodes in compressible
settings turned out to be fraught with technical difficulties. Due to high-order finite-
difference schemes and large flow domains, which were used in order to capture the
acoustic field, the need for matrix inversion as part of the classical shift-invert tech-
nique led to computational resource requirements that appeared to be too restrictive.

A new computational method, named the “shift and relax” technique [L9] was de-
veloped for these compressible eigenmode calculations. Themethod is matrix-free and
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only requires the memory needed for time-stepping of an augmented system. Akin to
the “selective frequency damping” [1], a set of auxiliary filter equations is added to the
regular system of linear flow equations, and a coupling is prescribed in such a way
that eigenmodes are damped with increasing distance from a chosen shift value. The
resulting eigenmode calculations are rather time-intensive, but very light on memory,
such that they can be run on workstations.

Incompressible problems were discretised on an unstructured grid with finite el-
ements (FreeFEM++), and eigenmode spectra were efficiently found with standard
ARPACK and SLEPc routines. These calculations are easily performed on a single pro-
cessor.

Results Stable spectra were obtained in all cases, mostly characterised by a more
or less flat branch of eigenvalues. The spectrum for a laminar incompressible jet at
𝑅𝑒 = 1000 is shown in figure 1: modes plotted as black crosses form an ‘arc branch’
[L19], brought about by spurious feedback from the outflow boundary (see §3.3.2). The
modes shown as red plus signs were linked to the limited accuracy of the numerical
scheme, which allows the resolution of global amplitude variations over not more than
15 decades [L10].

Eigenvalues of a laminar compressible jet, computedwith the “shift and relax” tech-
nique, are shown in figure 2. The base flow, at 𝑅𝑒 = 100 and 𝑀𝑎 = 0.75, was obtained
using selective frequency damping. The eigenvalues again form a branch that is likely
to arise from spurious boundary feedback. Eigenmode perturbations of vorticity are
represented in figure 3, corresponding to the labels in figure 2. These structures have
the typical appearance of Kelvin-Helmholtz wavepackets that originate at the nozzle
(𝑥 = 0), coupled with Tollmien–Schlichting waves in the boundary layers of the inflow
pipe.

None of the computed spectra exhibited a slightly stable discrete eigenmode that
could convincingly be interpreted as the origin of the “preferred mode” flow response
to low-amplitude forcing. It had become clear that temporal eigenmodes are not an
adequate basis for the description of extrinsically driven flow oscillations.

2.2 Deterministic input-output analysis of incompressible jets
[L11] X. Garnaud, L. Lesshafft, P. Schmid & P. Huerre (2013): The preferred mode of

incompressible jets: linear frequency response analysis. J. Fluid Mech., vol. 716,
p. 189–202

Motivation Extrinsically driven flow oscillations in a jet are to be expressed in a
modal basis that genuinely reflects their input-output character, and ideally, such a
basis would be orthogonal. These are the properties of singular value decomposition
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Figure 1: Eigenmodes of axisymmetric perturbations in a laminar incompressible jet
at 𝑅𝑒 = 1000. a) Eigenvalues; b)-e) modulus of axial velocity perturbations, log10 |𝑢|, of
individual modes, as labeled in (a). From reference [L10].
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Figure 2: Eigenvalues of axisymmetric perturbations in an isothermal jet at 𝑅𝑒 = 100
and 𝑀𝑎 = 0.75, computed using the “shift and relax” method. Diamond markers indi-
cate shift values. From reference [L9].

Figure 3: Real part of the vorticity perturbations of typical eigenmodes, labeled in
figure 2. From reference [L9].
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(SVD). Following the eigenspectrum analysis described in the previous section, Xavier
Garnaud proceeded to apply an SVD-based formalism to an incompressible jet, in order
to test if the “preferred mode” at 𝑆𝑡 ≈ 0.3 could be captured and characterised in this
way.

Methodology SVD-based input-output analysis has been introduced for flow in-
stability problems by Trefethen et al. [59], and has been applied to a number of par-
allel flow situations in the following years. The application of such a formalism to
non-parallel problems has been demonstrated, to my knowledge, for the first time by
Alizard et al. [2] for a separated boundary layer, using a reduced-order eigenmode
representation of the linear flow system. Monokrousos et al. [42] computed leading
singular modes in a Blasius boundary layer without the need for eigenmode expan-
sion. In the context of Xavier Garnaud’s PhD thesis, our goal was to use the same
formalism on jet flows.

The governing equations are linearised around a steady base flow. These equa-
tions include a source term 𝑓 that represents a volume force, as a model for external
perturbation input. After a temporal Fourier transform, the linear system is written as

(−𝑖𝜔𝐵 + 𝐿)�̂� = ̂𝑓 . (1)

The operator (−𝑖𝜔𝐵+𝐿)−1 that maps any given forcing ̂𝑓 𝑒−𝑖𝜔𝑡 onto its time-asymptotic
linear flow response �̂�𝑒−𝑖𝜔𝑡 is called the resolvent operator [52]. Its matrix SVD repre-
sentation, (−𝑖𝜔𝐵 + 𝐿)−1 = 𝑈Σ𝑉𝐻, associates each column vector 𝑣𝑖 of matrix 𝑉 with a
real gain value 𝜎𝑖 and a column vector 𝑢𝑖 of matrix 𝑈. The sets of 𝑣𝑖 and 𝑢𝑖 are both
orthonormal among themselves. It follows that the pair (𝑣𝑖, 𝑢𝑖)with highest associated
gain 𝜎𝑖 represents the optimal forcing and response structures of frequency 𝜔. The re-
solvent operator can be tweaked prior to the SVD in order to account for specific gain
definitions and forcing restrictions.

For any given frequency, a discrete resolvent matrix was constructed with Free-
FEM++, using similar tools as in the incompressible eigenmode computations de-
scribed in §2.1. Singular value decomposition was performed on regular workstations,
with routines from the MUMPS and SLEPc libraries, called from Python.

Results An analytical model of a turbulent jet mean flow [41] was chosen as a base
flow, with a straight pipe section upstream of the nozzle, and the Reynolds number
was fixed at 𝑅𝑒 = 1000 for the linear perturbation computations. Forcing input was
restricted to the interior of the pipe, the rationale being that stochastic random fluc-
tuations enter the flow from the nozzle, whereas no volume forces are present in the
free jet. The jet was treated as a purely linear flow system, for lack of clear ideas on
how to model the effect of nonlinearity, especially in the face of the incoherent nature
of turbulent fluctuations.
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Figure 4: Input-output analysis of an incompressible turbulent jet mean flow: spatial
structures associated with optimal body forcing at different Strouhal numbers, indi-
cated in the figures. Left column: axial component of optimal forcing; right column:
axial velocity of associated flow response. From reference [L11].

Optimal forcing in this base flow, at all frequencies, takes the shape of tilted vor-
tical structures near the pipe wall, with maximum amplitude at the nozzle exit. These
structures, shown on the left side in figure 4, are suggestive of the Orr-mechanism
in boundary layers, which give rise to strong energy growth over short convection
distances. The ensuing flow response, shown on the right side in figure 4, clearly
represents a free-jet wavepacket that grows and eventually decays due to shear insta-
bility. It was demonstrated that the initial spatial growth of perturbation amplitude in
the response wavepacket corresponds well to the local growth rate of a spatial shear
instability mode. The maximum input-output energy gain was achieved at a Strouhal
number around 𝑆𝑡𝐷 = 0.45, in decent agreement with typical measurements of the
“preferred mode” in turbulent jets.
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2.3 Deterministic input-output analysis of compressible jets
[L46] X. Garnaud, R. Sandberg & L. Lesshafft (2013): Global response to forcing in

a subsonic jet: instability wavepackets and acoustic radiation. AIAA Paper
2013-2232

[L15] O. Semeraro, L. Lesshafft, V. Jaunet & P. Jordan (2016): Modeling of coherent
structures in a turbulent jet as global linear instability wavepackets: theory and
experiment. Int. J. Heat Fluid Flow vol. 62, p. 24–32

Methodology As the resolvent matrix of highly-resolved compressible flow systems
is unpractically large, a direct-adjoint time-stepping strategy [31] was chosen for the
computations presented in this section. Jet noise analysis was one objective of these
studies from the outset; we therefore opted for high-order finite-difference discreti-
sation on orthogonal grids. Accurate adjoint time-stepping is achieved by a modular
construction technique [18]. These compressible computations require significantly
more resources than the incompressible studies presented in the preceding sections,
and they were all run on the HPC platforms of TGCC and CINES.

Results In two separate studies, we investigated optimal forcing and associated lin-
ear response structures in the mean flow of turbulent compressible jets. The mean
flow used by Garnaud et al. [L46] was provided by Richard Sandberg, obtained by di-
rect numerical simulation of a jet issuing from a long straight pipe, at 𝑅𝑒 = 3691 and
𝑀𝑎 = 0.84, and with significant co-flow. The study by Semeraro et al. [L15] used an
experimentally measured mean flow at 𝑅𝑒 = 106 and 𝑀𝑎 = 0.9, without co-flow, made
available by Peter Jordan and his group.

Following the same conceptions as in the incompressible analysis of section 2.2,
forcing input was again restricted to the interior of the pipe. Both compressible stud-
ies led to similar results. A clear peak in the energy gain is found, at 𝑆𝑡𝐷 = 0.8 in the
co-flowing configuration [L46] and at 𝑆𝑡𝐷 = 0.4 in the case of [L15]. Optimal forc-
ing structures as well as flow response wavepackets resemble those identified in the
incompressible case, except for the added presence of acoustic waves in both.

Garnaud et al. [L46] compared the linear response wavepackets to Fourier modes
extracted from the DNS by Richard Sandberg and found good agreement in the near-
nozzle region of the free jet. More strikingly, the acoustic far field from the DNS is well
reproduced, displaying beam-like radiation patterns, as shown in figure 5. Only at the
highest frequency 𝜔 = 4 (or 𝑆𝑡𝐷 = 1.27), the linear flow response in figure 5c exhibits
a strong upstream lobe, which is absent in the DNS Fourier mode.

An additional point of interest in the analysis of the experimental base flow [L15]
lies in the use of a spatially distributed turbulent viscosity, deduced from Reynolds
stress measurements. Including this in the linear model has the predictable effect of
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Figure 5: Comparison between the linear flow response to optimal forcing (left column)
and Fourier modes extracted from DNS data (right column): density fluctuations at
various frequencies 𝜔 = 𝜋𝑆𝑡𝐷. Contour values are chosen such as to visualise the
acoustic field. From reference [L46].

lowering the global energy gain and shortening the streamwise extent of the response
wavepackets.

2.4 Stochastic input-output analysis of compressible jets
[L57] O. Semeraro, V. Jaunet, P. Jordan, A.V.G. Cavalieri & L. Lesshafft (2016): Stochas-

tic and harmonic optimal forcing in subsonic jets. AIAA Paper 2016-2935

[L22] L. Lesshafft, O. Semeraro, V. Jaunet, A.V.G. Cavalieri & P. Jordan (2018):
Resolvent-based modelling of coherent wavepackets in a turbulent jet. ArXiv
preprint 1810.09340, submitted to Phys. Rev. Fluids

An important step forward in jet instability research has been made over the last
two years, following the realisation that optimal linear input-output structures are
closely related to spectral POD modes of the fluctuations in turbulent jets. This term is
used in the sense of reference [47], denoting eigenmodes of the cross-spectral density
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tensor, and thereby characterising two-point statistics in frequency-space. The theo-
retical basis for this relation is partially described by Dergham et al. [15], Hwang &
Cossu [24] and Beneddine et al. [5]. More complete developments are given in refer-
ences [L57], [58] and [L22].

Motivation While it had been acknowledged for a while, and the evidence reviewed
in detail by Jordan & Colonius [26], that coherent structures in fully turbulent jets
strongly resemble linear instability wavepackets developing in themean flow, the the-
oretical justification for this analogy remained elusive until very recently. PSE cal-
culations of perturbations in mean flows had been shown to reproduce spectral POD
modes, or at least filtered power-spectral density distributions [21, 54], with high ac-
curacy over several jet diameters downstream of the nozzle. Our own linear response
wavepackets, obtained from fully global input-output analysis (see the previous sec-
tion), promised to allow evenmore accurate predictions. Beneddine et al. [L14] had just
demonstrated very good agreement between global response wavepackets and spec-
tral PODmodes in turbulent flow over a backward-facing step. Based on the argument
that the anonymous forcing term ̂𝑓 in the linear input-output relation (1) can be inter-
preted as a representation of turbulent Reynolds stress fluctuations, they had worked
out that such agreement may be expected in flow regimes where the largest singular
value is much greater than the second-largest (“gain separation”).

Furthermore, together with André Cavalieri and Peter Jordan, we elaborated an
approach to jet turbulence based on the dynamics of covariances [16], in parallel with
colleagues at Caltech and Stanford. It is easily demonstrated that spectral POD modes
and the singular modes of the mean-flow resolvent are indeed identical under the
strongly idealising hypothesis that the Reynolds stress fluctuations consist of white
noise [L57],[58]. This assumption, however, is not required in cases of large gain sep-
aration. Jets with thin initial shear layers represent such a case.

The overarching question of our stochastic jet analysis is therefore: can the dom-
inant coherent structures in jet turbulence be accurately modelled by linear input-
output analysis, which requires the turbulent mean flow as the only a priori informa-
tion?

Methodology Thestochastic input-output analysis requires the same computational
tools as the deterministic studies discussed in section 2.3. A hierarchical set of orthog-
onal forcing input and response output structures was computed, for the resolvent
operator that stems from linearisation of the flow equations around the mean flow.
As developed in [L57], and more fully in [L22], the deterministic resolvent operator
provides the relation between the cross-spectral densities of the forcing (the Reynolds
stresses) and of the response (the turbulent fluctuations).

The acquisition of experimental reference data for a spatially resolved representa-
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Figure 6: Comparison between the leading spectral POD modes extracted from exper-
iments (left column) and from the linear model, based on the first five output modes
(right column). Absolute values of axial velocity fluctuations are shown in linear scale.
Taken from [L22].

tion of two-point correlations is an ambitious undertaking. Vincent Jaunet and Peter
Jordan at the Pprime Institute performed synchronised dual-plane TR-PIV measure-
ments in a jet at 𝑀𝑎 = 0.4 and 𝑅𝑒 = 460 000, gathering correlated data in cross-stream
planes at 15 different streamwise locations. About 20 terabytes of image data were
recorded [25].

A model cross-spectral density matrix was then constructed, at various Strouhal
numbers, from the five leading linear output modes, under the strong assumption that
the forcing is given by spatially uncorrelated noise. Eigenvectors of this linear model
matrix provide our prediction for spectral POD modes of the turbulent jet.
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Figure 7: Real parts of spectral POD (experiment and model) at the dominant Strouhal
number, corresponding to figures 6c and 6d. The data is interpolated between mea-
surement locations in 𝑥. Taken from [L22].

Results The mean flow of the jet experiment was used as a basis for linearisation,
and its careful inter- and extrapolation onto the numerical mesh was an important step
towards clean analysis results. Frequency-resolved wavepackets corresponding to the
dominant coherent structures (leading spectral POD modes) in the experimental data
are compared to their numerical counterparts, computed as the leading eigenvectors
of the model cross-spectral density matrix, in figure 6. Except at the lowest Strouhal
number (figures 6a and 6b), the agreement between the two is remarkable. Figure 7
gives a more detailed comparison at the most amplified Strouhal number 𝑆𝑡𝐷 = 0.4 (the
“preferred mode” [14]), showing the real part of axial velocity fluctuations. The data
had to be interpolated between the 15 measurement positions in 𝑥 for this plot.

It can be noted that the computed wavepackets extend slightly further in the
streamwise direction than the experimental ones; including the effect of turbulent dis-
sipation would help to improve the agreement further. However, at present it is not
obvious how such turbulent dissipation is bestmodelled. The principal limitation of the
analysis at this point lies in the assumption of perfectly uncorrelated Reynolds stress
fluctuations (“white noise forcing”). Current efforts, together with our collaborators,
aim at a more realistic characterisation of the Reynolds stress statistics.
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3 Intrinsically driven oscillations in jets and plumes
If the density of a jet is significantly lower than that of the ambient fluid at rest, a
spontaneous onset of synchronised flow oscillations may be observed. Such oscillator
behaviour, characterised as a global instability, has been observed experimentally in
situations where the density variations were either due to heating [40] or due to the
mixing of air with helium [28, 22, 61]. In all these studies, intrinsic oscillations appear
in the form of a regular roll-up of axisymmetric ring vortices.

The link between these oscillations and absolute instability, a local concept, was the
subject of my Ph.D. thesis [L65]. My more recent research, which will be presented in
the present section, focused on a global characterisation of the linear instability behind
intrinsic oscillations in jets.

The Ph.D. thesis of Chakravarthy covered both local and global instability in circu-
lar plumes. These flows differ from jets in the one important aspect, that their momen-
tum is generated by buoyancy. The question to what extent the instability dynamics
of plumes are determined by buoyancy was largely unexplored before Chakravarthy’s
analysis.

Motivation The earlier local instability studies of jets necessarily relied on the as-
sumption of slow streamwise flow variations. In jets, this assumption is questionable,
because the region near the nozzle exit, where local instability is most pronounced,
presents strong shear layer growth. Also, the nozzle itself represents a geometrical
singularity in the flow, which may be very important for global pressure feedback ef-
fects [L24]. The objective of linear global instability analysis was to fully account for
the non-parallelism of the base flow, and to characterise the mechanisms by which
light jets may become globally unstable.

A second important question concerned the role of buoyancy as an instability
mechanism in jets and plumes. In previous local jet instability studies, buoyancy, if
it was at all included in the governing equations, had been found to be unimportant
for the instability dynamics. Would it become an important ingredient in plumes?

Methodology Light jets and plumes were treated as two branches of one family
of flows, arising from the injection of low-density fluid into a higher-density ambi-
ent through a circular orifice. Light jets are then characterised by a low Richardson
number, which measures the effect of buoyant acceleration with respect to the injected
momentum, whereas plumes are characterised by a high Richardson number. The same
set of equations was used for both flow regimes: the so-called low-Mach-number ap-
proximation of the compressible Navier–Stokes equations [36] fully accounts for the
dynamic effects of density variations, but it does not allow density to increase due to
compressibility by pressure. This corresponds in fact to the limit of zero Mach number.
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For all global calculations, the linearised low-Mach-number equations were dis-
cretised by finite elements in the FreeFEM++ environment, by extending the code
originally developed by Xavier Garnaud for incompressible homogeneous jets (see
§2.1). The parameters in the equations were the Richardson number, the density ratio
𝑆 = 𝜌𝑗𝑒𝑡/𝜌∞ and the Reynolds number; the inflow condition introduced the boundary
layer thickness at the orifice as an additional parameter.

The identification of physical mechanisms is an essential element of the global in-
stability studies presented in this section. In some cases, such mechanisms may be
inferred in an ad hoc fashion from an inspection of the eigenmode structures, if plausi-
ble narratives about the cause-and-effect relationship between different perturbation
quantities may be constructed. (In the context of instability, which always relies on
positive feedback effects, the relation between cause and effect is analogous to the
relation between hen and egg.) However, a more universal formal approach for the
identification of instability mechanisms in eigenmodes has been proposed in an un-
published article [L67]. This formalism is briefly outlined in section §3.3, together
with a study on spurious eigenmodes that are regularly encountered in global spectra
of open shear flows, owing to unphysical pressure feedback from imperfectly trans-
parent outflow conditions.

3.1 Linear global instability of weakly buoyant jets
[L16] W. Coenen, L. Lesshafft, X. Garnaud & A. Sevilla (2017): Global instability of

low-density jets. J. Fluid Mech. vol. 820, p. 187–207

The choice of parameter values for this study was guided by the helium jet ex-
periments by Hallberg & Strykowski [22]: laminar jets with Reynolds number values
𝑅𝑒𝐷 6 1000 and with density ratios 0.143 6 𝑆 6 0.5 were considered. The jet exits
from a straight pipe, included in the numerical domain, with a shear layer momentum
thickness 𝜃0 between 2.8% and 6.7% of the nozzle diameter.

In settings corresponding to pure helium injected into air, 𝑆 = 0.143, an isolated
eigenvalue was found to dominate the spectrum. Convergence tests demonstrated
that this was indeed the only eigenvalue in our calculations that was independent
of the computational domain size (see figure 8). Through systematic variations of the
Reynolds number and of the nozzle-exit shear layer thickness, the neutral curve of this
dominant eigenmode was traced, as shown in figure 9, and could thus be compared to
the experimental results [22].

While the general trend of the experimental neutral curve is well captured by our
linear calculations, and decent agreement is found between measured and computed
Strouhal numbers (indicated by text labels in figure 9), a quite significant offset in the
critical Reynolds number remains. In order to find an explanation for this discrep-
ancy, the numerical model was extended to include the effects of buoyancy as well as
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Figure 8: Spectrum of a jet at 𝑅𝑒 = 360, 𝑆 = 0.143 and 𝐷/𝜃0 = 24.3, computed on
numerical domains of different streamwise length 𝑥𝑚𝑎𝑥. From reference [L16].

Figure 9: Comparison of neutral curves obtained from linear analysis (colour) with
those obtained experimentally (black squares and error bars) byHallberg & Strykowski
[22] for pure helium jets. Numbers indicate the Strouhal values of dominant jet oscil-
lations. From reference [L16].
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viscosity variations, but both effects are seen to be rather negligible.
The onset of linear global instability was successfully linked to the presence of

absolute instability near the nozzle. Both the structural sensitivity [20] and the sen-
sitivity to base flow variations [35] was computed, but neither one of these provided
clear indications about the physical mechanisms that are involved in the global desta-
bilisation of the jet. This discussion was revisited in the investigation of plumes (see
§3.2).

At the highest Reynolds number, 𝑅𝑒 = 1000, no isolated eigenvalue could be de-
tected, and the entire spectrum was found to be strongly dependent on the length of
the computational domain. This observation, consistent with our earlier homogeneous
jet calculations [L10], motivated a more detailed investigation of the effect of domain
truncation (see §3.3.2).

3.2 Linear local and global instability of strongly buoyant
plumes

[L13] R.V.K. Chakravarthy, L. Lesshafft & P. Huerre (2015): Local linear stability of
laminar axisymmetric plumes. J. Fluid Mech. vol. 780, p. 344–369

[L12] L. Lesshafft (2015): Linear global stability of a confined plume. Theor. Appl. Mech.
Lett. vol. 5, p. 126–128

[L18] R.V.K. Chakravarthy, L. Lesshafft & P. Huerre (2018): Global stability of buoyant
jets and plumes. J. Fluid Mech. vol. 835, p. 654–673

In 2013, at the beginning of Chakravarthy’s Ph.D. project, the literature on linear
instability of plumes was limited to a few local studies, mostly from the 1980s. Tem-
poral and spatial analyses had been performed for self-similar base flows in parameter
regimes that were numerically accessible at the time. Prandtl numbers for these self-
similar profiles were limited to values 1 and 2. Yet several experiments and numerical
simulations had established the presence of intrinsic oscillations, in the form of ax-
isymmetric vortex formation.

The first step towards a linear description of self-sustained oscillations in plumes
had to be made in terms of local theory. Our first article [L13] describes a numeri-
cal procedure for the construction of self-similar plume profiles, under the Boussinesq
approximation, for arbitrary Prandtl and Grashof number values, which were then
used for temporal and spatio-temporal instability analysis. New instability mecha-
nisms were described, both for axisymmetric and for helical modes, based on the in-
terplay between vorticity and temperature perturbations in the self-similar plume far
from its source. Absolute instability in such profiles was shown to occur for helical,
but never for axisymmetric perturbations. The absolute helical mode is characterised
by a very long wavelength, small frequency and small positive growth rate.
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Figure 10: Strouhal number of the dominant global eigenvalue, as a function of 𝑅𝑖/𝑆.
Legend: (•) 𝑅𝑒 = 200, 𝑆 = 7; (∘) 𝑅𝑒 = 500, 𝑆 = 7; (�) 𝑅𝑒 = 200, 𝑆 = 4.5; (△) 𝑅𝑒 = 200,
𝑆 = 7, with parabolic inlet velocity profile. Solid line: power law from the Cetegen &
Kasper [10] experiments, rescaled tomatch the present definition of 𝑅𝑖. From reference
[L18].

These local results, valid in the self-similar regime, do not explain the observed
intrinsic plume oscillations, which are consistently reported to be axisymmetric. A
global eigenmode analysis was therefore undertaken, for laminar base flows that in-
clude the buoyancy source region, obtained by Newton–Raphson iteration of the low-
Mach-number flow equations. This set of equations does not invoke the Boussinesq ap-
proximation, and is valid for arbitrarily high density variations. The principal influence
parameters in this study were the density ratio, in this study defined as 𝑆 = 𝜌∞/𝜌𝑝𝑙𝑢𝑚𝑒
(reciprocally to our previous definition), and the Richardson number 𝑅𝑖. A low value
of 𝑅𝑖 denotes a base flowwhich is dominated by the injected momentum, and therefore
is classified as a jet, whereas a high value of 𝑅𝑖 denotes a flow that is dominated by the
effect of the buoyancy force, characteristic of a plume.

The global spectra of these non-self-similar base flows revealed the presence of
several strongly growing eigenmodes in the high-𝑅𝑖 plume regime, distinct from the
instability already documented for low-𝑅𝑖 jets (§ 3.1). Across the entire interval of
investigated Richardson number values, 10−4 6 𝑅𝑖 6 103, only axisymmetric pertur-
bations were found to exhibit global instability, fully consistent with empirical obser-
vations. All globally unstable base flows were shown to be absolutely unstable at the
inflow, but convectively unstable in the downstream self-similar flow region. The ab-
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solute instability of helical perturbations turned out to be too weak in order to trigger
global instability.

The first significant result of Chakravarthy’s global stability analysis was the pre-
cise recovery of the experimental scaling law, given by Cetegen & Kasper [10], that
relates the Strouhal number of flow oscillations to the ratio 𝑅𝑖/𝑆. This scaling is shown
in figure 10: symbols represent the Strouhal number of the dominant instability mode
in various flow configurations, and a solid line indicates the power law reported from
experiments [10]. This result has been corroborated in a parallel study by Bharadwaj
& Das [6].

Another significant result was the formal demonstration that global instability in
the plume regime is underpinned by the effect of buoyancy, whereas in the jet regime
it is caused by the baroclinic torque. This analysis of physical mechanisms was based
on the formalism developed by Marquet & Lesshafft [L67] (see §3.3.1), slipped into our
publication [L18] in the guise of a sensitivity analysis.

A short study of internal plumes, confined inside a cylindrical box with solid,
isothermal walls, indicated that global instability in such a configuration is driven by
non-local feedback between a cooled top and a heated bottom boundary [L12]. Despite
the absence of absolute instability, global instability was observed in such a setting.
The critical Rayleigh number for the onset of nonlinear oscillations, determined to be
𝑅𝑎𝑐 = 3.85×107 in direct numerical simulations [32], was recovered as 𝑅𝑎𝑐 = 3.80×107
for the threshold of linear global instability; the nonlinear and linear frequencies at
this threshold were found to match within 0.5%.

3.3 Interpretation of instability mechanisms
3.3.1 A refined definition of the global wavemaker

[L67] O. Marquet & L. Lesshafft (2015): Identifying the active flow regions that drive
linear and nonlinear instabilities. arXiv:1508.07620

The “wavemaker” (Monkewitz [38]) associated with a global instability mode, as a
notional concept, denotes the flow region where oscillations are generated, as opposed
to the flow region where they may reach their amplitude maximum after further am-
plification. In the context of weakly non-parallel flows, the wavemaker has been iden-
tified with the location of a saddle point in the analytic continuation of the absolute
frequency as a function of the streamwise coordinate [11]. In the context of global
eigenmode analysis, the wavemaker definitions by Luchini et al. [20, 33], based on the
structural sensitivity of a given eigenmode, has been widely used for the discussion of
instability dynamics.

Olivier Marquet and myself proposed a similar but different definition of the wave-
maker [L67]. The definition starts from the simple observation that the linear operator
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𝐿 of a given eigenvalue problem
𝜔𝐵𝑞 = 𝐿𝑞 (2)

has a unique diagonal representation 𝐿 = 𝐵𝑄Ω𝑄−1, and that the matrix 𝑄† formed by
the adjoint eigenvectors satisfies 𝑄−1 = 𝑄†,𝐻𝐵. The diagonal eigenvalue matrix Ω is
then uniquely related to 𝐿 as

Ω = 𝑄†,𝐻𝐿𝑄. (3)

Suppose one can formulate a physically meaningful decomposition of the linear oper-
ator, 𝐿 = 𝐿1 + 𝐿2 + ⋯ + 𝐿𝑛, a given eigenvalue 𝜔1 with associated direct and adjoint
eigenvectors 𝑞1 and 𝑞†1 is precisely determined by

𝜔1 = 𝑞†,𝐻1 𝐿𝑞1 = 𝑞†,𝐻1 (𝐿1 + 𝐿2 + ⋯ + 𝐿𝑛)𝑞1, (4)

such that the contribution of each component 𝐿𝑖 to the eigenvalue 𝜔1 is quantified as
𝑞†,𝐻1 𝐿𝑖𝑞1.

The decomposition of the operator 𝐿 can be performed to denote spatial locations,
individual terms in the flow equations, or both. Contributions of different flow re-
gions, as well as different physical mechanisms, to the frequency and the growth rate
of an eigenmode may therefore be quantified. The original paper [L67] demonstrated
this concept for the Ginzburg–Landau equation and for the 2D cylinder wake, both
in linear and nonlinear contexts. It was shown for these examples that the ensuing
wavemaker definition is consistent with those given by Chomaz et al.[11] and by Lu-
chini et al. [20, 33]. In contrast to those established definitions, however, our formalism
provides a straightforward framework for a discussion of physical mechanisms, in so
far as they can be related to individual terms in the flow equations. Its potential has
since been tested in several flow configurations, including the plume study discussed
in the previous section, the dynamics of a spring-mounted cylinder [L59](c), and the
instability of a premixed flame [L58](a). A new submission of the manuscript [L67] is
in preparation.

3.3.2 Spurious feedback from boundary conditions

[L19] L. Lesshafft (2018): Artificial eigenmodes in truncated flow domains. Theor.
Comp. Fluid Dyn., vol. 32, p. 245-262.

The prominent branch of evenly spaced eigenmodes, which has been found to dom-
inate most jet and plume spectra, is in fact regularly encountered in the global spectral
analysis of open shear flows. We have named it the “arc branch” [L19]. The arc branch
has in several instances been discussed as the spectral manifestation of amplifier flow
behaviour, but such a conception is problematic — first, because amplifier behaviour
is appropriately described by the pseudospectrum, which does not require the presence
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Figure 11: Isocontours of the pressure amplitude in the acoustic far field of a jet with
𝑆 = 0.3. The apparent sound source on the jet axis is located at 𝑥 = 9. The directivity
pattern in figure 12 is extracted along the arc of radius 30. From reference [L5].

of such eigenmodes, second, because the arc branch is notoriously dependent on the
computational domain size. The nature of these modes craved an explanation.

It was demonstrated that arc branch modes in jets arise from the coupling of down-
stream-propagating shear instability waves and upstream-reaching pressure feedback
[L19]. The latter originates as a spurious effect at the numerical outflow, and it pro-
vokes perturbations at the numerical inflow, where shear instabilities can be triggered.
The study shows that explicit inflow-outflow coupling in a Ginzburg–Landau model
produces an arc branch very similar to the one found in open shear flows. It is further
confirmed that arc branch modes of a parallel jet depend on the presence of spurious
forcing of a local 𝑘+ instability wave at the inflow, caused by pressure signals that ap-
pear to be generated at the outflow. Absorbing layers, or sponge zones, are suggested
and tested as a technical means to reduce the effect of spurious pressure feedback from
artificial domain boundaries.

3.4 Acoustic radiation from oscillating hot jets
[L5] L. Lesshafft, P. Huerre & P. Sagaut (2010): Aerodynamic sound generation by

global modes in hot jets. J. Fluid Mech. vol. 647, p. 473–489
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Figure 12: Directivity of the acoustic far field, comparison between direct numerical
simulation and Lighthill solution. Thick solid line: directly computed sound; thin solid
line: Lighthill solution from enthalpy-flux term alone; dashed line: combined radiation
from all other terms. The absolute SPL level is not adjusted, but follows directly from
the data analysis. From reference [L5].

Jet instability studies are in large measure motivated by the problem of jet noise.
The noise that is emitted by the regular formation of vortex rings in a hot jet is available
from the direct numerical simulations performed during my Ph.D., and it is accessible
for an investigation into the underlying acoustic source mechanisms.

A configuration with Reynolds number 𝑅𝑒 = 1000, Mach number 𝑀𝑎 = 0.1 and
density ratio 𝑆 = 0.3 is chosen as the baseline case (density ratios 0.1 and 0.2 are also
considered. The acoustic far field, extracted from the DNS and shown in figure 11, is
found to be of dipole character: the pressure amplitude varies with the observation
angle 𝜗 (measured from the jet axis) as ̂𝑝 ∝ cos 𝜗.

In order to identify the acoustic sourcemechanisms, far-field solutions of the Light-
hill equation are constructed, under the Fraunhofer approximation and under the as-
sumption of radially compact, axisymmetric near-field source distributions. These so-
lutions permit the isolation of contributions from individual source terms to the total
acoustic far field. The source distributions are evaluated from the numerical simulation
data.

A first attempt [L65], based on the original source terms of the Lighthill equation,
gave unsatisfactory results, because (i) the Lighthill equation only contains monopole
and quadrupole sources, (ii) as a result, the acoustic extinction angle was inaccurately
reproduced and (iii) the dominant source term was found to be the apparent ‘entropy’
fluctuation, which does not lead to a clear physical interpretation in the presence of
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strong density variations. Instead, Lilley’s [30] reformulation of the Lighthill source
terms was employed with success. Dipole components appear explicitly in this formu-
lation, and it was shown that the dominant contribution by far arises from the dipole
source related to the axial flux of enthalpy in the oscillating jet. This isolated com-
ponent is compared to the total sound field in figure 12 (solid lines). In this highly
synchronised flow case, the acoustic source region is quite compact in the axial direc-
tion, and antenna effects are therefore not pronounced.

4 Secondary global instabilities of incompressible
jets

Moving onwards from linear analysis of primary instabilities in steady jet base flows,
the study project of Léopold Shaabani Ardali’s Ph.D. work targets the secondary in-
stability of axisymmetric vortex streets in a jet. Two particularly striking instances of
secondary instability phenomena are considered:

a) vortex pairing as a self-sustained process,

b) jet bifurcation [49] as an extrinsically forced process.

Both scenarios, as observed in experiments and in numerical simulations, appear to
be of a fundamentally nonlinear nature, yet we approach them in a linear framework.
Vortex pairing, arising from inherent mechanisms, is formalised as a modal Floquet
problem and complemented by an analysis of transient growth. Jet bifurcation, relying
on subharmonic actuation at the nozzle, is investigated as a non-modal optimal forcing
problem. The analysis in both cases is based on a time-periodic base flow, represented
by the axisymmetric 𝑇-periodic vortex street resulting from 𝑇-periodic forcing of the
primary instability at the inlet.

4.1 Vortex pairing as a Floquet instability
[L17] L. Shaabani-Ardali, D. Sipp & L. Lesshafft (2017): Time-delayed feedback tech-

nique for suppressing instabilities in time-periodic flow. Phys. Rev. Fluids vol. 2,
no. 113904

[L21] L. Shaabani Ardali, D. Sipp & L. Lesshafft (2018): Vortex pairing in jets as a global
Floquet instability: modal and transient dynamics. J. Fluid Mech., in press
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Figure 13: Vortex pairing in a harmonically forced jet, for 𝑆𝑡𝐷 = 0.6, 𝑅𝑒 = 2000 and an
inflow forcing amplitude 𝐴 = 0.05. From [L21].

Motivation Vortex pairing, visualised in figure 13 has long been described as a sec-
ondary instability of a regular vortex street, both in plane shear layers and in jets. The
underlying vortex street arises from the primary shear instability, typically in response
to harmonic forcing at the nozzle. If this primary forcing is 𝑇-periodic, characterised by
the fundamental Strouhal number 𝑆𝑡𝐷 = 𝐷/𝑇𝑈𝑗 based on jet diameter and exit velocity,
the pairing process is 2𝑇-periodic, and therefore a subharmonic instability is expected.
Much work in the 1980s and 1990s was directed at the conditions under which sub-
harmonic perturbations can grow in vortex streets, principally based on the resonance
criterion formulated byMonkewitz [39]; it was even suspected that the global feedback
mechanism behind vortex pairing underpinned the development of jet turbulence [29].
Yet no quantitative global stability analysis of the vortex pairing phenomenon had ever
been undertaken.

Our study analyses the instability properties of a spatially developing 𝑇-periodic
vortex street, as it arises due to harmonic forcing at the inflow, in the framework of
Floquet theory [17].

Methodology Prior to performing instability analysis, the 𝑇-periodic base flow is
obtained from nonlinear DNS. However, as this base flow may be unstable with re-
spect to pairing, all non-𝑇-periodic perturbations must be artificially stabilised. Har-
monic modulations of the inlet jet velocity are imposed, with Strouhal number 𝑆𝑡𝐷 and
forcing amplitude 𝐴, such that the time-dependent inflow condition is prescribed as
𝑈(𝑟, 𝑧 = 0, 𝑡) = [1 + 𝐴 sin(2𝜋𝑆𝑡𝐷𝑡)]�̃� (𝑟). Similar to the technique of selected frequency
damping, commonly applied in order to compute unstable steady base flows, Léopold
Shaabani Ardali devised a method based on time-delay control [L17], which damps dif-
ferences between the flow states at times 𝑡 and 𝑡 − 𝑇, and which is maximally efficient
for eliminating subharmonic fluctuations. By the time of submission of this first article,
we realised that this technique constitutes a special case of the delayed feedback con-
trol method described by Pyragas [48], used in the context of low-dimensional chaotic
systems.

Floquet instability is characterised by the presence of Floquet multipliers 𝜇𝑖 with
an absolute value larger than unity, denoting modal perturbation growth over one
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Figure 14: Occurrence of vortex pairing in direct numerical simulations, for an inflow
forcing amplitude 𝐴 = 0.05. From reference [L21].

flow period 𝑇. These multipliers are found as the eigenvalues of the linear time-shift
operator Φ that propagates a small perturbation from time 0 to 𝑇. The eigenvalues
are computed by projecting Φ onto an orthonormal basis of a Krylov subspace, using
only linear time-stepping of the linearised flow equations. The linear time-stepping is
implemented in FreeFEM++, and a block-Arnoldi algorithm [51] is employed in order
to construct the orthonormal Krylov basis with maximum efficiency.

The possibility of transient perturbation growth in the time-periodic base flow is
again explored by means of singular value decomposition, as described by Barkley et
al. [4]. A special twist of the numerical procedure permits us to construct the leading
singular modes solely based on the same Krylov basis that is already available from
the modal analysis, without the need for further time-stepping. In particular, contrary
to the procedure given by Barkley et al. [4], no adjoint time-stepping is required.

Results The study starts out from a parametric survey of the spontaneous occur-
rence of vortex pairing in direct numerical simulations, in the absence of artificial
stabilisation. Simulations of the nonlinear flow development are performed with the
Nek5000 code, restricted to an axisymmetric geometry. Both the Strouhal and the
Reynolds number are varied systematically, for three different values 𝐴 = 0.01, 0.05
and 0.1. As a result of the inflow modulations and the primary jet instability, the shear
layer rolls up into a regular street of ring vortices, with a passage Strouhal number
equal to 𝑆𝑡𝐷. Self-sustained vortex pairing is observed in these simulations in a spe-
cific region of the 𝑆𝑡𝐷/𝑅𝑒 plane, delineated by a “neutral curve”, which depends on
𝐴. Figure 14 shows these empirical results for the standard forcing amplitude values
𝐴 = 0.05.
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The first question is whether the occurrence of self-sustained vortex pairing is
linked to the presence of a linear instability of the 𝑇-periodic (i.e. unpaired) base
flow. Using the time-delay stabilisation technique [L17], which only involves adding
a control force that depends linearly on the difference of the flow state at times 𝑡 and
𝑡 − 𝑇, strictly 𝑇-periodic flows are computed. Modal Floquet analysis is performed for
𝐴 = 0.05, along two paths in the 𝑆𝑡𝐷/𝑅𝑒 plane, once varying 𝑅𝑒 at constant 𝑆𝑡𝐷 = 0.6
and once varying 𝑆𝑡𝐷 at constant 𝑅𝑒 = 2000. Along both paths, unstable eigenvalues
are found to arise precisely over the parameter regime where vortex pairing occurs
in the DNS. Furthermore, these unstable eigenvalues are real and negative; in other
words, their complex phase is 𝜋. This characterises the associated perturbation mode
as being subharmonic with respect to the 𝑇-periodic forcing, as one would expect for
the vortex pairing instability. It is concluded that vortex pairing, as a 2𝑇-periodic limit
cycle, is indeed the result of a subharmonic Floquet instability.

However, the transition from an unstable unpaired towards a paired state, in typical
simulations, exhibits stronger growth and different spatial distributions than what the
modal analysis predicts. In order to better describe the transient dynamics by which
this bifurcation takes place, the optimal perturbation for transient growth is computed.
Non-modal analysis predicts strong transient growth of perturbations close to the jet
inlet, in good agreement with DNS observations. At 𝑆𝑡𝐷 = 0.6 and 𝑅𝑒 = 2000, a modally
unstable setting, the optimal perturbation provides an amplitude gain of five orders of
magnitude over the purely modal growth.

4.2 Optimal forcing of jet bifurcation
[L23] L. Shaabani-Ardali, L. Lesshafft & D. Sipp: Optimal triggering of jet bifurcation.

In preparation for J. Fluid Mech.

Motivation The phenomenon of jet bifurcation is chosen as a particularly interest-
ing effect of active flow control exploiting a secondary instability of a periodic flow.
Under suitable actuation at the inflow, a jet splits into two separate streams of vor-
tex rings in a zipper-like fashion (see figure 15). The actuation is composed of an
axisymmetric component of Strouhal number 𝑆𝑡𝐷 and an added helical subharmonic
component of 𝑆𝑡𝐷/2. While the axisymmetric component sets up the basic 𝑇-periodic
vortex street, as in the previous section, the helical component imparts a left/right
displacement to each vortex ring, which is amplified as the vortices propagate down-
stream. The rather drastic split-up of the fundamental vortex street occurs once the
subharmonic perturbation reaches nonlinear amplitude levels, but we suspect that lin-
ear instability mechanisms acting within the periodic base flow provide the necessary
amplification that leads up to the parting of the streams.

29



(a) nozzle flapping (b) optimal forcing

Figure 15: Direct numerical simulation of jet bifurcation at 𝑆𝑡𝐷 = 0.5 and 𝑅𝑒 = 2000,
snapshots of vorticity contours. (a) “traditional” subharmonic forcing in the form of
nozzle flapping; (b) optimal subharmonic forcing, as identified by linear analysis. From
[L23].

The unstable vortex dynamics can be worked out qualitatively by three-fingered
hand-wringing, as explained by Reynolds et al. [49]. Yet the quantitative analysis re-
quires global input-output computations, similar to those discussed in §2.2, adapted
to time-periodic base flows. Hitherto unexplored, optimal forcing strategies for jet
bifurcation can then be identified.

Methodology The base flow computations are performed in the same way as de-
scribed in the previous section, using the Nek5000 code for nonlinear axisymmetric
DNS, with added stabilisation of non-𝑇-periodic components [L17]. These computa-
tions fully account for the axisymmetric forcing that leads to the formation of the
basic vortex street. The evolution of linear helical subharmonic perturbations within
this axisymmetric and 𝑇-periodic base flow is calculated via linear time-stepping in
FreeFEM++.

Continuous subharmonic forcing is applied only in the inlet plane 𝑧 = 0, by pre-
scribing helical perturbations in all three velocity components as a boundary condition.
Radial distributions are chosen in the form of Bessel functions (𝐽0, 𝐽1 and 𝐽2), combined
such as to respect the compatibility conditions on the axis and as to ensure that the
velocity field is divergence-free. Linear time-stepping is performed for a large num-
ber of such boundary conditions, which form an orthogonal basis for inflow velocity
perturbations, until the long-time asymptotic flow response is obtained for each of
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them. Coefficients for the optimal superposition of forcing basis functions are readily
obtained for any given objective in the linear flow response.

Results The objective of optimal triggering of jet bifurcation is formalised in two
ways: first, we aim to maximise the standard 𝐿2 norm of subharmonic velocity per-
turbations in the flow response to unit-𝐿2-norm forcing. This represents an integral
measure of subharmonic kinetic energy gain in the flow domain. Second, we consider
a specifically tailored norm of the flow response that measures the radial displacement
of base flow vortices, which corresponds more directly to the intended effect of trig-
gering bifurcation of the vortex street. It is found however that both formulations lead
to nearly identical shapes of the optimal forcing.

In previous numerical simulations of jet bifurcation, for instance by [60], the
shape of helical inflow forcing was prescribed such as to represent a low-amplitude
left/right flapping of the jet nozzle. Using our optimised forcing distribution in three-
dimensional DNS, it is found that the splitting of the vortex street is more vigorous,
and achievable over a larger range of 𝑆𝑡𝐷, than with simple nozzle flapping. Figure
15 compares snapshots from simulations, at 𝑆𝑡𝐷 = 0.5 and 𝑅𝑒 = 2000, with flapping
and with optimal forcing. The injected kinetic energy of the subharmonic velocity
perturbations is identical in both cases.

5 Perspectives

5.1 Flame instability
Flames constitute a family of flows that are similar to jets and plumes in many respects,
with the added ingredient of chemical reaction and heat release. Unsteadiness in com-
bustion processes, due to instability phenomena, is a cause for loss of performance,
increased pollution, and structural damage of combustion engines. These phenom-
ena involve multi-physics and multi-scale mechanisms, through the coupling of heat
release, gas flow and acoustics.

Over the past three years, I have attempted linear analysis of several flame con-
figurations. Together with postdoc Onofrio Semeraro, building on the Ph.D. work of
Mathieu Blanchard at LadHyX, we first investigated the instability of a premixed “M-
flame” in an annular burner [7], by means of modal as well as input-output analysis
[L58]. The annular burner consists of a pipe, from where the premixed fuel-air stream
exits into a large combustion chamber, and a thin cylindrical rod, concentrically fixed
inside the pipe. A flame of the M-type attaches to the exterior rim of the inflow pipe
and to the interior rim of the rod. Mesh and base flow (methane volume fraction) in the
flame region are shown in figure 16. An Arrhenius law is used to model the reaction
rate [7].
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Figure 16: Geometry, mesh and base flow (methane volume fraction) of an M-flame.
The base flow is taken from [7] and interpolated onto the FEM mesh.
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Figure 17: Left: eigenvalue spectrum of the M-flame (axisymmetric perturbations
only). Right: Snapshot of temperature fluctuations associated with the least stable
mode. The flame front is drawn as a black line.
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Experiments indicate that this flame configuration does not exhibit self-excited be-
haviour, but that it is highly receptive to incoming perturbations. Our linear analysis
reproduces this receptivity in a narrow frequency band, where the energy gain be-
tween flow response and applied forcing peaks sharply. This behaviour is the result
of a resonance, caused by a slightly stable eigenmode of the flame spectrum displayed
in figure 17. This eigenmode is accessible to a detailed analysis of its intrinsic mech-
anisms, by way of the wavemaker in the sense of section 3.3.1. It is thus found that
the instability is dominated by simple shear mechanisms, which act mainly outside the
flame region and give rise to strong oscillations (“puffing”) in the plume. Fluctuations
of reaction rate and heat release only play a passive part in driving this instability. The
role of combustion in this context, as it turns out, is only to set up the basic shear flow
state through buoyancy.

We carried out similar calculations for laminar “V-flames” and turbulent swirl
flames, with base flows provided by Kilian Oberleithner at TU Berlin. All these anal-
yses suffer from severe uncertainty about the appropriate chemistry modelling, and
from the unavailability of accurate density and temperature fields. Our current efforts,
led by Léopold Shaabani Ardali and myself, are concentrated on a simple premixed
conical flame of a Bunsen burner, for which the base flow is contributed by our part-
ners Bénédicte Cuenot and Laurent Gicqel at CERFACS, computed in direct numerical
simulations with the AVBP code.

5.2 Semi-empirical modelling of noise from installed jets in
flight

Following up on the mostly fundamental research within the ANR Cool Jazz project,
our new project “DARETOMODEL” in the H2020 CleanSky2 program is a step higher
up on the TR-scale. This project is led by Peter Jordan (Institut Pprime), with Anurag
Agarwal (University of Cambridge), Jérôme Huber (Airbus) and myself as partners.

The objective is to construct low-rank models for the prediction of noise radiated
from engine jets, in the presence of a wing, and with co-flow as in flight conditions.
The noise source is to be modelled as a stochastic wavepacket, with an amplitude enve-
lope function obtained from parabolised Navier–Stokes computations. The associated
sound field may then be constructed from the Green’s function, which can be mod-
ified in order to account for the effect of a wing surface and co-flow. An important
unanswered question in this context is how turbulence may realistically be modelled
in the form of non-white forcing of a linear system, and if the concept of turbulent vis-
cosity may be adapted in order to capture a portion of turbulence effects on coherent
perturbation statistics.
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