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Introduction

A large body of works has been devoted to the problem of the wake flow past a fixed cylinder, and
it is now well known that at a critical Reynolds number Re∗ ∼ 47, the flow undergoes a global instability
responsible for the onset of the vortex-shedding phenomenon, thus leading from a steady symmetric state
towards a time-periodic non-symmetric state [1]. This causes the cylinder to experience unsteady lift and
drag forces. If mounted on elastic supports, the cylinder may thus undergo vortex-induced vibrations
(VIV). For a review of the recent progress achieved in this field, the reader is referred to Williamson &
Govardhan [2]. The present work aims at investigating VIV in the vicinity of the critical Reynolds number
Re∗ by combining asymptotic analyses and adjoint-based receptivity methods. The main advantage of
such an approach lies in the fact that it requires no specific treatment in the numerics, as for instance
mesh deformation schemes [3].

1. Theoretical formalism

We consider a cylinder of diameter D in a uniform flow of velocity U∞. Standard cylindrical coordi-
nates x, y with origin taken at the center of the cylinder are used. The fluid motion is governed by the
incompressible Navier-Stokes equations made non-dimensional by D and U∞. u = (u, v)T is the fluid
velocity, with u and v the streamwise and transverse components, and p is the pressure. The state vector
q = (u, p)T obeys the incompressible Navier–Stokes equations

∇ · u = 0 , ∂tu + ∇u · u + ∇p− 1
Re

∇2u = 0 , (1)

written formally as
B∂tq +M(q, Re) = 0 , (2)

with Re the Reynolds number and B andM differential operators.

Figure 1: Vortex-shedding in the wake of a fixed cylinder: flow visualization of the instantaneous vorticity
(left) and vorticity of the leading global mode (right). Adapted from Barkley [5]

The genesis of vortex-shedding past a fixed circular cylinder has been widely studied in the frame-
work of the global stability theory, in which one characterizes the stability of the steady solution q0 to
perturbations q1 of infinitesimal amplitude ε expanded as

q1(x, y, t) = q̂1(x, y)e(σ+iω)t + c.c. . (3)

In (3), σ and ω are the growth rate and pulsation of the global eigenmode q̂1, and c.c. denotes the complex
conjugate of the preceding expression. For Reynolds number Re ≥ Re∗ ' 47, the steady flow becomes
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unstable to a global mode of marginal pulsation ω∗ ' 0.74. The associated eigenvector q̂1A is solution of
the generalized eigenvalue problem

(iω∗B +A∗)q̂1A = 0 , (4)

where A∗ is the Navier–Stokes operator linearized around q0 at the critical Reynolds number [4,5,6].
In the present study, the cylinder is assumed to be mounted on springs in the transverse direction. In

the following, ys, ẏs and ÿs denote the non-dimensional transverse displacement, velocity and acceleration
of the cylinder center, whose motion is governed by the linear oscillator equation

ÿs + 2ωsγẏs + ω2
sys =

2
πm

Cy . (5)

In (5), ωs is the dimensionless oscillation frequency, γ is the structural damping coefficient and m is the
mass number defined as the ratio of the solid to the fluid density m = ρs/ρ. Cy is the instantaneous lift
coefficient of the cylinder per unit length, defined as

Cy = 2
∫

Υw

(
−pn +

1
Re

∇u + ∇uT

2
· n

)
· eydl , (6)

where n is the outward-pointing normal vector to the cylinder and dl the length element along the cylin-
der wall Υw. The coupling between the fluid and structural motions occurs through the impermeability
condition imposed at the cylinder wall:

u(x, y + ys) = (0, ẏs)
T , ∀(x, y) ∈ Υw . (7)

2. Asymptotic expansion

We carry out here an asymptotic expansion of the coupled flow-structure system, assuming that the
Reynolds number Re departs from criticality at order ε2. To this end, we introduce multiple time scales
with a fast time scale t and a slow time scale T = ε2t. We define the order unity parameter δ, such that

1
Re

=
1
Re∗

− ε2δ , (8)

and expand the flow field q as
q = q0 + εq1 + ε2q2 + ε3q3 + ... . (9)

We assume that the flow is forced by a near-resonance, third-order cylinder motion. The displacement
is therefore written as

ys = ε3Y (T )eiωst + c.c. , (10)

where the complex amplitude Y is at this stage an unknown function of the slow time T = ε2t. Anticipating
on the dominant balance, we use the scaling laws

γ = ε2Γ +O(ε3) , ωs = ω∗(1 + ε2Ω) +O(ε3) ,
1
m

= ε4
1
M

+O(ε5) , (11)

where Γ, Ω and M are order one parameters. Substitution of the preceding expansions into (7) yields the
series of boundary conditions at the cylinder wall:

ui = 0 (i = 0 . . . 2) , (12a)

u3 = Uw(T )eiω∗t + c.c. , with Uw = (iω∗I −∇u0) · (0, Y )
T
. (12b)

Owing to the present balance, one sees from (12) that the flow problem is identical to that of the fixed
cylinder up to the second order ε2. The flow motion is forced by the cylinder displacement at order
ε3 through an equivalent resonant blowing and suction stemming from the cylinder displacement. This
means in particular that taking into account the coupling of the flow and structural motions does not
require any specific treatment in the numerics.
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2.1 Flow model

The equations at order ε0 define q0 as the steady flow developing past a fixed cylinder, solution of the
nonlinear equations

M(q0, Re∗) = 0 . (13)

The equation at order ε are the linearized Navier–Stokes equations, that defines q1 as a superposition of
global modes developing on q0. It can be chosen as the marginally stable mode q̂1A multiplied by some
unknown complex amplitude A, depending on the slow time T , i.e.

q1 = A(T )q̂1Ae
iω∗t + c.c. . (14)

At orders ε2 and ε3, we obtain inhomogeneous linear equations that can be understood as the harmonic
linearized Navier-Stokes operator about q0 forced by terms involving quantities of lower orders. The
homogeneous operator is non-degenerate at order ε2 but degenerate at order ε3, where the Fredholm
alternative is used and compatibility conditions are applied. In the case of a fixed cylinder, this yields
the classical Stuart-Landau amplitude equations for the complex amplitude A already derived by Sipp
& Lebedev [6]. In the present case, the compatibility conditions must be modified so as to encompass
the effect of the resonant boundary condition 12(b). This imposes the amplitudes A and Y to obey the
relation

dA

dT
= λδA− µA|A|2 + αY . (15)

To compute the coefficients involved in equation (15), one must first compute the adjoint global mode
q̂†1A solution of the adjoint eigenvalue problem

(−iω∗B +A†∗)q̂
†
1A = 0 . (16)

All coefficients arise then as analytical scalar products between the adjoint global mode and appropriate
forcing terms of order ε3. In particular, α is the complex coefficient defined by

α = S−1

∫
Υw

(
p̂†1An +

1
Re∗

∇û†1A · n
)
· (iω∗ey −∇u0 · ey) dl , (17)

with S the scalar product between the direct and global modes.

2.2 Structure model

With the present balance, the cylinder displacement is governed by the first-order equations

dY

dT
= ω∗(−Γ + iΩ)Y +

β

ω∗M
A, (18)

where β is the complex coefficient defined by

β =
2i
π

∫
Υw

(
p̂1An− 1

Re

∇û1A + ∇û1A
T

2
· n

)
· ey dl . (19)

2.3 Coupled system

The coupled equations finally read

dA

dT
= λδA− µA|A|2 + αY + η , (20a)

dY

dT
= ω∗(−Γ + iΩ)Y +

β

ω∗M
A. (20b)

To compute the parameter values, we set ε = 10−1, as a different choice would only yield a rescaling of
the various coefficients. This yields:

λ = 9.15 + 3.24i , µ = 10.74− 35.66i , α = 0.36 + 0.17i , β = 0.17 . (21)
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3. Limit-cycles and nonlinear dynamics

It possible to study the nonlinear dynamics of the coupled system (20) by setting A = |A|eiψA and Y =
|Y |eiψY . To this end, we recast first (20) into a three-dimensional polar system for |A|, |Y | and the phase
φ = ψA −ψY +arg β, which represents the phase shift between the forcing exerted by the cylinder motion
and the vortex-shedding. By analyzing the dynamics of the associated limit cycles, it can be shown that
the present adjoint-based model allows to recover the main phenomenology of vortex-induced vibrations:
existence of a lock-in domain in which the vortex-shedding and the cylinder displacement synchronize,
hysteretical behaviours (as shown in figure 2) and occurrence of vortex-shedding at subcritical Reynolds
numbers Re ≤ Re∗ [7,8]. The present formalism will ultimately be applied to the question of energy
recovery: we will show that this model can indeed be used to optimize the amount of energy produced
provided a suitable device is used to store the mechanical energy dissipated by the oscillating cylinder.

Figure 2: Left: amplitude of the cylinder displacement as a function of the detuning parameter (Re = 55,
Γ = 1, M = 1). The dark grey shaded area corresponds to the resonance width for which |Y | is larger
than 2% of its maximal amplitude, hence evidencing the occurrence of lock-in. Right: same figure for
various mass numbers (Re = 47, Γ = 1). For low mass ratios, a hysteretical behaviour occurs near the
low and high ends of the lock-in regime.

Bibliography

a
[1] MATHIS C., PROVANSAL M. & BOYER L. Bénard von-Kàrmàn instability: an experimental study near
the threshold. J. Phys. Lett. Paris 45, 483-491 (1984).
[2] WILLIAMSON, C.H.K. & GOVARDHAN, R. Vortex-induced vibrations. Annu. Rev. Fluid Mech 36, 413-
455 (2004).
[3] TEZDUYAR T.E., BEHR M. & LIOU J. A new strategy for finite element computations involving moving
boundaries and interfaces - the deforming-spatial-domain/space-time procedure: I. The concept and the
preliminary tests. Comput. Meth. Appl. Mech. Engng 94, 339-351 (1992).
[4] JACKSON C.P. A finite-element study of the onset of vortex shedding in flow past variously shaped
bodies. J. Fluid Mech. 182, 23-45 (1987)..
[5] BARKLEY D. Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75, 750-756 (2006)..
[6] SIPP D. & LEBEDEV A. Global stability of base and mean flows: a general approach and its applications
to cylinder and open cavity flows. J. Fluid Mech. 593, 333-358 (2007)..
[7] COSSU C. & MORINO L. On the instability of a spring-mounted circular cylinder in a viscous flow at
low reynolds numbers. J. Fluids Struct. 14, 183-196 (2000)..
[8] MITTAL S. & SINGH S. Vortex-induced vibrations at subcritical Re. J. Fluid Mech. 534, 185-194 (2005).

4


