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SYMMETRY BREAKINGS IN THE WAKE OF A DISK: A GLOBAL STABILITY ANALYSIS
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Summary The onset of unsteadiness in the wake of a circular flat disk is investigatedin the framework of the global stability theory. We
address the connection between the bifurcations undergone respectively by the axisymmetric steady state and by the real flow. A model
based on the normal form theory is presented, that allows to identify threesuccessive bifurcations. The critical Reynolds numbers and
the time and space symmetries of the stable solutions show excellent agreement with the results of direct numerical simulations.

INTRODUCTION

The wake past an axisymmetric disk has already been investigated using the framework of linear global stability [4]. This
study predicted a first bifurcation for Re=116.5 leading to the loss of axisymmetry, and a second bifurcation for Re=125.6
leading to unsteadiness (loss of time invariance). However, these values were obtained by considering the stability of
a steady axisymmetric base flow, which no longer exists for Re>116.5. In this paper, we use the normal form theory
to clarify the connection between the bifurcations undergone respectively by the axisymmetric steady state and the real
flow. A similar study has been carried out by use of direct numerical simulations [2]. We address the question using the
global stability theory to build a model retaining the lowest-order nonlinear terms that respect the symmetries of the initial
problem. The symmetry properties and the dynamics of the model are then compared to that of the whole system.

METHODOLOGY AND RESULTS

We consider a disk of diameterD in a uniform flow of velocityU∞. Standard cylindrical coordinatesr, θ andz with
origin taken at the center of the disk are used. The fluid motion is governed by the incompressible Navier-Stokes equations
made non-dimensional byD andU∞. u = (ur, uθ, uz) is the fluid velocity whereur, uθ anduz are the radial, azimuthal
and axial components, andp is the pressure. We consider a flowq = (u, p) made of the superposition of an axisymmetric
steady base flowq0 = (ur0, 0, uz0, p0) and a three-dimensional perturbationq1 = ǫ(ur1, uθ1, uz1, p1) of amplitudeǫ.

The base flow is obtained through time-dependent simulations, based on second order schemes (Taylor-Hood finite-
elements and Lagrange-Galerkin discretizations). The instability problem forq1 is formulated simultaneously linearizing
the governing equations aboutq0. We use a global normal mode expansion

q1 = q̂1(r, z)eσt+imθ + c.c. (1)

whereq̂1 = (ûr1, ûθ1, ûz1, p̂1) is the so-called global mode.m is the integer azimuthal wavenumber andσ is the complex
pulsation,σr andσi being respectively the growth rate and frequency of the global mode.q̂1 andσ are solutions of an
eigenvalue problem which is then solved numerically (Arnoldi method) to evaluate the critical Reynolds numbers.
Results of our global stability analysis are consistent with that of ([4]). The first bifurcation occurs at Rec1 = 117.0 for
anm = 1 non-oscillating global modêqA

1 (σi = 0). The spatial structure of the associated eigenmode displays strong
large-scale axial velocity disturbances under the form of apair of counter-rotating streamwise vortices responsiblefor the
loss of axisymmetry (figure 1). A Hopf bifurcation then occurs at Rec2 = 125.4 for both anm = +1 global modêqB+

1

and anm = −1 global modêqB-
1 of same frequencyσ0 = 0.760 (St = fD/U∞ = 0.12), whose associated eigenmode

exhibits a spatially periodic downstream structure characteristic of the oscillatory wake instability (figure 2).

We consider the model flow consisting of the superposition ofq0 and of the three modeŝqA
1, q̂

B+
1 and q̂

B-
1 , undergoing

a multiple codimension bifurcation at the critical Reynolds number Rec2 = 125.4. We introduce three time-dependent
complex amplitudesA, B+ andB - so that

q̂1 = Aq̂
A
1e

iθ + B+
q̂

B+
1 eiθ+iσ0t + B -

q̂
B-
1 e−iθ+iσ0t + c.c. (2)

A system of coupled Stuart-Landau amplitude equations retaining only the lowest-order nonlinear terms is derived by
considering that invariance is required when the origins oftime (t → t + t0) and azimuthal positions (θ → θ + θ0) are
changed, and when theθ → −θ symmetry is applied. The system of amplitude equations finally reads

dA/dt = ǫ2∆Re−1λAA − ǫ2A(µA |A|
2
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+|

2
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All coefficients are numerically computed using the adjointglobal modeŝq†
1A, q̂B+†

1 andq̂
B+†
1 , each adjoint mode being so-

lution of a specific eigenvalue problem. The interpretationof these adjoint modes will be discussed in terms of receptivity



to external forcing. This point is of particular importancewhen considering experimental set-ups, for instance the disk
holding device induces perturbations that may be seen as local modifications of the base flow. We obtain

λA = 65 λB = 67 + 13 i
µA = 2.9 µB = 0.33 − 0.015 i
νA = 0.89 − 0.20 i νB = 0.44 − 0.15 i

ηB = 0.94 − 3.2 i
χA = 0.69 χB = 1.4 − 1.1 i .

A mathematical exploration of the solutions of system(3) is available in [3]. These solutions show excellent agreement
with the results of time integrations (Runge-Kutta, 4th order), which allows us to build a consistent bifurcation diagram.
(figure 3). The model flow undergoes a first bifurcation for Re=117.0: the axisymmetry is lost but the time invariance
is preserved, leading to a 3D steady state with a reflectionalsymmetry. A Hopf bifurcation then occurs for Re=123.6,
where both the remaining reflectional symmetry and the time invariance are broken, leading to a fully 3D periodic state. It
should be pointed out that the loss of time invariance occursslightly earlier than predicted by the linear stability analysis
(Re=125.4), due to the fact that the steady axisymmetric base flow no longer exists in this range of Reynolds numbers. A
third bifurcation then occurs for Re=139.6, where the flow remains unsteady, but recovers a lost reflectional symmetry.
These results are consistent with direct numerical simulations [1,2] predicting three successive bifurcations at Reynolds
numbers Re=115.5, 121.5 and 139.5, with identical symmetryfeatures. This suggests that the 3D dynamics of the whole
system is efficiently captured using a reduced order model based on the destabilization of the axisymmetric steady state.
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Figure 1. Axial velocity û
A
z1 and axial vorticityΩ̂A

z1 atz = 2 for the steady global mode (Re= 117.0, arbitrary normalization).

Figure 2. Axial velocity û
B+
z1 for the oscillating global mode (Re= 125.4, arbitrary normalization).

Figure 3. Simplified bifurcation diagram and related stable solutions.


