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This review article addresses the dynamics and control of
low-frequency unsteadiness, as observed in some aerody-
namic applications. It presents a coherent and rigorous lin-
earized approach, which enables both to describe the dynam-
ics of commonly encountered open flows and to design open-
loop and closed-loop control strategies, in view of suppress-
ing or delaying instabilities. The approach is global in the
sense that both cross-stream and stream-wise directions are
discretized in the evolution operator. New light will there-
fore be shed on stream-wise properties of open flows. In the
case of oscillator flows, the unsteadiness is due to the exis-
tence of unstable global modes, i.e., unstable eigenfunctions
of the linearized Navier-Stokes operator. The influence of
non-linearities on the dynamics is studied by deriving non-
linear amplitude equations, which accurately describe the
dynamics of the flow in the vicinity of the bifurcation thresh-
old. These equations also enable us to analyze the mean flow
induced by the non-linearities as well as the stability prop-
erties of this flow. The open-loop control of unsteadiness is
then studied by a sensitivity analysis of the eigenvalues with
respect to base-flow modifications. With this approach, we

manage to a-priori identify regions of the flow where a small
control cylinder suppresses unsteadiness. Then, a closed-
loop control approach was implemented for the case of an
unstable open-cavity flow. We have combined model reduc-
tion techniques and optimal control theory to stabilize the
unstable eigenvalues. Various reduced-order models based
on global modes, POD modes and balanced modes were
tested and evaluated according to their ability to reproduce
the input-output behavior between the actuator and the sen-
sor. Finally, we consider the case of noise amplifiers, such as
boundary layer flows and jets, which are stable when viewed
in a global framework. The importance of the singular value
decomposition of the global resolvent will be highlighted in
order to understand the frequency selection process in such
flows.

Nomenclature
u Flow velocity.
uB Base flow.
uM Mean flow.



R(u) Residual of the Navier-Stokes equations.
A Linearized Navier-Stokes matrix or Jacobian.
A∗ Adjoint matrix of A .
Re Reynolds number.
ε Reynolds number in the form of departure from criticality

ε = Re−1
c −Re−1.

λ Eigenvalue of A .
σ Amplification rate.
ω Frequency.
< ·, ·> Scalar product of two scalar or vector fields.
û Direct global mode.
ũ Adjoint global mode.
γ Measure of non-orthogonality of a global mode û.
δ amount of non-orthogonality due to component-type

non-normality within total non-orthogonality.
∇uB λ Sensitivity of eigenvalue λ to a modification of the

base flow.
∇fλ Sensitivity of eigenvalue λ to a steady forcing of the

base flow.
C Control matrix.
M Measurement matrix.
PS Projection matrix onto the stable subspace of A .
(W ,V ) Bi-orthogonal basis.
Ĥ(ω) Input-output transfer function.
Gc Controllability Gramian.
Go Observability Gramian.
R (ω) Resolvent matrix.
µ2 Squared singular value of the resolvent matrix.
∇uB µ2 Sensitivity of squared singular value µ2 to base-flow

modifications.
W (ε) Scalar field representing the ”wavemaker” region.

1 Introduction
In aeronautical applications, unsteady flows, whose

characteristic spatial scales are on the order of those of
the studied object and whose temporal frequencies are low,
are commonly encountered. Within the range of the Kol-
mogorov turbulent energy cascade, these phenomena are lo-
cated at the left edge of a wave-number or frequency spec-
trum, at scales where energy is injected. Within the frame-
work of steady configurations, these fluctuations are intrinsic
to the fluid, and stability theory can explain at least some of
these phenomena, such as how structures of a specific fre-
quency and scale are selected and emerge in a flow. The
occurrences of these unsteadiness are usually detrimental to
a satisfactory operation, which can be illustrated by a num-
ber of examples. On a wing profile, the boundary layer at
the upstream stagnation point is usually laminar. Tollmien-
Schlichting waves, however, destabilize the flow, and the
boundary layer subsequently becomes turbulent [1]. This in-
duces an increase in skin friction at the wall and thus a loss of
performance of the vehicle linked to the increase in its drag.
Inside the booster of a space launcher, the flow generated by
solid combustion is characterized by a rather small Reynolds
number, on the order of a few thousands [2]. However, very
strong unsteadiness is generated by the flow, inducing thrust
oscillations and vibrations of the vehicle. A transport aircraft

produces a swirling flow in its wake. These structures are
dangerous for following airplanes which may be subjected
to violent rolling moments [3]. These structures ought to
be quickly destroyed by triggering the natural instabilities
of the swirling system, such as the Crow instability. The
flight envelope of a transport airplane is currently limited in
the Mach-angle of attack (AoA) plane by the shock-induced
buffeting phenomenon on the airfoil. For Mach numbers on
the order of 0.8 and high AoAs, the shock located on the suc-
tion side of the wing suddenly starts to oscillate [4], which
in turn causes vibrations that are detrimental to the airplane.
When passing to the transonic regime, a space launcher such
as Ariane V is subjected to strong vibrations which origi-
nates from instabilities developing in the wake of the vehicle
and are particularly harmful for the payload [5]. Fighter air-
crafts are vulnerable due to the strong infra-red signature of
the hot jet exiting the engine. In this application, the trigger-
ing of unstable modes in the hot jet by actuators placed at
the nozzle exit constitutes a possible mechanism to promote
turbulent mixing with the atmosphere which in turn reduces
the extent of the jet’s hot zones as quickly as possible [6].
Cavity flows, like those observed over bomb bays, are the
site of violent unsteadiness related to powerful sound pres-
sure waves that can cause severe structural vibrations [7].
Fatigue problems are the result, which significantly increase
the cost of vehicle maintenance or decrease vehicle lifetime.
The sound waves, arising from a hydrodynamic instability,
propagate over long distances and can be the cause of ex-
tensive noise pollution. Furthermore, on transport aircrafts
the slat on a multi-element wing configuration acts as a cav-
ity and generates intense noise during landing when these
high-lift devices are deployed [8]. The noise-related environ-
mental problems have been an issue of increasing concern
for many years. Many other examples, where occurrences
of low frequency unsteadiness cause noise, are worth men-
tioning: among them, the noise known as BWI (Blade-Wake
Interaction) caused by helicopter rotors [9], and the ”tonal
noise” related to laminar flow over an airfoil profile [10].

1.1 Models, base flow, perturbation dynamics
The main hypothesis underlying this review is that all

phenomena presented in the previous section can be prop-
erly described within a linearized framework, despite the
fact that the Navier-Stokes equations, which govern them,
are strongly non-linear due to the convective term. At first
sight then, a linearized description of the dynamics seems
rather limiting. Moreover, the following question needs to be
asked: around which field must the equations be linearized?
For flow configurations that deal with the destabilization of
a steady flow field, the answer is straightforward: the steady
solutions of the Navier-Stokes equations; that is to say, the
equilibrium points of these equations. These flow fields usu-
ally exist at sufficiently low Reynolds numbers, even if they
are not observed in reality owing to instabilities. From a
physical point of view, this means that we will focus on a
low-amplitude perturbation that is superposed on a desirable
base flow. We then wish to stabilize the flow by various
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Fig. 1. Flow around a cylinder for Re = 47. Base flow uB visualized
by iso-contours of stream-wise velocity. Adapted from [11].

means in the vicinity of this equilibrium point.
Why come back to linear dynamics? The tools avail-

able within this framework, such as eigenvalue decompo-
sition, singular value decomposition, the adjoint matrix,
reduced-order models based on controllability and observ-
ability concepts, H2 and H∞ control techniques, etc, are well-
established and powerful and provide a rigorous mathemati-
cal foundation for the study of the dynamics and control of a
fluid system. It should also be noted that it has been the stud-
ies of transition in Poiseuille and Couette flows that in the
90’s gave rise to a renewed interest in linear theory and linear
processes based on non-normal operators. Moreover, linear
algebra (including its numerical algorithms) has continued
to evolve significantly over the last 50 years, and many com-
plex phenomena that were initially attributed to non-linearity
have found an explanation by using these tools.

Throughout this review, the equations governing the
dynamics of the flow are the incompressible homogeneous
Navier-Stokes equations. They will be written in the form

du
dt

= R(u), (1)

where u denotes the divergence-free velocity field and R(u)
the residual. A base flow uB, or an equilibrium point of Eq.
(1), is defined by

R(uB) = 0. (2)

An example of base flow is shown in Fig. 1 in the the case
of the cylinder flow at Re = 47: iso-contours of stream-wise
velocity show a recirculation zone with negative velocities of
up to 11% of the upstream velocity.

The dynamics of the small perturbations u′ superim-
posed on this field are governed by

du′

dt
= Au′. (3)

The operator A corresponds to the Navier-Stokes equations
linearized about the base flow uB. Formally, the operator
A may be written as A = ∂R/∂u|uB . This operator involves

spatial stream-wise and cross-stream derivatives, that may be
discretized with finite differences or finite elements to lead
to a large-scale matrix. In the following, and throughout the
whole article, A will stand for this large-scale matrix rather
than the operator.

1.2 Asymptotic and short-term instabilities
The dynamics of a low-level amplitude perturbation u′

is governed by the linearized Navier-Stokes equations (3).
According to Schmid [12], a base flow or a matrix A is said
to be asymptotically stable if the modulus of any initial per-
turbation tends to zero for large times; otherwise it is asymp-
totically unstable. Based on this definition, the stability of a
base flow is determined by scrutinizing the spectrum of the
matrix A . To this end, particular solutions of Eq. (3) are
sought in the form

u′ = eλt û. (4)

The corresponding dynamical structures are the global
modes of the base flow uB: their spatial structure is char-
acterized by the complex vector field û and their temporal
behavior by the complex scalar λ, whose real part (σ) des-
ignates the amplification rate and its imaginary part (ω) the
frequency. The global modes (λ, û) correspond to eigenval-
ues / eigenvectors of the matrix A :

A û = λû. (5)

Note that the global modes defined here are eigenvectors of
the discrete matrix A and do therefore depend a priori on
the chosen discretization, which led to A . Among all eigen-
vectors of A , only few of them are somehow independent
of the chosen discretization and have an intrinsic existence.
These eigenvectors are only moderately sensitive to exter-
nal perturbations of the matrix A . For example, they exhibit
good spatial convergence properties, i.e. as the mesh is re-
fined or the computational domain is varied these eigenval-
ues / eigenvectors may be tracked and converge towards fixed
quantities. These eigenvectors are the physical global modes.
We note that, if at least one of the eigenvalues has a positive
real part (σ > 0), then the base flow is asymptotically un-
stable. This instability is also called a modal instability, or
even an exponential instability. On the other hand, if all of
the eigenvalues have negative real parts (σ < 0), the global
modes will eventually all decay at large times, and the base
flow is asymptotically stable.

In the case of an asymptotically stable flow, the ability of
this flow to amplify perturbations transiently, is given by an-
alyzing the instantaneous energetic growth of perturbations
in the flow. The energy of a perturbation u′ reads < u′,u′ >,
where < ·, ·> designates the scalar product associated to the
energy in the whole domain. The equation governing the
perturbation energy is then given by (see Schmid et al. [13]):

d
dt

< u′,u′ >=< u′,(A +A∗)u′ > . (6)



Here A∗ is the adjoint matrix and is defined such that

〈uA,AuB〉= 〈A∗uA,uB〉 (7)

for any vector pair uA and uB. Equation (6) shows that a nec-
essary and sufficient condition for instantaneous energetic
growth in a flow is that the largest eigenvalue of the ma-
trix A + A∗ is positive. A matrix is said to be normal if
AA∗ = A∗A , i.e. the Jacobian matrix commutes with its ad-
joint. In this case, all global modes of A are orthogonal and,
from Eq. (6), one may deduce that the energetic growth of a
perturbation is linked to the existence of an unstable global
mode. In the case of a non-normal matrix — when the Jaco-
bian does not commute with its adjoint —, then this equiv-
alence is not true anymore: instantaneous energetic growth
may exist although all global modes are asymptotically sta-
ble. This behavior will be called a short-term instability, or a
non-modal instability, or even an algebraic instability (since
the perturbation energy then increases algebraically in time).

1.3 Oscillators and noise amplifiers
According to Huerre et al. [14], occurrences of unsteadi-

ness in open flows can be classified into two main cate-
gories. The flow can behave as an oscillator and impose its
own dynamics (intrinsic dynamics): self-sustained oscilla-
tions are observed which are characterized by a well-defined
frequency, insensitive to low-level noise. Or the flow can
behave as a noise amplifier, which filters and amplifies in
the downstream direction existing upstream noise: the spec-
trum of a measured signal, at some given downstream loca-
tion, reflects, to some extent, the broadband noise present
in the upstream flow (extrinsic dynamics). For example, the
flow around a cylinder for Reynolds numbers in the range
47 < Re < 180 is typical of the oscillator-type, while a ho-
mogeneous jet or a boundary layer flow are representative of
noise amplifiers.

These two types of dynamics have been extensively ex-
amined in the 80’s and 90’s for parallel and weakly-non-
parallel base flows. In the 80’s most of the studies were
focused on finding exponential instabilities, i.e. linear per-
turbations that grow exponentially in time or space. The con-
cepts of absolute and convective instabilities were introduced
to describe the oscillator’s and amplifier’s dynamics respec-
tively [14]. Yet, the sub-critical behavior of some flows, like
the Poiseuille or Couette flows, could not be described by
an exponential instability. In the late 80’s / early 90’s, it
was then recognized that the non-normality of the linearized
Navier-Stokes operator could lead to strong transient energy
growth, although all eigen-modes were asymptotically sta-
ble. In channel flows, due to the three-dimensional lift-up
effect, stream-wise oriented vortices grow into stream-wise
streaks [15–19] while the Orr mechanism [18, 20] is respon-
sible for transient growth of two-dimensional upstream tilted
perturbations. These important findings made it possible to
consider new transition scenarios to turbulence (although the
importance of non-linearity is determinant with this respect,
see §7.2). The reader is referred to the book by Schmid et

al. [13] for a comprehensive review on this subject. Op-
timization techniques based on direct-adjoint computations
were then intensively used to find optimal initial perturba-
tions in boundary layer flows (Luchini et al. [21] studied the
optimal perturbation leading to Görtler vortices, Andersson
et al. [22] and Luchini [23] the transients related to the lift-
up effect in a spatially developing boundary layer, Corbett
et al. [24] the energetic growth associated to oblique waves
in boundary layers subject to stream-wise pressure gradient,
Corbett et al. [25] the instabilities in swept boundary lay-
ers, Guegan et al. [26,27] the optimal perturbations in swept
Hiemenz flow).

In a global stability approach, which does not assume
the parallelism of the base flow, the oscillator and noise-
amplifier dynamics may be related to different stability prop-
erties of the Jacobian matrix A , as will be shown in the next
two sections.

1.3.1 Oscillators, global modes and prediction of fre-
quencies in a global approach

An oscillator-type dynamics may be observed when the
base flow is asymptotically unstable, since an unstable global
mode σ > 0 will then emerge at large times without any ex-
ternal forcing. As observed in the open flow configurations
studied within this review article, these global modes are
generally physical global modes in the sense that they are
only moderately sensitive to perturbations of the matrix A .
Furthermore, they also carry physical meaning since ω and
û respectively characterize the frequency and spatial struc-
ture of the unsteadiness, at least in the vicinity of the bi-
furcation threshold. The amplification rate σ of the global
mode allows to identify the critical parameters (Reynolds
number, AoA for which σ = 0) for the onset of the unsteadi-
ness. The identification of these dynamical structures con-
stitutes the key point to characterize an oscillator-type dy-
namics. As an example, the global mode in the case of the
cylinder flow at Re = 47 is depicted in Fig. 2 by the real
part of the cross-stream velocity of the eigenvector. Vortices
of alternating sign are observed in the wake of the cylinder
and are advected downstream. Note that the imaginary part
of the eigenvector is approximately 1/4 spatial period out of
phase, which enables a continuous downstream advection of
the structures.

Computing global modes requires the solution of very
large-scale eigenvalue problems (Eq. 5). Indeed, given that
the global eigenvector û depends on the stream-wise as well
as cross-stream coordinate direction, the number of degrees
of freedom, (the dimension of the matrix A) that are neces-
sary for spatially converged results, rapidly approaches the
order of millions (number of mesh cells multiplied by the
number of unknowns). Suitable algorithms to solve these
equations are thus mandatory, as are powerful computing ca-
pabilities. The first eigenvalue computations within a global
framework were carried out by Zebib [28] and Jackson [29]
who described the bifurcation structure of the flow around
a cylinder at Re = 47 (see also Noack et al. [30]). Natara-
jan et al. [31] followed by studying axi-symmetric flows
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Fig. 2. Flow around a cylinder for Re = 47. Marginal global mode
characterized by the frequency ω0 = 0.74. The structure is visu-
alized by iso-contours of the real part of the cross-stream velocity
(ℜ(v̂)). Adapted from [11].

around a disc and a sphere; Lin et al. [32] investigated the
stability of a swept Hiemenz flow. An important change in
algorithmic techniques took place in the 90’s with the ad-
vent of the Arnoldi method: Edwards et al. [33], Barkley et
al. [34] and Lehoucq et al. [35] introduced and applied iter-
ative algorithms based on Krylov subspaces to obtain parts
of the global spectrum. The hydrodynamic stability com-
munity [36] has incorporated these new tools into the stabil-
ity analyses of increasingly complex configurations, among
them: Barkley et al. [37] for the case of a backward-facing
step; Gallaire et al. [38] for the flow over a smooth bump;
Sipp et al. [11] for the flow over an open cavity; Akervik et
al. [39] for the case of recirculating flow in a shallow cavity;
Bagheri et al. [40] for a jet in cross-flow. Global stability
analyses based on the compressible Navier-Stokes equations
have also emerged very recently: Robinet et al. [41] stud-
ied the case of a shock-boundary layer interaction, Bres et
al. [42] treated the dynamics of an open cavity, and Mack
et al. [43] investigated the instabilities of leading-edge flow
around a Rankine body in the supersonic regime.

The prediction of the frequency of self-sustained oscilla-
tions has recently received much attention [44]. In the frame-
work of weakly non-parallel flows, linear [45] and fully non-
linear criteria [46] have successively been worked out to pre-
dict this frequency. In the case of wake flows, it was ob-
served [47–51] that the linear saddle-point criterion [45] ap-
plied to the mean flow, rather than the base flow, yields par-
ticularly good results. This is shown, for the cylinder flow,
in Fig. 3, where the Strouhal number of the unsteadiness is
given versus the Reynolds number. The thick solid line refers
to the experimental data of Williamson [52], while the thin
solid line (resp. symbols) designates the global linear stabil-
ity results associated to the base flow (resp. mean flow). As
mentioned earlier, in the vicinity of the bifurcation threshold,
the base flow effectively yields the experimental frequency;
but for super-critical Reynolds numbers, one observes that
the mean flow, rather than the base flow, has to be consid-
ered. One of the objectives in this review article is to explain
these observations and show how a global stability analysis
may predict the frequencies of the flow beyond the linear
critical threshold, where non-linearities are at play.

Re

St

Fig. 3. Flow around a cylinder. Strouhal number versus Reynolds
number. The thick solid line refers to experimental results [52], the
thin solid line to a global linear stability analysis on the base flow
and the symbols to a global linear stability analysis on the mean flow.
Adapted from Barkley [49].

1.3.2 Noise amplifiers and superposition of eigenvectors
in a global approach

A noise-amplifier-type dynamics may be observed when
the base flow is asymptotically stable, in which case an ex-
ternal forcing is required to sustain unsteadiness. In this
case all global modes of A are damped (σ < 0). As rec-
ognized by Trefethen et al. [53] and Farrell [18], the non-
normality of the matrix A is of pivotal importance. Indeed,
non-normal systems can exhibit strong responses for cer-
tain excitation frequencies, even though no eigenvalue of
the system is close to the excitation frequency. This phe-
nomenon is called pseudo-resonance. Non-normality also
induces that the eigenvectors of A are non-orthogonal and
that a superposition of such structures may lead to transient
growth although all eigenvectors of A are damped. This line
of thought has been pursued first in the case of parallel chan-
nel flows [17–19].

Likewise, transient growth has first been viewed as a su-
perposition of global modes in global stability approaches.
For example, in the case of a spatially developing Blasius
boundary layer, Ehrenstein et al. [54], Alizard et al. [55] and
Akervik et al. [56] computed a set of stable global modes
from which they deduced optimal perturbations. The case of
a separating boundary layer displaying a recirculation bubble
has recently been analyzed, with the global mode approach,
by Alizard et al. [57]. In open flows, we will in fact show that
studying noise-amplifier type dynamics is prawn to difficul-
ties when transients are viewed as a superposition of global
modes. The problem lies in the fact that stable global modes
are generally unphysical (in the above defined sense, i.e.
robustness to external matrix perturbations, like discretiza-
tion errors): for example, in the cylinder flow, none of the
global modes are physical for the sub-critical Reynolds num-
ber Re = 20. The short-comings of the stable global modes to
characterize a noise-amplifier-type dynamics in open-flows
will be further discussed in §6. Instead, it will be shown
that the singular values and vectors of the global resolvent
R = (iωI −A)−1 will prove useful to characterize such a



dynamics.

1.3.3 How local instabilities in weakly-non-parallel
flows are captured by global stability analyses

Absolute instabilities, like exponential Kelvin-
Helmholtz instabilities in plane counter-flow mixing
layers [58] generally lead to unstable eigenvectors in a
global stability approach. Hence, oscillators are related
to absolutely unstable flows in a local approach and to
globally unstable flows in a global approach. If one
wishes to compare a global mode stemming from a global
stability approach to a global mode stemming from a
weakly-non-parallel approach, then the linear saddle-point
criterion by Monkewitz et al. [45] should be considered
in the weakly-non-parallel approach. In the case of the
cylinder flow, this comparison has been carefully achieved
by Giannetti et al. [59], who showed that, despite of the
strong non-parallelism of the flow, weakly-non-parallel
results compare reasonably well with those of a global
stability approach (see thin solid line of Fig. 3 of the present
article). On the other hand, the strongly non-linear criterion
by Pier [46] (associated results are shown with filled squares
in Fig. 6 of Pier [48]) directly targets the frequency of
the bifurcated flow on the limit-cycle (experimental results
are recalled by a thick solid line in Fig. 3 of the present
article). The results of the strongly non-linear local theory
should therefore rather be compared with those of the
weakly-non-linear global analysis discussed in §3.4 (see in
particular Eq. 15). 1

In the case of noise-amplifiers, stream-wise growth of
perturbations is expected, because of downstream advection
by the base flow. If the instability is locally convective, as is
the case in exponential Tollmien-Schlichting instabilities in
boundary layers or exponential Kelvin-Helmholtz instabili-
ties in plane co-flow mixing layers [58], then the stream-wise
growth is exponential. But a weaker stream-wise algebraic
growth may also exist in the case of non-modal instability
(Lift-up or Orr mechanisms). In both cases (stream-wise ex-
ponential and stream-wise algebraic growth), an exponen-
tially stable (in time) but algebraically unstable (in time)
flow is obtained in a global stability analysis. This link has
been established in the case of a model equation mimicking
open flows [61] and for spatially developing boundary lay-
ers [54, 55].

1.4 Control of oscillators
In the present review article, flow control specifically

aims at suppressing unsteadinesses of oscillators by stabiliz-
ing the unstable global modes. The stabilization of noise-
amplifier flows will briefly be discussed in §6. Other objec-

1Yet, for a given base flow, poor results are expected from such a com-
parison, since the weakly-non-linear analysis presented in §3.4 blows up in
the case of weakly-non-parallel flows [44, 60], while the validity domain of
the non-linear local criterion by Pier [46] is precisely restricted to weakly-
non-parallel flows. Still, both approaches are complementary and concern
different base flows (weakly-non-parallel base flows for the local approach
and strongly-non-parallel ones for the global approach.)

tives like flow separation control are not addressed here. For
a more comprehensive review on flow control, the reader is
referred to Gad-el-Hak et al. [62] and Collis et al. [63]. Gen-
erally speaking, the control strategies may be classified into
closed-loop and open-loop control techniques, depending on
whether the actuation is a function or not of flow measure-
ments. Both strategies are considered here and have been
adapted to the context of global stability analysis.

1.4.1 Open-loop control of oscillators

A general presentation of open-loop control of wake
flows is given in the article of Choi et al. [64]. Various phys-
ical mechanisms may be involved in open-loop control of
oscillators, as for instance tuning of the system to a given
frequency by upstream harmonic forcing (Pier [65]) or sta-
bilizing the perturbation by acting on the base or mean flow
(Huang et al. [66]). Also various types of actuations may
be considered: passive actuations, as introducing a small ob-
ject into the flow (Strykowski et al. [67]), active actuations,
as steady base blowing and suction [68–71] or periodic ac-
tuations [65, 72]. The present review article will focus on a
specific open-loop control problem that was introduced by
Strykowski et al. [67]. In the case of the cylinder flow, these
authors suggested to suppress the vortex-shedding process
at super-critical Reynolds numbers (Re ≈ 50− 100) by in-
troducing a small control cylinder in the flow. Fig. 4 re-
produces their experimental results: for each Reynolds num-
ber, this figure indicates a region in space inside which the
placement of the small control cylinder suppresses the von-
Karman vortex street. For Reynolds numbers close to the
bifurcation threshold Re = 48, there are two co-existing sta-
bilizing regions: the first one is located on the symmetry axis
close to (x0 = 2,y0 = 0), the second one is located on ei-
ther side of the symmetry axis near (x0,y0) = (1.2,±1). As
the Reynolds number increases, the first stabilizing region
disappears, while the second becomes increasingly smaller
near (x0,y0) = (1.2,±1). The same optimal positions were
found by Kim et al. [73] and Mittal et al. [74] from direct
numerical simulations, and by Morzynski et al. [75] from
global stability analyses. All these approaches successfully
determined the optimal placement of a control cylinder to
suppress the vortex shedding, but required that various loca-
tions of the control cylinder be tested and either experimental
measurements, direct numerical simulations or global stabil-
ity analyses be carried out in each case. This review will
address a new formalism based on global stability and sen-
sitivity analyses, which allows to predict beforehand the re-
gions of the flow where a control cylinder will be effective.
This approach may also be viewed as an optimization prob-
lem (Gunzburger [76]) with a specific cost functional being
the eigenvalue of the unstable global mode, the constraints
the Navier-Stokes equations and the control variable a force
exerted on the base flow, which mimics the presence of a
control cylinder. This formalism may also deal with active
control, such as steady base blowing and suction [77, 78].



Fig. 4. Flow around a cylinder. Flow stabilization regions ob-
tained experimentally for various Reynolds numbers. Adapted from
Strykowski et al. [67]

1.4.2 Closed-loop control of oscillators and reduced-
order models

Automatic control engineers have developed rigorous
methods for closed-loop linear system control. Two common
approaches based on H2– and H∞–control are presented in
Burl [79] and Zhou et al. [80]. These techniques were intro-
duced to fluid mechanical application by Joshi et al. [81],
Bewley et al. [82], Cortelezzi et al. [83] and Hogberg et
al. [84] for the closed-loop control of channel flow transition.
Hoepffner et al. [85] and Chevalier et al. [86] showed that a
stochastic modeling of the measurement noise, of the initial
condition and of the external perturbations could apprecia-
bly improve the performance of an estimator. The control
of a spatially developing boundary layer was undertaken by
Hogberg et al. [87] using full-state information control and
by Chevalier et al. [88] using an estimator. Drag reduction
in turbulent flows was achieved by Cortelezzi et al. [89] and
Lee et al. [90] (see Kim [91] for a review). A summary of
these results can be found in Bewley [92] and Kim et al. [93].

When applying flow control techniques in a global set-
ting, a major difficulty arises. The very significant number of
degrees of freedom of the system prevents the direct imple-
mentation of the H2– and H∞–control strategies. For exam-
ple, the Riccati equations, a central equation for determining
the control and Kalman gain, cannot be solved for a number
of degrees of freedom greater than about 2000. The solu-
tion does not only become prohibitive owing to restrictions
in memory resources, the precision of the calculations using
standard algorithms is compromised as well. For example,
Lauga et al. [94] showed, using a one-dimensional model
equation of open flow, that the Riccati equations could not be
solved with sufficient accuracy using 8-byte real arithmetic.
As a response to these problems, Antoulas [95] showed how
reduced-order models of the flow-field, with a small number
of degrees of freedom, may be built to capture — not all but
— the most relevant features of the flow dynamics for the
design of a control law. A physics-based way to do this is to
look for a projection basis that complies with these require-
ments and then to project the governing equations on it.

The choice of the projection basis is crucial for good

performance. Akervik et al. [39] implemented a compen-
sator for the first time in a global stability approach: consid-
ering a reduced-order model based on unstable global modes
and few stable global modes, they implemented a H2–control
strategy to stabilize an unstable shallow cavity flow. Global
modes thus seem to constitute a first candidate for model
reduction [96]. Antoulas [95] has noted, however, that the
least damped eigenvectors do not generally constitute an ap-
propriate basis for model reduction. A proper reduced-order
model is one which best approximates the input-output trans-
fer function of the full (unreduced) system. Moore [97] has
shown how a basis for such an approximation may be found.
After defining the controllability and observability Gramians
(which yield a measure of controllability and observability
of the system), he showed that the eigenvectors of the prod-
uct of these two Gramians constitute a quasi-optimal basis
in terms of the criterion defined above. This basis consists of
balanced modes that are equally controllable and observable.
Laub et al. [98] found an optimal and accurate algorithm for
the calculation of this basis. However, this algorithm does
not allow for large-scale systems. It was Willcox et al. [99]
and Rowley [100] who would overcome this difficulty: they
showed that the Gramians can be approximated using two
series of snapshots resulting from two different numerical
simulations and that the algorithm of Laub et al. [98] can be
generalized to take into account these approximate Grami-
ans. Due to the use of snapshots, this technique is also re-
ferred to as ”balanced POD” to highlight the connection of
Rowley’s algorithm [100] with POD (Proper Orthogonal De-
composition, see [101–103]). Moreover, Rowley [100] noted
that the eigenvectors of the controllability Gramian (instead
of the product of the Gramians) yield a POD-type basis. It
should be noted that all these algorithms are based on the
singular value decomposition of a matrix. The technique
of Rowley [100] has been applied to several stable flows:
Ilak et al. [104] studied a channel flow; Bagheri et al. in-
vestigated a one-dimensional model equation mimicking an
open flow [105] and a boundary-layer flow [106]. Ahuja et
al. [107] have looked at a first unstable case corresponding
to flow about a flat plate at an AoA of 35◦.

Several bases for model reduction are available. Bal-
anced modes constitute the best basis to reproduce the input-
output dynamics of the full system. However, more tradi-
tional bases, such as the modal basis or the POD basis, are
also possible. As far as the stability of reduced-order models
is concerned, one notes that within a linearized framework, a
stable matrix A yields a stable reduced-order model if the
latter is based on global modes, balanced modes or POD
modes, independent of the dimension of the reduced-order
model. This remarkable property does not exist for the non-
linear case. Additional features, such as eddy viscosity, may
then be used to stabilize the reduced-order models [108].
Along this line, Samimy et al. [109] recently succeeded in
experimentally controlling the unsteadiness of an open cav-
ity. The reduced-order model was given by a Galerkin pro-
jection of the 2D compressible Navier-Stokes equations on
the leading POD-modes, obtained from velocity snapshots
thanks to Particle-Image-Velocimetry measurements. An es-



Fig. 5. Flow over an open cavity. Configuration and location of the
actuator and sensor. Adapted from [113].

timate of the perturbation was given by stochastic estimation,
which correlates surface pressure data with the perturbation
structure, described in the POD basis. Linear-Quadratic-
Regulators were then used to design the control gains.

All the previously mentioned reduced-order models
were physics-based: they were obtained from projection
of the governing equations onto a given basis. Yet, one
may also proceed with system identification techniques to
build reduced-order models. For example, the Eigenvalue-
Realization-Algorithm (Juang et al. [110]) identifies directly
from the input-output data a linear state-space model. For
data arising from a linear large-scale model (for example
data stemming from a simulation or an experiment with
small-amplitude perturbations superposed on a base flow),
Ma et al. [111] showed that this algorithm has strong links
with balanced-POD: the identified reduced-order state-space
model actually governs the dynamics of the leading balanced
modes. If one is able to store the state snapshots along with
the input-output data (the Markov parameters), then the di-
rect balanced modes may even be reconstructed. Note how-
ever that, in general, the amplitude of the perturbations is not
small and the large-scale model is fully non-linear, so that
identifying a linear reduced-order model from an underlying
non-linear dynamics may be ill-posed and prawn to difficul-
ties. Finally, in order to determine accurately the Markov
parameters, especially in a noisy environment, one may try,
before applying the Eigenvalue-Realization-Algorithm, to
identify the input-output behavior, from the actuator to the
measurement, with an empirical model containing a number
of model parameters (for example autoregressive linear and
nonlinear models). Then, the unknown model parameters are
estimated through error minimization techniques using the
input-output data from the experiment (Huang et al. [112]).

Our objective, within this review article, is to show how
efficient reduced-order models may be built from a global
stability approach, in order to stabilize unstable global modes
in open flows, within a modern control framework. The mod-
els are obtained through projection of the linearized Navier-
Stokes equations on various bases (modal, POD, balanced-
POD). As shown in Fig. 5, we choose an open cavity with
a measurement downstream of the cavity and an action near
its upstream corner.

1.5 Outline of article
First (§2), the central notion of adjoint global mode

will be defined. In (§3), the bifurcations in various oscil-
lator flows (cylinder, open cavity) are examined. In par-
ticular, the role of non-linearities in the prediction of the
dominant frequency of the unsteadiness, the generation of
mean flows, and the stability properties of the latter will be
studied. The sensitivity of the eigenvalues and the open-
loop control approach to suppress unsteadiness are presented
next (§4). Then, recent developments in the field of closed-
loop control and model reduction (§5) are described. The
next section (§6) is devoted to the case of noise amplifiers
and their open-loop control. Finally, issues related to three-
dimensional configurations, non-linearity and high-Reynolds
number flows (§7) are discussed.

2 Adjoint global modes and non-normality
Within the framework of local stability theory, the con-

cept of adjoint equations and operators appeared when am-
plitude equations were constructed from weakly nonlin-
ear theory. The adjoint mode is then required to enforce
the compatibility conditions of non-homogeneous problems
[114, 115]. Optimization techniques based on adjoints [76]
were first introduced in fluid mechanics by Hill [116] and
Luchini et al. [21] for receptivity studies and by Bewley [92]
and Corbett et al. [117] for optimal control of instabilities.
Note also that Bottaro et al. [118] introduced the concept of
sensitivity of an eigenvalue with respect to base-flow modi-
fications.

In a global framework, adjoint methods were first used
in the context of shape optimization. By considering an ob-
jective functional depending on a large number of degrees of
freedom, the adjoint system appears naturally when the gra-
dient of the functional with respect to a change in the geom-
etry is sought [119–121]. Hill [122] and Giannetti et al. [59]
were the first to use adjoint techniques to study the sensitivity
of global modes.

In the following, the adjoint global modes and the modal
basis will first be defined (§2.1). Then, we show that the
non-orthogonality of the modal basis may be quantified by
looking at the angles of associated direct and adjoint global
modes (§2.2). Then, we show why the adjoint global modes
are different from the direct global modes in the case of lin-
earized Navier-Stokes equations (§2.3). In particular, we
will see that, in the case of open-flows, a specific convective
mechanism induces very strong non-normalities.

2.1 Adjoint global modes and modal basis
Let λ be an eigenvalue associated with the direct global

mode û. The structure û is therefore an eigenvector of the
matrix A and satisfies Eq. (5). We know that the spectrum of
A∗ is equal to the conjugate of the spectrum of A , and thus
there exists ũ such that

A∗ũ = λ
∗ũ (8)
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Fig. 6. Flow around a cylinder for Re = 47. Marginal adjoint global
mode. The structure is visualized by iso-contours of the real part of
the cross-stream velocity (ℜ(ṽ)). Adapted from [11].

with the normalization condition < ũ, û >= 1. The quantity
ũ is called the adjoint global mode associated with the direct
global mode û. In the case of a cylinder flow at Reynolds
Re = 47, the adjoint global mode is presented in Fig. 6, with
the iso-contours showing the real part of the cross-stream
component of the velocity. We notice that this structure is
located in the region x < 5 and in particular upstream of the
cylinder.

The modal basis is made up of the complete set of direct
global modes (û j, j ≥ 1). In the case of a non-normal ma-
trix, the global modes are non-orthogonal. Hence, it is not
straightforward anymore to expand a given vector u′ in this
basis. For example, the component of u′ on the jth global
mode û j is not simply

〈
û j,u′

〉
/
〈
û j, û j

〉
as would have been

the case for a normal matrix. To circumvent this difficulty,
one introduces a dual basis, which is made of the complete
set of adjoint global modes (ũ j, j ≥ 1). The vectors û j and
ũ j are related to the eigenvalues λ j by

A û j = λ jû j (9)
A∗ũ j = λ

∗
j ũ j (10)

where the adjoint global modes are normalized following〈
ũ j, û j

〉
= 1. The direct and adjoint bases taken together

form a bi-orthogonal basis:
〈
ũ j, ûk

〉
= 0 if j 6= k and〈

ũ j, ûk
〉

= 1 if j = k. Any field u′ can therefore be expressed
in a unique way in the modal basis as u′ = ∑ j≥1 < ũ j,u′ >
û j. Note that, if the Jacobian matrix is normal, then the ba-
sis is orthogonal and the direct and adjoint global modes are
identical. If it is non-normal, then the modal basis is non-
orthogonal and the direct and adjoint global modes different.

2.2 Non-orthogonality and adjoint global modes
As mentioned in §1.2 and §1.3.2, the level of non-

orthogonality of the modal basis is central in the analysis of
short-term instabilities. It may be assessed by comparing the
direct and the adjoint global modes: in the previous section,
it was found that the jth adjoint global mode was orthogo-
nal to all direct global modes except the jth (

〈
ũ j, ûk

〉
= 0 if

j 6= k). Therefore, the angle between the adjoint global mode

ũ j and the direct global mode û j exactly characterizes the
non-orthogonality of û j with the remaining global modes of
the basis. For a specific global mode û, this angle is directly
related to the following coefficient

γ =
√
〈ũ, ũ〉×

√
〈û, û〉. (11)

Given that < ũ, û >= 1, it can easily be shown that this coef-
ficient satisfies γ≥ 1. The larger γ, the more non-orthogonal
the global mode û is with respect to the remaining global
modes of the basis. For the case of a flow around a cylinder
at Re = 47, we find that γ = 77.7

2.3 Component-type and convective-type non-
normality

Analyzing the linearized Navier-Stokes equations, it
was shown [123] that two sources of non-normality exist in
open flows. To see this, equations (5,8) governing the direct
and adjoint global modes were written in the form

λû +∇û ·uB︸ ︷︷ ︸
(1)

+∇uB · û︸ ︷︷ ︸
(2)

= −∇p̂ + 1
Re ∆û, ∇ · û = 0,

λ∗ũ −∇ũ ·uB︸ ︷︷ ︸
(1)

+(∇uB)∗ · ũ︸ ︷︷ ︸
(2)

= +∇p̃ + 1
Re ∆ũ, ∇ · ũ = 0.

The notation ∇û refers to the tensor ∂ jûi and · to the contrac-
tion operator. Two main differences, favoring orthogonality
of the direct and adjoint global modes, exist in these equa-
tions:

1. We observe that terms (1), which represent the advec-
tion of the perturbation by the base flow, have opposite
signs in these two equations: the direct global mode is
advected downstream while the adjoint global mode is
advected upstream. This sign inversion causes a sepa-
ration of the spatial support of the associated direct and
adjoint global modes (upstream support for the adjoint
mode, downstream support for the direct mode). This
tends to make the direct and adjoint global modes be
orthogonal and constitutes the so-called convective-type
non-normality [44,61]. For the case of the flow around a
cylinder, this phenomenon is illustrated in Figs. 2 and 6,
where we observe that the direct global mode is located
downstream of the cylinder and the adjoint global mode
mainly upstream of it.

2. The appearance in the adjoint equations of a trans-
conjugate operator ∗ in terms (2) causes the associated
direct and adjoint global modes to have amplitudes in
different velocity components. This constitutes the so-
called component-type non-normality. For example, in
a shear layer flow defined by the stream-wise base ve-
locity profile uB(y), the off-diagonal term ∂yuB in the
velocity gradient tensor induces stream-wise velocity
perturbations from cross-stream velocity perturbations



in the direct global mode; in contrast, in the associ-
ated adjoint global mode it generates cross-stream ve-
locity perturbations from stream-wise velocity pertur-
bations. The traditional lift-up phenomenon is hence
recovered, where the optimal perturbation consists of
a stream-wise vortex and the optimal response of a
stream-wise streak [15–17, 19]. For the case of the
marginal eigen-modes of the disc and the sphere [124],
it was shown that the amplitudes of the (m = 1) he-
licoı̈dal direct eigenvectors were entirely concentrated
in the stream-wise component, while the corresponding
adjoint modes were dominated by the cross-stream com-
ponents. The same tendency was observed [123] for the
three-dimensional non-oscillating marginal global mode
that destabilizes a recirculation bubble in a Cartesian set-
ting [37, 38, 125]. On the other hand, non-orthogonality
due to component-type non-normality was never ob-
served for two-dimensional instabilities occurring in
cylinder and open-cavity flows, where the stream-wise
and cross-stream components of the perturbations were
equally found present in the direct and adjoint global
modes.

The amount of non-orthogonality due to component-type
non-normality within total non-orthogonality γ is given by
[124]:

δ =
〈||ũ||, ||û||〉

γ
(12)

where ||u|| = (u · u)1/2 stands for the norm induced by the
standard Hermitian inner product u ·u, at some given loca-
tion of the flow. 2 By using the Cauchy-Schwartz inequality,
it can be shown that the coefficient δ satisfies 0 ≤ δ ≤ 1.
This coefficient allows us to determine whether the non-
orthogonality of a global mode stems from component-type
or convective-type non-normality: if δ is close to 0, the non-
orthogonality stems from the convective mechanism, if this
coefficient is close to 1, the non-orthogonality is mostly due
to the component-type non-normality. For the case of the
flow around a cylinder at Re = 47, we find that δ = 0.016.
Similarly, for the case of the marginal global modes of
the disc and the sphere [124], non-orthogonality due to the
component-type non-normality was also found to be small
compared to the non-orthogonality due the convective-type.

3 Oscillator flows, global modes and prevision of fre-
quencies
The dynamics of oscillators is described using dynami-

cal systems and bifurcation theory. These approaches were
initially developed for and applied to simple closed flows
[126]. Chomaz [44] introduced them to open flows, using
a model equation representative of open flows.

2Note that || · || acts on a vector and not on a vector field. On the other
hand, dependent on the specific context, < ·, ·> represents a scalar product
acting on scalar fields or vector fields so that < ||u||, ||u||>=< u,u > yields
the energy of the flow field u.

3.1 The Hopf bifurcation in cylinder flow

The first amplitude equation derived from the two-
dimensional Navier-Stokes equations for open flows was
worked out for the case of cylinder flow [11]. A Stuart-
Landau equation describing a Hopf bifurcation is thus ob-
tained that governs the amplitude of a global structure. If
the latter is evaluated at a particular point of the flow then
one recovers the results of Provansal et al. [127] and Dusek
et al. [128], who postulated its existence and calibrated its
coefficients so that its dynamical behavior reproduces exper-
imental or numerical data at a given location in the flow. It is
known that this Hopf bifurcation appears at Re = 47: the flow
is steady and symmetrical for a sub-critical control parameter
Re < 47, unsteady and asymmetrical for Re > 47. This phe-
nomenon is described schematically in Fig. 7(a) where the
x-axis represents the control parameter (the Reynolds num-
ber Re). On the left of the figure, the small picture shows the
characteristic iso-contours of vorticity of the flow field, ob-
served for a sub-critical Reynolds number (blue cross): the
flow is symmetrical and steady. The picture on the top relates
to a super-critical Reynolds number (red cross) and presents
an instantaneous field representative of the unsteady dynam-
ics. The bifurcation diagram of Fig. 7(a) is constructed in the
following way. First, a family of base flows uB(Re) is deter-
mined, which is parametrized by the Reynolds number Re.
These fields are solutions of the steady Navier-Stokes equa-
tions, as defined by Eq. (2). For Re < Rec, these flow fields
can be obtained by a direct numerical simulation: all initial
conditions converge towards a single field which is steady
and symmetrical. Such fields also exist for Re > Rec, even if
these fields are not observed, since they are unstable. For ex-
ample, the lower right picture of Fig. 7(a) shows the steady
unstable base flow related to the red cross on the x-axis. Con-
tinuation techniques, such as the Newton method, are used to
obtain these fields. Next, for each Reynolds number, the sta-
bility of the associated base flow is studied by solving the
eigenvalue problem (5). The eigenvalues corresponding to
the sub-critical case (blue cross) and super-critical case (red
cross) are displayed schematically in the (σ,ω)–plane in Fig.
7(b): the base flows are observed to be stable in the sub-
critical case and unstable in the super-critical case. Thus, the
base flow related to the red cross on the x-axis is unstable
and the flow converges toward a non-linear Hopf limit cycle
(red cross on the bifurcated branch). On the latter, the flow
is unsteady, periodic in time and asymmetrical.

To conclude, we should point out that this review does
not consider bifurcations where two branches of steady so-
lutions cross for some critical value of the control parame-
ter. This happens when a real non-zero vector u appears in
the null-space of the Jacobian matrix: A û = 0. In this case,
the marginal global mode is non-oscillating (ω = 0) and has
the same symmetries and homogeneity directions as the base
flow. Flow around a cylinder does not belong to this bifurca-
tions category since it breaks the temporal invariance of the
base flow (ω 6= 0) as well as its spatial symmetry.
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Fig. 7. Flow around a cylinder. (a): bifurcation diagram. (b): the
least damped eigenvalues in the (σ,ω)–plane for a sub-critical, crit-
ical and super-critical Reynolds number.

3.2 Bifurcation theory, control and influence of non-
linearity

The control strategies studied in this review article con-
sist of stabilizing the unstable eigenvalues, as shown in Fig.
7(b). The open-loop control, which is steady, aims at mod-
ifying the base flow to make it stable; this control is steady.
Given that this control approach suppresses instabilities, the
effects of non-linearity within this control strategy are min-
imal: with instabilities eliminated, there no longer exists
any mechanism to generate perturbations of large ampli-
tudes. The closed-loop control, on the other hand, acts di-
rectly on the perturbations to stabilize the system. This con-
trol is unsteady and corresponds to an opposition control,
where one attempts to generate structures that annihilate the
naturally developing unstable perturbations. It thus stabi-
lizes the steady unstable branch which exists for Re > Rec.
Since the underlying mathematical formalism is only valid
for flow states in the vicinity of the base flow around which
the Navier-Stokes equations have been linearized, this linear
control action does not manage a priori to drive the flow from
a limit cycle towards the steady unstable branch. Rather, this
approach can only ensure the stabilization of the system on
this branch if the initial flow state has already been in its
neighborhood. In principle, open-loop control is more costly
than closed-loop control, with the former acting on the base
flow and the latter on the perturbations.

3.3 Problems related to the mean flow
The mean flow corresponds to the temporal average of

an unsteady flow. Its characteristics are often studied in nu-
merical simulations and in experiments since it can be rather
easily obtained. However, several questions arise. Is the
mean flow different from the base flow? If so, why and by
how much? What does it mean to perform a stability analy-
sis on a mean flow? New light will be shed on these points.
The link between non-linearities and the induced mean flow
was first described by Zielinska et al. [129] for the case of
wake flows. These authors showed that the non-linearities
were rather strong, resulting in a mean flow that substan-
tially deviated from the base flow. These non-linearities are
responsible for the decrease in the recirculation length ob-
served at super-critical Reynolds numbers. Barkley [49] has
then studied the stability properties of mean flows. To this
end, direct numerical simulations for Reynolds numbers be-
tween 47 and 180 were carried out. The corresponding mean
flows were calculated by time-averaging the snapshots from
the simulations, and global stability analyses of these mean
flows were performed. The author observed, unexpectedly,
that the amplification rates related to the mean flows were
quasi-zero and that the frequencies were in agreement with
the ones observed in the direct simulations. Although these
results seem natural at first sight, they are nevertheless sur-
prising since the mean flow is a statistical construct with
no immediate inherent meaning, which makes the associated
linear dynamics around it doubtful. In the same spirit, Piot et
al. [130] observed good agreement between the frequencies
extracted from large-eddy simulations and those predicted
by stability analyses of the mean flow for the case of jets. As
mentioned in the introduction, for wake flows, Hammond et
al. [47] and Pier [48] have shown that linear stability anal-
yses of the mean flow can identify the true frequency of the
flow. For the case of flow around a cylinder, we will provide
a proof that corroborates the observations of Barkley [49].
In general, however, it will be shown that certain conditions
have to be satisfied such that the linear dynamics based on the
mean flow captures relevant properties of the flow, in partic-
ular, that the marginal stability of the mean flow and the cor-
responding frequencies are in agreement with the non-linear
dynamics.

3.4 Hopf bifurcation and limit cycle
Global stability analysis is practical to describe the lin-

ear dynamics of oscillator flows. For Reynolds numbers
above a critical value, however, it predicts the existence of
exponentially growing perturbations in time, thereby invali-
dating, for large but finite time, the small-amplitude assump-
tion underlying the linear stability theory. In other words, in
the presence of instabilities there exists a time beyond which
the nonlinear terms can no longer be neglected. The non-
linear dynamics is studied in this section, based on a weakly
non-linear analysis. An asymptotic development of the so-
lution in the vicinity of the bifurcation threshold is sought,
where the small parameter ε = Re−1

c −Re−1 designates the
departure of the Reynolds number from the critical Reynolds



number. More precisely, the global flow field u(x,y, t) is
taken in the form [11]

u(x,y, t) = u0(x,y)+
√

ε
[
Aeiω0t ûA

1 (x,y)+ c.c.
]

+ ε[û1
2(x,y)+ |A|2û|A|

2

2 (x,y) (13)

+(A2e2iω0t ûA2

2 (x,y)+ c.c.)]+ ...

where c.c. denotes the complex conjugate. The dominant
term in this expansion corresponds to the base flow uB =
u0(x,y) obtained for Re = Rec and is represented in Fig.
1. The solution at order

√
ε consists of the marginal global

mode Aeiω0t ûA
1 + c.c. which satisfies the eigenvalue problem

A ûA
1 = iω0ûA

1 for Re = Rec (Eq. 5). The time evolution of
this structure is described by the frequency ω0 = 0.74 and
by its complex amplitude A, which is assumed to evolve on
a slow characteristic time-scale A(εt). The marginal global
mode is depicted in Fig. 2. The solution at order ε con-
sists of three terms: the correction of the base flow û1

2 due
to a departure from criticality 3, the zeroth-order or mean-

flow harmonic |A|2û|A|
2

2 resulting from the non-linear inter-
action of the marginal global mode with its complex conju-
gate, and the second-order harmonic A2e2iω0t ûA2

2 related to
the interaction of the marginal global mode with itself. At
order ε

√
ε, non-homogeneous, linearly degenerate equations

appear. Compatibility conditions have thus to be enforced
which lead to a Stuart-Landau equation

dA
dt

= εκA− ε(µ+ν)A|A|2, (14)

which describes the slow time evolution of the complex am-
plitude A. The complex coefficients κ, µ and ν are obtained
[11] from scalar products involving the adjoint global mode
ũA

1 , which is depicted in Fig. 6, and forcing terms depending
on the various fields that have been introduced in Eq. (13).
The first term on the right-hand side of the Stuart-Landau
equation (14) represents the linear instability dynamics while
the second term describes the non-linear mechanisms. The
linear instability phenomenon is completely determined by
the coefficient κ. It was shown [11] that κr > 0 which in-
dicates that the flow is unstable for super-critical Reynolds
numbers (ε > 0). As for the non-linear mechanisms, they are
characterized by the coefficients µ and ν, which are respec-

tively related to the zeroth-order harmonic û|A|
2

2 and second-
order harmonic ûA2

2 . It turned out [11] that µr +νr > 0, which
implies that the system converges towards a limit cycle: the

3In fact, û1
2 = duB/dε since the base flow uB(ε) depends on the Reynolds

number ε.

non-linear term has a stabilizing effect on the dynamics 4 5

On this limit cycle, the frequency of the flow in the vicinity
of the bifurcation (ε� 1) is

ω
LC = ω0 + εκi− εκr

µi +νi

µr +νr
, (15)

where the first term on the right-hand side is the frequency
of the marginal global mode and the second term is the linear
correction of the frequency due to departure from criticality.
The sum of these two terms corresponds to the linear pre-
diction of the frequency ωB = ω0 + εκi. The third term in
Eq. (15) is the non-linear correction due to contributions of
the zeroth-order and second-order harmonics. The numerical
evaluation of these terms gives ωLC = 0.74 + 3.3ε + 31ε. It
clearly indicates that the non-linear correction is much larger
than the linear correction. The frequency of the limit cycle
ωLC is thus significantly different from the linear prediction
ωB, which explains why a global stability of the base flow
may yield a very poor prediction of the frequency observed
in direct numerical simulations for super-critical Reynolds
numbers 0 < ε� 1. Finally, a comparison of the coefficients
from the non-linear correction term shows that νr � µr and
νi � µi. The zeroth-order harmonic is therefore mainly re-
sponsible for the change in the frequency of the limit cycle.

Note that, in the case of an axi-symmetric disc placed
perpendicular to the incoming flow, a similar development
has been led [133] in order to determine the global amplitude
equations associated to the co-dimension 2 bifurcation. It
was shown that the amplitude equations reproduce precisely
the complex bifurcation scenario observed in direct numeri-
cal simulations by Fabre et al. [134].

3.5 Mean flow and stability of mean flow
As mentioned previously, a global stability analysis of

the mean flow yields surprisingly a good approximation of
the frequency obtained from direct numerical simulations
[49]. In this section the concept of mean flows and global
stability of mean flows are addressed in light of the weakly
non-linear analysis presented above. While the base flow is
given by uB = u0 +εû1

2, the mean flow uM related to the limit
cycle is obtained by calculating an average over time 6 of the

4Chomaz [44] argued that the more the flow is parallel, the smaller |µr +
νr|. This stems from the fact that, the more the flow is parallel, the further
apart are the spatial supports of the direct and adjoint global modes. Hence,
the mean flow and second-order harmonics have less and less impact on the
dynamics since their support is more and more outside the ”wavemaker”
region (see §4.2.2 for definition). In this case, one has to resort to a strongly
non-linear approach, as presented by Pier et al. [46].

5The cylinder bifurcation corresponds to a super-critical instability, i.e.
the flow is unstable solely for super-critical parameters ε > 0. If µr +νr < 0,
then the bifurcation would be sub-critical and an instability of an open flow
may arise for sub-critical parameters ε < 0 but only for finite-amplitude
perturbations [131, 132].

6If <>T denotes the process of averaging over time, we thus obtain
uM =< u(t) >T . Letting u = uM + u′ with < u′ >T = 0 and averag-
ing Eq. (1), the following equation governing the mean flow is obtained:
R(uM) =−< R(u′) >T . It is noted that the mean flow uM is not a base flow,
i.e. a solution of Eq. (2). For our case, we get u′ =

√
ε[Aeiω0t ûA

1 (x,y)+c.c.]
at the dominant order.



Fig. 8. Flow around a cylinder for Rec = 47. Stream-wise velocity
on the symmetry axis for the base flow u0 (dotted line), for the cor-
rection of the base flow û1

2 (continuous line) and for the correction of
the mean flow ûM

2 (dashed line). Adapted from [11].

expansion (13): uM = u0 +εûM
2 . Here ûM

2 is equal to the sum
of the base-flow correction û1

2 and the mean-flow harmonic

|A|2û|A|
2

2 . In Fig. 8, the stream-wise velocity component for
the base flow u0, for the correction of the base flow û1

2 and
for the correction of the mean flow ûM

2 , evaluated on the axis
of symmetry, is displayed. We observe that the recirculation
zone of the base flow at the bifurcation threshold extends up
to x = 3.2 diameters. The correction of the base flow û1

2 tends
to increase this length (û1

2 < 0 in the wake) whereas the cor-
rection of the mean flow shortens it (ûM

2 > 0 for x > 2.25).
This confirms the observations of Zielinska et al. [129] con-
cerning the mean flow.

The stability of the mean flow has then been addressed
in detail [11]. In particular, it is shown that the amplifica-
tion rate σM and frequency ωM of the global mode associated
with the mean flow are given by

σ
M = εκr

νr

µr +νr
, ω

M = ω0 + εκi− εκr
µi

µr +νr
. (16)

We observe that the frequency ωM is not strictly equal to
the frequency of the flow on the limit cycle ωLC, which was
given in Eq. (15). Also, the growth rate σM is not strictly
zero. Comparing these equations, we can see that the global
stability of the mean flow gives a good prediction of the fre-
quency of the limit cycle, if

|νi/µi| � 1, (17)

and that the mean flow is marginally stable, if

|νr/µr| � 1. (18)

Since µ and ν respectively result from interactions of the
marginal global mode with the zeroth-order and second-
order harmonics, the above criteria can be physically inter-
preted as the predominance of the zeroth-order harmonic in
the saturation process. For the case of the flow around a
cylinder, |νr/µr| ≈ |νi/µi| ≈ 0.03 is obtained, which explains
that σM ≈ 0 and ωM ≈ ωLC. This gives a theoretical justifi-
cation of the results of Barkley [49]. It can be further shown
that the two conditions stated above are not satisfied for the
case of an open cavity flow. Consequently, the associated
mean flow is not stable, and the frequency of its global mode
is not equal to the frequency of the observed unsteadiness.

4 Sensitivity of eigenvalues and open loop control
First, we will show how the use of the modal basis de-

fined in §2.1 may yield an elementary form of sensitivity and
open-loop control approach (§4.1). We will then see how an
adjoint global mode can be used to acquire information about
the sensitivity of an eigenvalue (§4.2) or to predict the influ-
ence of a small control cylinder on the dynamics of a flow
(§4.3).

4.1 Towards sensitivity and open loop control
Let us determine a forcing f̂ that maximizes the response

û at a given frequency. The equation that links f̂ to û is given
by:

(iωI −A)û = f̂. (19)

In the modal basis, the solution of this equation can be writ-
ten as

û = ∑
j≥1

〈
ũ j, f̂

〉
iω−λ j

û j. (20)

The response of the jth component of û is thus strongest
when the jth eigenvalue λ j is closest to the excitation fre-
quency iω and the structure of the global forcing f̂ clos-
est to the jth adjoint global mode ũ j, so as to maximize
< ũ j, f̂ > /(iω−λ j). Hence, to excite the jth global mode û j
(with eigenvalue λ j) as much as possible, the forcing must
be applied at the frequency ω = ℑ(λ j) with a spatial struc-
ture of the forcing equal to the one of the adjoint global
mode ũ j. 7 This control strategy has been explored for
various flows. The sensitivity of the three-dimensional non-
oscillating marginal global mode for a recirculation bubble

7It should be noted that this approach is only rigorously justified in the
case of a marginal global mode forced in the vicinity of its natural frequency.
In fact, it is the entire sum in Eq. (20) that should be considered as the func-
tional objective and not just the response in a particular component. The
relevant concept here should be the singular value decomposition of the re-
solvent that seeks the maximum response associated with a given forcing
energy. This will be further discussed in the section dealing with noise am-
plifiers in §6.



in a Cartesian configuration has been considered. A sim-
ilar analysis was carried out for axi-symmetric configura-
tions based on the marginal global modes of a sphere and
a disc [124].

The modal basis introduced previously may also be use-
ful to select the initial condition to maximize energy ampli-
fication at large times. To this end, the system is formulated
in the time domain

du′

dt
= Au′, u′(t = 0) = uI , (21)

and the solution can be written as

u′ = ∑
j≥1

〈
ũ j,uI〉eλ jt û j. (22)

At large times, this solution is dominated by û1, since this
mode is the least damped (or most unstable) mode. The am-
plitude of this mode is proportional to < ũ1,uI >. Conse-
quently, the initial perturbation that maximizes energy for
large times corresponds to the most unstable adjoint global
mode ũ1. This strategy was pursued for the optimization of
the Crow instability in vortex dipoles [135]. It was also used
by Marquet et al. [123] and Meliga et al. [124] in their anal-
ysis of a recirculation bubble in a Cartesian setting and of the
wake of a disc and a sphere.

4.2 Sensitivity of the eigenvalues
A formalism for open-loop control has been introduced

[136] that enables the accurate prediction of the stabilization
regions determined experimentally by Strykowski et al. [67]
and presented in Fig. 4. Following the precursory work of
Hill [122], the idea is to consider the eigenvalue λ as a func-
tion of the base flow uB and the base flow uB, in turn, as a
function of an external forcing f. This forcing is intended to
model the presence of a small control cylinder. This func-
tional relation is formalized as

f
R(uB)+f=0−→ uB A(uB)û=λû−→ λ. (23)

The control problem is illustrated in Fig. 9. The horizontal
axis represents the forcing f while the vertical axis displays
the amplification rate σ = ℜ(λ). The continuous curve rep-
resents the function σ(f). For f = 0, the amplification rate
is positive; that is, the uncontrolled system is unstable. To
stabilize the system, we try to find a particular forcing f such
that σ(f) ≤ 0. This problem is difficult to solve owing to
the many degrees of freedom of f. We focus on the gradi-
ent of the function σ(f) evaluated at f = 0; that is, for the
case of an uncontrolled system. This will provide us with
invaluable information regarding the most sensitive regions
for control based on the underlying physics. We note that the
non-linear optimization problem which uses gradient calcu-
lations for descent algorithms will not be addressed in this

Fig. 9. Open-loop control by action on the base flow by an external
forcing. Diagram displaying the law σ(f).

review. Given the expression λ(f) = λ(uB(f)), the evaluation
of the gradient of the function λ(f) requires prior knowledge
of the gradient of the function λ(uB). This requirement is the
subject of §4.2.1; the complete evaluation of the gradient of
λ(f) is the focus of §4.2.4. The gradient of λ(uB) can be in-
terpreted as the sensitivity of the eigenvalue with respect to a
modification of the base flow. A local version of this theory
has been derived by Bottaro et al. [118]; in what follows, this
formalism is extended to the global framework. In §4.2.2, we
address the ”wavemaker” notion, which is meant to identify
the regions in space which are at the very origin of the insta-
bility. In §4.2.3, the expression of the gradient of λ(uB) will
reveal that the stabilization or destabilization of a flow can be
linked either to a strengthening of the downstream advection
of the perturbations or to a weakening of their production.

4.2.1 Sensitivity of the eigenvalues to a modification of
the base flow

Let λ be an eigenvalue associated with a direct global
mode û via the eigenvalue problem (5). Recalling that λ is a
function of uB, the following expression can be obtained by
differentiation:

δλ =
〈
∇uBλ,δuB〉 . (24)

The quantity ∇uB λ, for which an explicit expression will
be given in this sub-section, represents the sensitivity of an
eigenvalue to a modification of the base flow. It is a complex
vector field defined over the entire flow domain; its real part
(resp. imaginary) defines the sensitivity of the amplification
rate ∇uB σ = ℜ(∇uB λ) (resp. the sensitivity of the frequency
∇uB ω = −ℑ(∇uB λ)) to a modification of the base flow. The
variation δλ in Eq. (24) is defined using the scalar product
< ·, ·>. As will be shown, the gradient ∇uB λ depends on the
choice of the scalar product through the computation of ad-
joint quantities, but the variation δλ in (24) is intrinsic. Gen-
erally speaking, it can be shown that for any variation δA of



the Jacobian A the variation δλ of the eigenvalue satisfies

δλ = 〈ũ,δA û〉 , (25)

where ũ is the adjoint eigenvector given by A∗ũ = λ∗ũ (see
Eq. 8). The adjoint global mode is normalized such that <
ũ, û >= 1. A specific variation of the matrix δA will now be
specified, which represents a modification of the base flow.
Let us recall that the Jacobian A is a function of the base flow
uB. After differentiation, the matrix B(uB, û) is obtained as
follows

δA û =
∂

∂uB

[
A(uB)û

]
︸ ︷︷ ︸

B(uB,û)

δuB. (26)

After substituting this expression into Eq. (25), we obtain
δλ =< B(uB, û)∗ũ,δuB > where B(uB, û)∗ is the adjoint
matrix associated with B(uB, û) based on the scalar prod-
uct < ·, · >. After identifying this expression with Eq. (24),
a final expression for the sensitivity of the eigenvalue to a
modification of the base flow is obtained:

∇uBλ = B(uB, û)∗ũ. (27)

For the incompressible Navier-Stokes equations, it was
shown [136] that an explicit expression of the gradient (27)
may be obtained in the form

∇uBλ =− [∇û]∗ · ũ+∇ũ · û∗. (28)

This gradient 8 is the sum of two terms, each of which in-
volving the direct global mode û and the adjoint global mode
ũ. For the flow around a cylinder at Re = 47, the sensitiv-
ity of the amplification rate ∇uBσ = ℜ(∇uB λ) and the sen-
sitivity of the frequency ∇uBω = −ℑ(∇uB λ) are displayed
in Figs. 10(a) and 10(b). The streamlines of these fields
are represented by continuous lines, their direction is indi-
cated by small arrows, and the modulus of the fields is dis-
played by colors. The amplitudes of both fields tend to zero
far from the cylinder, which is in agreement with the fact
that the direct and adjoint modes vanish upstream and down-
stream of the cylinder, respectively. The most sensitive re-
gion for the amplification rate is located just downstream of
the cylinder on the symmetry axis near (x = 1,y = 0). As
expected, a reduction in the back-flow velocity within this
zone, δuB = +ex (the recirculation bubble becomes smaller),
stabilizes the system since the vectors ∇uBσ and δuB are par-
allel but directed in opposite directions in this region. As
for frequency changes (see Fig. 10(b)), an increase in the

8Meliga [137] analyzed this gradient in the case of compressible Navier-
Stokes equations. He showed for an axi-symmetric bluff body how the sen-
sitivity fields may be used to study the effect of compressibility on the in-
stability.

frequency is observed. These results are in agreement with
those presented in §3: the action of the non-linearities re-

duces the size of the recirculation zone (since u|A|
2

2 > 0), the
frequency associated with the mean flow increases, but its
amplification rate decreases. More precisely, we see that the
eigenvalue defined in Eq. (16) and associated with the mean
flow λM = σM + iωM, can be linked to the eigenvalue associ-
ated with the base flow λB = ω0 + εκ, as follows

λ
M = λ

B + ε
κr

µr +νr

〈
∇uBλ, û|A|

2

2

〉
. (29)

The importance of both the sensitivity field ∇uBλ and the

zeroth-order harmonic û|A|
2

2 for determining the stability
properties of the mean flow arises clearly from this expres-
sion.

4.2.2 The ”wavemaker” concept
The ”wavemaker” concept may be introduced in the

case of weakly-non-parallel flows by considering the linear
saddle-point criterion [45, 138]. Indeed, the associated the-
ory identifies a specific spatial position (in the complex x–
plane, where x is the stream-wise coordinate) which acts as
a ”wavemaker”, providing a precise frequency selection cri-
terion and revealing some important insights pertaining to
the forcing of these modes. Chomaz [44] and Giannetti et
al. [59] then tried to define a ”wavemaker” region in the case
of a strongly non-parallel flow. It relies on the concept of lo-
cal feedback acting at the perturbation level. This feedback
is modeled by a volume forcing in the momentum equations
and is taken proportional to the perturbation, i.e., φ(x,y)û.
The feedback function φ(x,y) allows us to localize this feed-
back in regions of interest within the flow domain. The mod-
ified eigenvalue problem becomes

(A +φ(x,y)I ) û = λû. (30)

The derivation that follows is a reformulation of the ideas
of Chomaz [44] and Giannetti et al. [59] using a gradient-
based formalism. The eigenvalue λ depends on the feedback
function φ(x,y). In particular, if φ = 0, Eq. (30) yields the
original eigenvalue problem (5). We may show that δλ =<
∇φλ,δφ > with

∇φλ(x,y) = ũ(x,y) · û(x,y). (31)

In this expression, ũ is the adjoint global mode associated
with û, which satisfies (A∗+ φ(x,y)∗I )ũ = λ∗ũ and is nor-
malized such that < ũ, û >= 1. The expression of the gra-
dient given in (27) is structurally analogous to the simpler
one given here. If the change in feedback function δφ is
equal to a Dirac function located at (x0,y0), then δλ(x0,y0) =
ũ(x0,y0) · û(x0,y0), and the relation given by Chomaz [44]
and Giannetti et al. [59]

|δλ(x0,y0)| ≤ ||ũ(x0,y0)||× ||û(x0,y0)|| (32)



(a) ∇uBω(b)∇uB σ

Fig. 10. Flow around a cylinder at Re = 47 and sensitivities associated with a modification of the base flow (adapted from [136]). (a):
sensitivity of the amplification rate, (b): sensitivity of the frequency.

(a)

(b)

Fig. 11. Flow around a cylinder. (a): ”wavemaker” region for Re =
50 according to Giannetti et al. [59], (b): ”wavemaker” region for
Re = 47 identified by the field W in the vicinity of the bifurcation
threshold.

is recovered from Cauchy-Schwartz. The right-hand-side of
this expression is used to identify the ”wavemaker” region.
For the flow around a cylinder at Re = 50 this latter expres-
sion is presented in Fig. 11(a). Giannetti et al. [59] noted that
the location of the maxima in this figure are consistent with
those given by the linear saddle-point criterion, justifying
their approach. To underline the effectiveness of their con-
cept, Chomaz [44] and Giannetti et al. [59] also argued that
the ”wavemaker” region resembled the stabilization regions
identified experimentally by Strykowski et al. [67] which are
recalled in Fig. 4. A quick comparison of Figs. 11(a) and 4
shows that the ”wavemaker” concept indeed roughly repro-
duces the experimentally obtained stabilizing regions. Note
that Luchini et al. [139] extended the ”wavemaker” concept
to finite-amplitude oscillations, by using a Floquet stability
analysis.

We propose here an alternative definition of the ”wave-
maker” region. For a given Reynolds number ε =
Re−1

c − Re−1 (which is not necessarily small), we first
note that the amplification rate of the leading global mode
for the Reynolds number ε is given by: σ(ε)− σ(0) =∫

ε

0 (dσ/dε)dε′, where σ(0) = 0 since at the bifurcation
threshold the amplification rate is zero. The eigenvalue λ =
σ+ iω is a function of the base flow uB and of the Reynolds
number ε (since ε explicitly appears in the eigenproblem
(5) in the diffusion part (Re−1

c − ε)∆û). Also, the base
flow is a function of the Reynolds number: uB(ε). Hence,
the eigenvalue is solely a function of the Reynolds num-
ber: λ(uB(ε),ε). After differentiation, we obtain: dλ/dε =
(∂λ/∂uB)(duB/dε) + ∂λ/∂ε. The two parts of this expres-
sion reflect two distinct mechanisms. The first is related 9 to
the modification of the base-flow: (∂λ/∂uB)(duB/dε) =<
∇uB λ,A−1(∆uB) >; while the second refers 10 to an in-
crease of the Reynolds number in the governing equations:
∂λ/∂ε = − < ũ,∆û >. Hence, considering the real part of
dλ/dε, the amplification rate for the Reynolds number ε may
be given in closed form as an integral in space of a scalar field
W (ε):

σ(ε) =
∫∫

W (ε) dxdy (33)

W (ε) =
∫

ε

0

{
∇uB σ ·

[
A−1(∆uB)

]
−ℜ(ũ ·∆û)

}
dε
′ (34)

where · refers to the Hermitian scalar product of two vectors.
The scalar field W (ε) defines the ”wavemaker” of the insta-
bility at the Reynolds number ε. To compute W (ε), we may
approximate the continuous integral in ε by a discrete sum
involving the knowledge of ∇uB σ , A , uB, ũ and û for some
discrete values of ε′ within the interval 0 ≤ ε′ ≤ ε. Here,
for conciseness, we only represent and discuss the ”wave-

9The base flow correction duB/dε is defined by R(uB +duB,ε+dε) = 0.
Linearizing this equation and noting that ∂R/∂ε =−∆uB, we obtain AduB−
∆uBdε = 0, which yields duB/dε = A−1(∆uB). Note that ∆ refers here to
the matrix related to the Laplace.

10The variation of the eigenvalue dλ with respect to an increase of the
Reynolds number dε — with the base flow uB frozen — may be obtained
from Eq. (25), using the following perturbation matrix: δA = −∆, i.e. the
negative of the matrix standing for the Laplace operator.



maker” W in the vicinity of the bifurcation threshold |ε|� 1.
Hence, W = (dW/dε)dε and it is more convenient to dis-
cuss (dW/dε) rather than W . The quantity dW/dε is de-
picted in Fig. 11(b) for the flow around a cylinder. Since
the integral over space of this quantity yields the amplifica-
tion rate σ/ε, the regions of the flow where this quantity is
zero do not play a role in the instability. The ”wavemaker”
will therefore be defined as the regions where this quantity is
non-zero. We remark that regions characterized by positive
values contribute favorably to the instability whereas regions
of negative values inhibit the instability. We also emphasize
that the present definition of the ”wavemaker” also reflects
the existence of a feedback mechanism as proposed by Gian-
netti et al. [59]. But rather than assuming a local feedback,
i.e. a local force depending on the velocity, the present defi-
nition is based on a global feedback. Moreover, this forcing
does not only depend on the perturbation û, as assumed by
Giannetti et al. [59], but also on the base-flow uB. Despite
such differences in the two analyses, a comparison of Figs.
11(a) and 11(b) shows that similar ”wavemaker” regions are
identified here. Hence, this definition of the ”wavemaker” is
also consistent with the initial definition of the ”wavemaker”
in the asymptotic case.

4.2.3 Advection / production decomposition
The two terms that make up the expression of the gradi-

ent (28) have a different origin and physical meaning. Let us
recall that the global mode û is governed by equation

λû+∇û ·uB +∇uB · û =−∇p̂+
1

Re
∆û, ∇ · û = 0. (35)

As explained in §2.3, the base flow uB appears twice in this
equation: ∇û · uB describes the advection of perturbations
whereas ∇uB · û stands for the production of perturbations.
It can be shown that these two terms produce, respectively,
the two terms in the gradient expression (28). The resulting
sensitivity measure then breaks down as follows,

∇uB λ = ∇uB λ|(A) + ∇uB λ|(P) (36)

with ∇uBλ|(A) =−[∇û]∗ · ũ and ∇uBλ|(P) = ∇ũ · û∗. One may
then deduce [136] that the destabilization of a global mode
by a base-flow modification δuB is:

1. either due to a weaker advection of the perturbations by
the base flow (∇uB σ|(A) ·δuB > 0);

2. or due to a stronger production of perturbations
(∇uB σ|(P) ·δuB > 0).

These ideas are reminiscent of certain concepts of the local
theory by Huerre et al. [140]; we know that absolute insta-
bility is promoted either because the downstream advection
becomes weaker or because the production mechanism be-
comes more significant. Let us also note that these two ef-
fects cannot be isolated within the classical convective / ab-
solute framework [14]. However, this decomposition appears

rather naturally from a sensitivity approach of the eigenvalue
with respect to base flow modifications.

For the flow around a cylinder at Re = 47, the sensitiv-
ity field associated with advection is directed upstream [136]
throughout the flow domain; as expected, an increase in the
velocity of the base flow tends to stabilize the global mode,
by strengthening of the downstream perturbation advection.
It was also shown that the sensitivity field related to advec-
tion is much smaller than the sensitivity field associated with
the production of perturbations. We thus conclude that any
stabilization or destabilization of flow will be due mainly to
the modification of the mechanism responsible for perturba-
tion production rather than downstream perturbation advec-
tion.

4.2.4 Sensitivity of the eigenvalues to a steady forcing of
the base flow

We now return to our initial objective: a measure of
eigenvalue sensitivity to a forcing f of the base flow. This
is defined by the following expression,

δλ = 〈∇fλ,δf〉 (37)

where the term ∇fλ corresponds to this sensitivity. It repre-
sents a complex vector field whose real part is related to the
sensitivity of the amplification rate to a steady forcing of the
base flow ∇fσ = ℜ(∇fλ) while its imaginary part measures
the sensitivity of the frequency ∇fω =−ℑ(∇fλ). To give an
explicit expression of this sensitivity field, let us recall that
the base flow uB depends on the steady forcing f via the equa-
tion governing the base flow, R(uB)+ f = 0. By differenti-
ating this equation, we obtain the expression AδuB +δf = 0.
Substituting the expression for δuB into Eq. (24), the follow-
ing result is obtained,

∇fλ =−A∗−1
∇uBλ (38)

where A∗ is again the adjoint matrix corresponding to A . As
discussed previously, to calculate the sensitivity to a steady
forcing of the base flow, the sensitivity to a modification of
the base flow should be evaluated first. Application of the
matrix −A∗−1 enables us to go from a sensitivity to a mod-
ification of the base flow to a sensitivity to a steady forcing
of the base flow. For flow around a cylinder at Re = 47, both
fields ∇fσ and ∇fω are displayed in Figs. 12(a,b). These are
appreciably different from those presented in Figs. 10(a,b),
which only show sensitivities to a modification of the base
flow. Despite this observation, general trends are identical.
Thus, a force placed inside the recirculation bubble and act-
ing in the downstream direction stabilizes the flow field and
increases the frequency.

4.3 Open loop control with a small control cylinder
In this section we use the sensitivities of the amplifica-

tion rate and the frequency associated with a steady forcing



(a) ∇fω(b)∇fσ

Fig. 12. Flow around a cylinder at Re = 47 and sensitivities associated with a steady forcing of the base flow. (a): sensitivity of the
amplification rate, (b): sensitivity of the frequency. Adapted from [136].

of the base flow, that were presented in Figs. 12(a,b), to pre-
dict the stabilization zones for the flow around a cylinder de-
scribed by Strykowski et al. [67] and displayed in Fig. 4.
For this reason, it is necessary to find a forcing field f that
adequately describes the presence of a small control cylinder
located at (x0,y0). This modeling is in fact a rather complex
problem. It was addressed by Hill [122], then formalized by
Marquet et al. [141] by means of an asymptotic expansion
based on two small parameters, one accounting for the am-
plitude of the marginal global mode, the other describing the
size of the small control cylinder. The small control cylinder
acts both on the level of the base flow and the level of the
perturbations by imposing a zero velocity on these two flow
fields at the location of the control cylinder. It turns out that
its impact on the perturbation level remains rather weak (at
least for the case of the bifurcation of the flow around a cylin-
der at Re = 47). We therefore restrict our discussion to the
forcing’s influence on the base flow. To model the presence
of the small control cylinder on the base flow, we note that
the base flow uB exerts a force F on the small control cylin-
der. Invoking the action/reaction principle, the small control
cylinder then exerts the force −F on the base flow uB. We
hence obtain a force field f which is zero everywhere except
at the location of the small control cylinder where it is repre-
sented by a Dirac function of intensity−F. It thus remains to
model the force F exerted on the small cylinder by the base
flow. In this review article, only the simplest modeling is
considered: we focus on the direction of the force and leave
aside its strength. We assume that the force exerted on the
small cylinder, located at (x0,y0), is parallel but opposite to
the velocity vector of the base flow at (x0,y0). We have

δf(x,y) =−uB(x0,y0)δ(x− x0,y− y0). (39)

Hence, the small control cylinder is only subjected to a drag
force 11 that is assumed steady 12. From Eq. (37), the vari-

11This is incorrect if the small control cylinder is located in a shear flow.
In this case, a lift force must also be taken into account.

12For this, a control cylinder of a sufficiently small diameter is chosen
such that the Reynolds number based on the local velocity of the base flow
and the diameter of the small control cylinder is lower than Rec = 47.

ation of the eigenvalue δλ(x0,y0) based on the presence of a
small control cylinder at (x0,y0) is thus given by

δλ(x0,y0) =−∇fλ(x0,y0) ·uB(x0,y0). (40)

This field corresponds to the negative scalar product at each
point between the sensitivity field ∇fλ and the base flow
uB. It takes into account the level of sensitivity, the ampli-
tude of the base-flow velocity as well as the respective di-
rections of the sensitivity and the base flow. The real and
imaginary parts of this complex field are depicted in Figs.
13(a,b). These two fields represent, respectively, the varia-
tions of growth rate and frequency as a small control cylin-
der is placed into the flow at a given point. If the figure on
the left is compared with the iso-contour for Re = 48 in Fig.
4, we observe very strong analogies: the two stabilization
zones determined by Strykowski et al. [67] are well recov-
ered, their spatial extent and location seem well predicted,
and the destabilizing zone near the small control cylinder,
where the boundary layer detaches, is also identified. In
Fig. 13(b), we notice that the introduction of a small con-
trol cylinder into the flow always yields a reduced frequency
of the unsteadiness. This result is in agreement with the ob-
servations of Strykowski et al. [67].

The decomposition in terms of advection/production, in-
troduced in §4.2.3, is used next to provide an interpretation of
the stabilization/destabilization phenomenon. We consider a
small control cylinder located at the place of maximum sta-
bilization, i.e., at (x0,y0) = (1.2,1). The modification of the
base flow associated with the introduction of this cylinder
at (x0,y0) is given by δuB = −A−1δf, with the force δf de-
fined by Eq. (39). Thus, the variation of the eigenvalue can
be evaluated using either the sensitivity field associated with
a steady forcing of the base flow: δλ =< ∇fλ,δf >, or the
sensitivity field associated with a modification of the base
flow: δλ =< ∇uB λ,δuB >. Resorting to the decomposition
introduced in §4.2.3, it is found that stabilization is due to a
weaker production mechanism; the advection properties, on
the other hand, are slightly destabilizing.

A model for the forcing amplitude F was not required
here since the computation of the stabilizing zones at the bi-



(a) δω(b)δσ

Fig. 13. Flow around a cylinder at Re = 47. (a): variation of the amplification rate with respect to the placement of a control cylinder of
infinitesimal size located at the current point, (b): associated variation of the frequency. Adapted from [136].

Fig. 14. Flow around a cylinder. Stabilization zones for the un-
steadinesses as obtained by the sensitivity approach for different
Reynolds numbers. The results should be compared with the ex-
perimental results displayed in Fig. 4. Adapted from [136].

furcation threshold is independent of such a model. How-
ever, a model becomes essential if we want to determine
the stabilization regions at super-critical Reynolds numbers.
This work was completed in [136], and the final result is re-
produced in Fig. 14. We note that this figure matched rather
well the experimental results of Strykowski et al. [67] shown
in Fig. 4.

5 Model reduction and closed-loop control
Contrary to open-loop control which modifies the base

flow in order to stabilize the unstable eigenvalues, closed-
loop control acts directly on the perturbations. It is by na-
ture unsteady and consists of an opposition control strategy
where structures are generated by the actuator that annihi-
late the unstable perturbations that would otherwise develop
naturally. A measurement of the flow is necessary to esti-
mate the phase and the amplitude of the disturbance after
which one constructs a control law linking the measurement
to the action. This control law must be simple and designed
for application in real-time in an experiment. To this end, it
should be based on only a moderate number of degrees of
freedom, at the most on the order of a few tens. The control
law is obtained within the Linear Quadratic Gaussian (LQG)
control framework which requires the implementation of an
estimator. The estimator and the controller are both based

on a model of the flow that must be low-dimensional and re-
produce certain flow properties, as will be specified below.
Model reduction techniques based on Petrov-Galerkin pro-
jections and the choice of a basis (such as POD, balanced
or global modes) are required to build this model. In this
section, we will design and implement a closed-loop control
strategy for an unstable open cavity flow. The configuration
of this flow is first described (§5.1). For the chosen param-
eters, the flow is unstable, and a reduced-order model of the
unstable subspace is constructed based on the unstable global
modes. Next, we concentrate on the stable subspace. First,
we show why the stable subspace has to be modeled appro-
priately (§5.2) after which we proceed to determine a model
for this stable subspace (§5.3). Finally (§5.4), a closed-
loop control scheme based on the LQG control framework
is implemented where various reduced-order models (global
modes, balanced modes and POD modes) will be considered
and tested as their effectiveness in stabilizing the flow.

5.1 Configuration and reduced-order model for the un-
stable subspace

The configuration has been presented in Fig. 5. The ac-
tuator is located upstream of the cavity and consists of blow-
ing/suction at the wall described by the law ρ(t). The sensor,
taking the measurement m(t), is situated downstream from
the cavity and reads the wall shear-stress integrated over a
small segment.

This flow exhibits a first Hopf bifurcation at a Reynolds
number equal to Rec = 4140 [11]. For the super-critical
Reynolds number of Re = 7500, the spectrum of the flow,
which is displayed in Fig. 15(a), shows four unstable
(physical) global modes (eight if the complex conjugates
are counted). The spatial structures of the two unstable
global modes with the lowest frequency are presented in
Figs. 15(b,c). These structures, visualized by the stream-
wise velocity component, correspond to Kelvin-Helmholtz
instabilities located atop the shear layer. The dynamics of
the perturbation u′ is governed by a large-scale state-space
model, which is obtained by a spatial discretization of the
Navier-Stokes equations linearized about the base flow for
Re = 7500. Taking into account the perturbation dynamics,
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Fig. 15. Flow over an open cavity for Re = 7500. (a): spectrum of the matrix A , (b): real part of the stream-wise velocity of the most
unstable global mode, (c) same for the unstable global mode with the lowest frequency, (d) likewise for the most unstable adjoint global mode,
(e) likewise for the unstable adjoint global mode with the lowest frequency. Adapted from [113].

the control and the measurement, we have

du′

dt
= Au′+Cc, (41)

m = M u′ (42)

where M represents the measurement matrix related to the
wall-shear stress measurement mentioned above, and C de-
notes the control matrix. This is a Simple-Input-Simple-
Output (SISO) problem. Hence, C and M respectively des-
ignate matrices of dimension (n,1) and (1,n), where n is the
number of degrees of freedom in the state vector u’. The
base flow is shown in Fig. 16(a), visualized by contours of
the stream-wise velocity and velocity vectors. The control
matrix C is obtained by a lifting procedure since the control
consists in blowing/suction at the wall. This matrix satis-
fies AC = 0 together with a unit blowing (ρ(t) = 1) bound-
ary condition imposed on the control segment. The resulting
flow field is shown in Fig. 16(b). The control function c(t)

in Eq. (41) is equal to the negative derivative of the blow-
ing/suction function ρ(t).

A reduced-order model of these equations is obtained
by a Petrov-Galerkin projection onto a bi-orthogonal ba-
sis (W ,V ) which satisfies < Wi,V j >= 0 if i 6= j and
< Wi,V j >= 1 if i = j. We denote by Wi and V j, respec-
tively, the ith and jth vector of the dual and primal bases W
and V . By introducing the reduced variables ur

i =< Wi,u′ >
(or equivalently u′ = ∑i Viur

i ), the following is obtained:

dur

dt
= Arur +C rc, (43)

m = M rur (44)

where the reduced matrices are defined by Ar
i, j =<

Wi,AV j >, C r
i,1 =< Wi,C > and M r

1, j = M V j.
At this point, the following important questions must be

raised: which basis should be chosen and what should be
the dimension of this basis? The modal basis, presented in



(a)

(b)

Fig. 16. Flow over an open cavity for Re = 7500 visualized by
stream-wise velocity contours and velocity vectors. (a): Base flow,
(b): Control matrix C . Adapted from [113].

§2.1 and formed by direct global modes û j, at first looked
like a natural choice to us within a linearized framework.
This basis comprises both physical global modes represent-
ing the dynamics atop the shear-layer and inside the cavity
and unphysical global modes (advection-diffusion of pertur-
bations in the free-stream). These modes are grouped into
the rectangular matrices V and W , respectively, arranged by
decreasing amplification rate. The matrix Ar is then diago-
nal, and the values along the diagonal consist of the principal
eigenvalues of A . The four (physical) unstable global modes
(direct and adjoint) represent the core of the reduced-order
model. The unstable subspace of the matrix A is thus mod-
eled by capturing its dynamic features. This model describes
exactly, and with the least number of degrees of freedom, a
rich and complex dynamics. The location of the actuator and
sensor were decided such that the controllability coefficients
C r

i,1 and the measurement coefficients M r
1, j are large for the

unstable global modes. This is the reason for taking the mea-
surement downstream of the cavity where the unstable direct
global modes have significant amplitudes; the actuator is lo-
cated upstream of the cavity where the control matrix C and
the adjoints of the unstable modes are both large. We recall
that Figs. 15(b,c) display the two unstable global modes with
the lowest frequency. In Figs. 15(d,e) the associated adjoint
global modes are visualized in the same manner. The coef-
ficient M r

1, j corresponds to the measurement of the jth di-
rect global mode, and the coefficient C r

i,1 corresponds to the
scalar product of the ith adjoint global mode and the steady
unit-control flow field presented in Fig. 16(b).

5.2 Why is the modeling of the stable subspace neces-
sary?

We will now explain why a reduced-order model based
only on unstable global modes may not be able to yield a sta-
ble compensated system. The answer to this question can be
formulated as follows. A general action at the upstream edge
of the cavity certainly acts on the unstable global modes but
may also excite the stable global modes. Due to their stabil-
ity, the excitation of the stable modes may not be problematic
by itself. The problem, however, lies in the fact that these sta-
ble modes will corrupt the measurement. In other words, the
measurement obtained at the downstream edge of the cavity
certainly includes the useful measurement, that is, the mea-
surement associated with the unstable global modes, but also
the measurement associated with the stable global modes ex-
cited by the actuator. Even though the global modes may
be damped, they may nevertheless significantly contribute
to the input-output dynamics of the system. If the estima-
tor is based on a reduced-order model that only incorporates
features from the unstable subspace, it will not manage to
extract the unstable dynamics from the corrupted measure-
ment. The estimated unstable state will be inaccurate and, as
a consequence, the control law based on the estimated unsta-
ble flow field will be ineffective and even lead to instabilities
in the compensated system.

To overcome this difficulty, the idea is to incorporate the
stable subspace into the reduced-order model. For this rea-
son, the reduced-order model should be built not only on the
unstable modes but should also contain a certain number of
stable modes. But what criterion should be adopted to select
them? A naive approach would consist in retaining only the
p least stable global modes, following the argument that the
neglected modes are too damped to contribute significantly
to the system’s dynamics. Although this strategy has been
successfully pursued by Akervik et al. [39], in general it ap-
pears to be erroneous. Indeed, as suggested in the preceding
paragraph, it is necessary to select the stable global modes
that contribute most to the system’s input-output dynamics.
To identify these modes, it was suggested [113] to use the
following quantity

Γ j =

∣∣∣C r
j,1

∣∣∣ ∣∣∣M r
1, j

∣∣∣∣∣∣ℜ(Ar
j, j)
∣∣∣ (45)

which is defined for each global mode j. Noting that
|ℜ(Ar

j, j)| denotes the damping rate of the jth eigenvec-
tor, this criterion selects modes which are highly control-
lable (|C r

j,1| large), highly observable (|M r
1, j| large) and least

damped (|ℜ(Ar
j, j)| small). It may be shown that this cri-

terion represents a good measure of the importance of the
jth global mode regarding system’s input-output dynamics.
In Fig. 17, the value of the criterion Γ j is presented, for
each stable global mode, by the color of the eigenvalue. The
warmer the color, the more significantly an eigenvalue con-
tributes to the input-output dynamics. The results show that

1. the modes that contribute most to the input-output dy-



Fig. 17. Flow over an open cavity for Re = 7500. Spectrum of
the flow with the eigenvalues colored according to the criterion Γ j .
Adapted from [113].

namics are very damped;
2. the higher the damping rate, the larger the number of

modes which contribute to the input-output dynamics.

For this specific configuration, this observation certainly dis-
qualifies the original idea of a reduced-order model solely
built on global modes. The short-comings of stable global
modes will be further analyzed in §6.1, where it will be
shown that most of the stable global modes in an open flow
configuration display a very bad behavior and that the modal
basis constitutes, generally speaking, an ineffective and ill-
posed projection basis in open flows.

This argument has shown the need to model the stable
subspace. The selection criterion defined by Γ j highlighted
the importance of the input-output dynamics for this mod-
eling and introduced the concepts of controllability and ob-
servability. As for a proper choice of basis for model re-
duction, we have found that the modeling of the unstable
subspace with global modes seems justified and efficient,
but that the same is not true for modeling the stable sub-
space. The (unphysical) stable global modes represent an in-
effective and ill-posed basis to reproduce the system’s input-
output dynamics.

5.3 How should the stable subspace be modeled?
The properties of a basis suitable for the representation

of the stable subspace of A will now be defined. Since the
dynamics of the unstable and stable subspaces are decoupled,
it is possible to study the dynamics restricted to the stable
subspace of A , i.e.,

du′

dt
= Au′+PsCc, (46)

m = M u′ (47)

Fig. 18. Flow over an open cavity for Re = 7500. Transfer func-
tion |Ĥ(ω)| representative of the input-output dynamics of the stable
subspace. Adapted from [113].

where Ps is the projection matrix onto the stable subspace.
The initial condition for this simulation is chosen in the sta-
ble subspace. The input-output dynamics in this subspace
is characterized by the impulse response: H(t) = M eAtPsC .
In an equivalent way, it can be defined by the transfer func-
tion, which is the Fourier transform of H(t); we get Ĥ(ω) =∫

∞

−∞
H(t)e−iωtdt. 13 The modulus of Ĥ(ω) is shown in

Fig. 18 for our case study. We observe that a strong re-
sponse is observed at a frequency ω = 4.6. An effective
reduced-order basis of the stable subspace is characterized
by an accurate representation of the input-output dynam-
ics of the full-system, i.e., by an associated reduced trans-
fer function Ĥr(ω) which accurately reproduces that of the
original system Ĥ(ω). The quantification of the difference
between the two transfer functions is preferably done using
the norm ||Ĥ||∞ = supω|Ĥ(ω)|, since theoretical results are
readily available for this norm.

The theory of balanced truncation introduced by Moore
[97] yields an algorithm to build a quasi-optimal basis mea-
sured in the || · ||∞ norm. First, we recall that the input-
output dynamics in the stable subspace is characterized by
the matrices (A ,PsC ,M ). The controllability and observ-
ability Gramians are defined as

Gc =
∫

∞

0
eAtPsCC ∗P ∗s eA∗tdt, (48)

Go =
∫

∞

0
eA∗tP ∗s M ∗M PseAtdt. (49)

The integrals are convergent because of our restriction to the
stable subspaces of A and A∗. These two matrices define the
concept of controllability and observability of a structure u′

13It may be shown that this function is also equal to Ĥ(ω) = M (iωI −
A)−1PsC .



of the stable subspace. Thus, u′∗G−1
c u′ corresponds to the

minimum energy
∫

∞

0 c2(t)dt that has to be expended to drive
a system from state u′ to 0 whereas u′∗Gou′ is equal to the
maximum measurement

∫
∞

0 m2(t)dt induced by the system
if it has been initialized by u′. It is then possible to show
that a reduced-order bi-orthogonal basis (Ws,Vs) of the sta-
ble subspace of A can be obtained by solving the following
eigenvalue problems,

GcGoVs = VsΣ
2, (50)

GoGcWs = WsΣ
2. (51)

where Ws has been normalized so that < Wsi,Vsi >= 1. The
basis Vs comprises the balanced modes, which are equally
controllable and observable. It is straightforward to verify
that< Wsi,Vs j >= 0 if i 6= j. The theory shows that the
values on the diagonal of Σ are also the singular values of
the Hankel matrix associated with the linear system (46,47).
The transfer function Ĥr related to the reduced-order model
incorporating the first p balanced modes satisfies [95]:

||Ĥr− Ĥ||∞ ≤ 2 ∑
j≥p+1

Σ j, j (52)

This basis is often close to the optimum, since, for any basis
of order p, the following relation holds:

||Ĥr− Ĥ||∞ > Σp+1,p+1 (53)

Laub et al. [98] introduced an efficient algorithm to
solve the eigenvalue problems (50,51) for systems of low-
dimensions. Willcox et al. [99] and Rowley [100] introduced
a POD-type technique to treat large-scale problems. For this,
two series of snapshots, obtained respectively from a tem-
poral simulation of the direct problem du′/dt = Au′ with
u′(t = 0) = PsC and a temporal simulation of the adjoint
problem du′/dt = A∗u′ with u′(t = 0) = P ∗s M ∗, are used
to approximate the controllability and observability Grami-
ans. The original eigenvalue problems (50,51) are then re-
formulated into a singular value problem whose dimension
is equal to the number of snapshots. These calculations are
not detailed here; we only describe some of the results. The
largest singular values Σ obtained for our case are presented
in Fig. 19(a). The decay behavior of this curve directly de-
termines the dimension of our reduced basis. For a given
error threshold, the upper limit of the error bound given in
Eq. (52) straightforwardly yields the dimension of the re-
duced model. In Figs. 19(b,c,d,e), the balanced modes as-
sociated with the first, second, ninth and thirteenth singular
values in Σ are displayed using the stream-wise velocity. Let
us recall that all these modes belong to the stable subspace
of A . In particular, the first two modes are bi-orthogonal to
the unstable global modes presented in Figs. 15(b,c). This
means that the scalar products of the unstable adjoint global

modes (see Figs. 15(d,e)) and the balanced structures are
zero. Once the bases Vs and Ws have been determined, the
reduced matrices Ar, C r and M r can be calculated and the
associated transfer function Ĥr can be determined. The rel-
ative error ||Ĥr − Ĥ||∞/||Ĥ||∞ is shown in Fig. 20(a) as a
function of the number p of balanced modes considered. In
this figure, the upper and lower bounds for the error defined
in Eqs. (52) and (53) have also been included. As required,
the error related to the reduced-order model of order p falls
within these two bounds. We also observe that taking ten bal-
anced modes (p≈ 10) yields a nearly perfect approximation
of the input-output dynamics of the stable part of the system.
For comparison, we have also given, in Fig. 20(b), the results
pertaining to the modal basis discussed in §5.2. We observe
a decrease in the error for the first thousand global modes,
after which the curve becomes erratic and grows again for
p > 3000. Hence, independent of the number of included
global modes the reduced-order model based on these struc-
tures does not approximate the transfer function of the orig-
inal system. This result corroborates the conclusions drawn
in §5.2.

Rowley [100] pointed out that the eigenvectors of Gc
could be interpreted as POD modes [102] of the simulation
du′/dt = Au′ initialized by the control matrix u′(t = 0) =
PsC . These modes maximize controllability but do not take
into account any requirements regarding observability. Nev-
ertheless, the quality of such reduced-order models has been
assessed by estimating, as in the case of balanced modes and
global modes, the error between the reduced transfer func-
tion and the transfer function of the full system. The results
are given in Fig. 20(c). The behavior of these bases is very
good, with a steady decrease in the approximation error as
the dimension p of the reduced-order model increases. For
p = 100, very small error levels, equivalent to those obtained
with 13 balanced modes, are reached. Note however that
significantly more POD modes than balanced modes are re-
quired to achieve similar accuracy.

5.4 Closed loop control: analysis of the compensated
system

The objective of this section is to analyze the compen-
sated systems. For this, we couple a direct numerical simu-
lation of the large-scale dynamical problem to an estimator
and a controller, both of which are based on the reduced-
order models built previously. We know (see last sections)
that the reduced-order models based on 8 unstable global
modes and a series of balanced or POD modes reproduce
the unstable dynamics as well as the input-output dynam-
ics of the stable subspace, if sufficient balanced modes or
POD modes are taken into account. The number of modes
that will stabilize the compensated system cannot be de-
termined a priori. For example, a threshold below which
the compensated system would certainly be stable cannot
be given for the approximation error of the transfer function
||Ĥr− Ĥ||∞/||Ĥ||∞. The final steps in the design of the es-
timator and controller can now be taken. For this, control
gains for the controller and Kalman gains for the estimator
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Fig. 19. Flow over an open cavity for Re = 7500. (a) : singular values of the Hankel matrix, (b,c,d,e): stream-wise velocity of the 1st, 2nd,
9th and 13th balanced modes. Adapted from [113].

are calculated using the LQG-framework [79]. Following
previous statements, a reduced-order model based on all un-
stable global modes was chosen and augmented by a series of
p balanced or POD modes for the stable subspace. The com-
putation of the gains, based on solving the respective Riccati
equations, is performed within the small-gain limit [79]. This
means that the control cost is assumed infinite and that the
measurement errors are infinitely larger than the model errors
(which seems reasonable for our case since the models are
obtained by an accurate Petrov-Galerkin projection). In this
limit, it is neither necessary to specify the state-dependent
part of the cost functional (the energy of the perturbations,
for example) nor to model the structure of the external noise
sources associated with the model. Moreover, the gains are
the smallest possible and are non-zero only for the unsta-
ble structures of the reduced-order model. Thus, the con-
troller specifies the smallest values for the control law c(t)
(due to the infinite control cost), and the estimator is driven
the least by the measurement error since we are more confi-
dent in the validity of the model than in the measurements (in
other words, the measurement error is infinitely larger than
the model error). In this case, according to Burl [79], the

eigenvalues of the compensated system are equal to the sta-
ble eigenvalues of the reduced-order model, but the unstable
eigenvalues of the uncompensated system are reflected about
the imaginary axis σ = 0 when a small-gain-limit compen-
sator is added.

A numerical simulation code solving Eq. (41) has then
been combined with the controller and estimator that have
just been defined. The estimator takes as input the mea-
surements m(t) of the direct simulation. The reduced-order
model of the flow is integrated in time and driven in real-time
by the measurement m(t) of the simulation via the Kalman
gain. It then provides the controller with an estimate of the
real state of the flow which is subsequently used by the con-
troller to generate a control law c(t) via the control gain.
Depending on the selected reduced-order model (based on
balanced modes or POD modes for the stable subspace) and
its dimension 8 + p, the stabilization of the simulations by
the compensator is more or less effective. The results for
the compensated simulations are presented in Fig. 21. Fig.
21(a) shows simulations with a reduced-order model based
on balanced modes, and Fig. 21(b) displays the results for
a reduced-order model using POD modes. The x-axis de-
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Fig. 20. Flow over an open cavity for Re = 7500. Approximation
error of reduced-order models versus their dimension. (a): balanced
modes, (b): global modes, (c): POD modes. In Fig. (a), the con-
tinuous curves represent the upper and lower bounds of the error
(52,53). Adapted from [113].

notes time while the y-axis shows the energy of the pertur-
bation u′. In Fig. 21(a), the curve labeled p = 0 represents
a reduced-order model including only the 8 unstable global
modes. As previously mentioned, we see that this simula-
tion diverges which again confirms that the modeling of the
stable subspace is mandatory. As the number of balanced
modes incorporated into the reduced-order model increases,
the system eventually stabilizes. For p = 7, the energy of
the perturbations remains bounded; for p > 7, the energy
decreases. The dark line in the figure represents the best
possible control, towards which the curves for the reduced-
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Fig. 21. Flow over an open cavity for Re = 7500. Linearized direct
numerical simulations with a controller and an estimator obtained by
the LQG approach. (a): reduced-order model consisting of 8 unsta-
ble global modes and p balanced modes, (b): likewise, but p POD
modes. Adapted from [113].

order models converge as p increases. This best control is
obtained when the reduced-order model exactly reproduces
the transfer function of the original system. Similar results
are observed in Fig. 21(b) with POD modes. We note, how-
ever, that the number of POD modes to stabilize the system
is significantly higher than the number of balanced modes to
reach the same goal: twenty-eight POD modes are necessary
to render the compensated system stable, whereas only seven
balanced modes are needed to accomplish the same.

In the last paragraph, the control law, that has been syn-
thetized by the linear LQG approach, has been evaluated us-
ing a linearized DNS code, solving Eq. (41). This should



be strictly equivalent to solving the non-linear Navier-Stokes
equations (1) with a small-amplitude initial perturbation (so
that the perturbation amplitude remains small and in the lin-
ear regime during the whole simulation). If the initial pertur-
bation amplitude is not small, then the non-linear term act-
ing on the perturbation is not negligible anymore and there
is no guarantee that the linear LQG compensator will work.
Preliminary non-linear simulations effectively show that the
results from the linearized simulations are recovered in the
case of small-amplitude initial perturbations but that the per-
formance of the compensator deteriorates when the ampli-
tude of the initial perturbation increases.

6 The case of noise amplifiers
The previous sections were all concerned with the oc-

currence of unsteadiness linked to an oscillator dynamics; for
this scenario, the Jacobian matrix A had at least one unstable
eigenvalue. As mentioned in §1.3, flows like boundary lay-
ers or jets display unsteadiness even though the Jacobian ma-
trix A is asymptotically stable. External perturbations as for
instance turbulence, acoustics, or roughness elements may
continuously sustain the unsteadiness of the flow field. The
Jacobian matrix A then acts as a linear filter on the external
disturbance environment, thus creating a frequency selection
mechanism which leads to a broadband low-frequency spec-
trum for the perturbation field. The question arises on how
to characterize the dynamics of a noise amplifier within a
global stability approach.

As seen in §2.3, the non-normality of the Navier-Stokes
equations results in non-orthogonal global modes in open
flows. In §1.3.2, the noise-amplifier dynamics in a global
stability analysis has first been characterized through tran-
sient growth properties viewed in terms of a superposition of
non-orthogonal global modes. We will now show the short-
comings of such an approach for open flows (§6.1). Then
(§6.2), we mention how transient growth may properly be
computed by a direct-adjoint approach. Finally (§6.3), we
show that selection frequency mechanisms are better viewed
in the frequency domain by computing optimal forcing dis-
tributions and their associated responses. An example with
a Blasius boundary-layer will be given to illustrate the ap-
proach. Open-loop control of noise amplifiers will also be
discussed in the light of sensitivity analyses with respect to
base-flow modifications.

6.1 Transient growth as a superposition of global
modes: short-comings of stable global modes

We will first show, on the example of the open cavity
flow discussed in §5, that computing stable global modes is
generally a bad idea in open flows: most of the stable global
modes do not carry any physical meaning and are unphys-
ical in the sense introduced in §1.2 — they are extremely
sensitive to external perturbations of the Jacobian matrix —
. The spectrum of the open cavity flow was given in Fig.
17, where the coloring indicated the importance of a given
global mode in the input-output dynamics. We saw that very

damped modes did significantly contribute to this dynam-
ics. A detailed analysis of the problem shows that nearly all
stable global modes (except few physical ones which repre-
sent the dynamics inside the cavity) are located at the down-
stream boundary of the computational domain whereas their
corresponding adjoints are located at the upstream boundary.
These modes are unphysical in the sense introduced in §1.2
and represent the advection of the perturbations by the base
flow uB in the free-stream. We recall that, taken individually,
these modes carry no dynamic significance, only the super-
position of a great many of them yields physically relevant
features. They are a consequence of the strong convective
driven non-orthogonality of the stable global modes [142],
which is further evidenced by a large non-orthogonality co-
efficient γ (see Eq. 11). This coefficient can reach values
of γ = 1015 for the strongly damped eigenvalues. In addi-
tion, displacing the left boundary (resp., the right bound-
ary) of the computational domain further upstream (resp.,
downstream) will increase this coefficient even further. At
a certain point, the convective driven non-orthogonality has
become so large that numerical methods fail to accurately
compute these modes. We recall that the coefficient γ also
corresponds to the condition number of the associated eigen-
value problem. It is known that when this number is large,
the eigenvectors and eigenvalues become very sensitive to
perturbations of the matrix. For example, in the present flow
over an open cavity it is impossible to calculate more discrete
eigenvalues than those already presented in Fig. 17.

As recognized by Trefethen et al. [142], the problem
evidenced in the previous paragraph arises in all advection-
diffusion problems when boundary conditions are introduced
at artificial upstream and downstream boundaries. In the
case of stream-wise unbounded flows, the spectrum of the
linearized Navier-Stokes operator should in fact hold a con-
tinuous spectrum. For example, in the case of the constant
coefficient equation ∂tu = ∂xu + ∂xxu/Re, if one looks for
eigen-functions of the form u = ûexp(λt + ikx), then the dis-
persion relation reads: λ = ik− k2/Re, i.e. there exists a
continuous set of eigenvalues / eigenvectors since k is real.
Note also that this problem is normal in the sense that the
eigen-functions are all orthogonal. If the boundary condi-
tions u(0) = u(1) = 0 are added to the definition of the prob-
lem (because a mesh always starts and ends at some given
artificial input-output boundaries), then the eigenvalues be-
come discrete, i.e. only an infinite discrete countable set
of eigenvalues exists [142]. These eigenvalues lie along the
negative real-axis in the (σ,ω)–plane. Furthermore, in the
case of high Reynolds numbers, these eigenvalues are ex-
tremely sensitive to external perturbations of the operator and
are unphysical in the sense introduced in §1.2. These pertur-
bations are introduced when the equations are spatially dis-
cretized with a numerical scheme, which explains the lack of
robustness of the eigenvalues with respect to discretization
changes. Also, Trefethen et al. [142] showed that the re-
solvent norm was extremely high in a parabola shaped area
lying along the negative real-axis in the (σ,ω)–plane: this
means that this whole area is nearly an eigenvalue when
extremely small perturbations to the governing operator are



added. This same feature could be observed in the case of the
open cavity flow with two-dimensional Navier-Stokes equa-
tions: the eigenvalues were most difficult to compute near
the negative real-axis (see Fig. 17).

In conclusion, we can state that most of the stable global
modes, when considered individually, are at best physically
irrelevant and at worst impossible to compute. Therefore, the
modal basis constitutes, generally speaking, an ineffective
and ill-posed projection basis for the stable subspace in open
flows.

6.2 Noise amplifiers in the temporal domain
Even though none of the global modes of A may be

physical, the initial-value problem described by Eq. (3) is
well-defined and robust to external perturbations of the ma-
trix A , like discretization errors. For example, for suffi-
ciently fine meshes and for a given initial condition, the per-
turbation solution has an intrinsic existence, which is weakly
sensitive to external perturbations. Therefore, instead of
computing transient growth from a superposition of a small
number of global modes, one should directly look for tran-
sient growth stemming from the large-scale matrix A and
study energetic growth solely from the robust initial-value
problem (3). Note that the transient growth problem in open
flows is structurally robust since the transient growths and
the optimal perturbations on a time horizon T are solution of
an eigenproblem involving the Hermitian matrix eAT eA∗T .
Hence, the condition number of this eigenproblem is equal
to 1, showing the weak sensitivity of the energetic gains and
optimal perturbations to external perturbations of the ma-
trix A . This eigenproblem may also be viewed as a large-
scale optimization problem [12, 21, 76] that may be solved
thanks to direct-adjoint techniques. Here, for a given opti-
mization time T , one iteratively solves the direct problem
du′/dt = Au′ forwardly in time on [0,T ] and the adjoint
problem du′/dt = −A∗u′ backwardly on [T,0]. The initial
condition of the adjoint problem is the final state of the direct
problem, while the initial condition of the direct problem is
the final state of the adjoint problem. First studies on this
strategy in a global stability approach were carried out by
Marquet et al. [143, 144] on a rounded backward facing step
and by Blackburn et al. [145,146] on a backward facing step
and stenotic flows. This type of analysis produces unprece-
dented stability information for the characterization of noise
amplifiers in complex flows.

6.3 Noise amplifiers in the frequency domain
An initial optimal perturbation problem, as presented in

the last section, well describes transients and the physics
of energetic growth in noise amplifiers. Nevertheless,
the above-identified initial optimal perturbations may not
straightforwardly be linked to the upstream perturbations
that a flow may experience in simulations or experiments.
In such situations, one usually knows — or may know —
some characteristic features of the upstream noise, like a fre-
quency spectrum, a spatial structure and a preferred location.
Then, one aims at predicting the features of the downstream

sustained unsteadiness, also in the form of a frequency spec-
trum, spatial structure and location. For this, it is more nat-
ural to resort to the frequency domain and achieve the sin-
gular value decomposition of the global resolvent, as shown
below [147, 148].

For this, let us consider an asymptotically-stable base
flow uB, solution of Eq. (2), and a perturbation u′ super-
posed on uB that is driven by some external forcing f′. For a
small-amplitude forcing f′, the flow response u′ is governed
by the linearized Navier-Stokes equations, which after spa-
tial discretization read:

du′

dt
= Au′+ f′. (54)

We then consider a forcing f′ and a response u′ charac-
terized by a given real frequency ω: f′ = eiωt f̂(x,y) and
u′ = eiωt û(x,y). The harmonic forcing f̂ then induces the
following harmonic response û in the flow,

û = R (ω)f̂ (55)

where R (ω) = (iωI −A)−1 is referred to as the global re-
solvent. This matrix is defined for any real frequency ω since
all eigenvalues of A are strictly damped. If the energy norm
induced by the scalar product < ·, · > is considered, the op-
timal forcing f̂ corresponds to the forcing which maximizes
the energetic gain

µ2 = sup
f̂

< û, û >

< f̂, f̂ >
. (56)

This optimal forcing can be calculated using the singular val-
ues of the global resolvent R (ω) given by

R ∗R f̂ = µ2 f̂. (57)

In the above, µ2 is a real positive eigenvalue related to the op-
timal forcing f̂ of unit norm and R ∗ is the matrix adjoint to R
and defined in such a way that < uA,R uB >=< R ∗uA,uB >
for any vector uA, uB. The optimal response û of unit norm
is obtained by solving û = µ−1R (ω)f̂. Since the eigen-
value problem (57) is Hermitian, the set of optimal forcings
(f̂ j, j ≥ 1) defines an orthonormal basis which is adequate to
represent the forcing space f̂ = ∑ j < f̂ j, f̂ > f̂ j. In the same
way, it is possible to show that the set of optimal responses
(û j, j ≥ 1) also forms an orthonormal basis. This latter basis
is meant to represent the response space û = ∑ j < û j, û > û j.
The singular values (µ j, j ≥ 1) satisfy R (ω)f̂ j = µ jû j.

To summarize, if we are given the structure of the har-
monic forcing f̂ at some frequency ω, we readily obtain the
structure of the response in the form

û = ∑
j≥1

µ j
〈
f̂ j, f̂
〉

û j, (58)



and the energy of the response is simply

< û, û >= ∑
j≥1

µ2
j < f̂ j, f̂ >2 . (59)

Hence, to maximize the response of the flow field, the exter-
nal forcing f̂ should drive the flow with a structure as close as
possible to the optimal forcing f̂1, in which case the response
of the flow will closely resemble the optimal response û1.

Finally, note that the condition number of the eigenprob-
lem (57) is equal to one due to the Hermitian nature of the
underlying matrix; the eigenvalues µ2

j , optimal forcings f̂ j
and responses û j are therefore numerically well-posed and
only very weakly sensitive to external perturbations of the
matrix A . These quantities are therefore (structurally) phys-
ical, in the sense introduced in §1.2, contrary to the stable
global modes.

To illustrate this new approach, let us take the exam-
ple of a boundary layer flow that develops over a flat plate
located between x = 0 and x = 1. The computational do-
main extends from x =−1 to x = 1, its height being equal to
y = 1. The Reynolds number based on the upstream velocity
and the plate length is taken as Re = 200000. After having
determined the base flow, we verify that the Jacobian ma-
trix has only stable eigenvalues even though the velocity pro-
files extracted for 0.4≤ x≤ 1 are convectively unstable since
the Reynolds number based on the displacement thickness
ranges from 500 to 770 in this interval. Hence, the global Ja-
cobian matrix A should show strong amplifications in some
low-frequency range due to the development of Tollmien-
Schlichting waves in the boundary layer. In Fig. 22(a), we
display the dominant singular value µ2

1 as a function of the
frequency ω. We observe that this curve displays a maxi-
mum for the low-frequency ων/U2

∞ = 0.00018. The present
formalism based on the global resolvent thus explains the
frequency selection in Blasius boundary layers. The optimal
forcing and associated optimal response at the frequency of
maximum amplification are displayed in Figs. 22(b,c). The
optimal forcing is located around x ≈ 0.3 while the associ-
ated response displays Tollmien-Schlichting waves develop-
ing downstream. The present results show that if external
perturbations (turbulence) are present near x≈ 0.3, Tollmien-
Schlichting waves will be sustained on the flat plate.

These results are complementary to the modal analyses
by Ehrenstein et al. [54], Akervik et al. [56] and Alizard et
al. [55]. Moreover, if a transverse wavenumber β is con-
sidered, the lift-up and oblique wave phenomena highlighted
within a local framework by Andersson et al. [22], Luchini
[23], Corbett et al. [24] and Levin et al. [149] should be re-
covered. This formalism is also well suited for receptivity
studies, in the spirit of studies by Crouch [150] within a lo-
cal framework.

Lastly, we will briefly demonstrate how the sensitivity
concept and the open-loop control design may be extended
to the case of noise amplifier flows. For this, we consider a
given optimal forcing f̂ and the associated optimal response û
such that R ∗R f̂ = µ2 f̂, û = µ−1R f̂. These fields are normal-
ized according to < f̂, f̂ >= 1 and < û, û >= 1. The singular

value µ2 is a function of the base flow uB, due to the depen-
dence of the resolvent R on the latter. Differentiation of the
above expression leads to

δµ2 =
〈
∇uB µ2,δuB〉 (60)

where ∇uB µ2 is the sensitivity of the singular value with re-
spect to a modification of the base flow. A simple calculation
shows that

∇uB µ2 = µ3B(uB, û)∗ f̂+ c.c (61)

where B(uB, û) is the matrix defined in Eq. (26) and
B(uB, û)∗ is its adjoint. This expression is the equivalent of
Eq. (27), with the optimal forcing as the adjoint global mode
and the optimal response as the direct global mode. Hence,
all the procedures and tools for open-loop control of oscil-
lator flows may readily be transcribed and applied to noise-
amplifier flows. Such an approach may complement the stud-
ies by Pralits et al. [151] and Airiau et al. [152] on the stabi-
lization of Tollmien-Schlichting waves with wall-suction.

7 Issues related to three-dimensionality, non-linearity
and high-Reynolds numbers
Three issues will be discussed in this final prospect sec-

tion: can we deal (§7.1) with three-dimensional configura-
tions? how does non-linearity (§7.2) enter the problem? what
new problems (§7.3) are encountered as the Reynolds num-
ber increases?

7.1 Towards three-dimensional configurations
All the examples presented up to know concerned two-

dimensional configurations for which only two directions
in space were fully resolved (stream-wise and one cross-
stream direction). Conceptually speaking, all notions that
have been introduced so far (base flows, global modes, ad-
joint modes, gradients, Gramians, balanced modes) straight-
forwardly extend to fully three-dimensional configurations.
There is therefore no theoretical problem but there may be
a computational one: can these structures still be computed
in a three-dimensional configuration in terms of memory re-
quirements and CPU time? We will first estimate the cost
of global stability analyses within the computational strategy
that has been followed by the authors during these past years.
We use newton methods to compute base flows, ARPACK 14

in shift-invert mode to extract given eigenvalues, ARPACK
in regular mode to compute the singular value decomposi-
tion of the resolvent. The bottle-neck of all these algorithms
is the solution of large scale linear systems. Hence, the cost
of the approach presented in this article, is roughly the cost
of solving a large scale linear problem. Space discretization
is achieved with finite elements. To achieve second order
accuracy in space, classical Taylor-Hood elements with P2

14http://www.caam.rice.edu/software/ARPACK/
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Fig. 22. Boundary layer flow over a flat plate for Re = 200000. (a) :
frequency response of the flow µ2

1(ω), (b) : real part of stream-wise

momentum forcing for f̂1 at ων/U2
∞ = 0.00018, (c) : associated

optimal response û1 (real part of stream-wise velocity).

elements for the velocity components and P1 elements for
the pressure are used. The free software FreeFem++ 15 then
explicitly computes the sparse matrices and the right-hand-
sides. Large-scale solutions of the associated linear prob-
lems are performed with a sparse scalable direct LU solver
16 [153].

For example, in the case of the open cavity flow at
Re = 7500 studied in §5, the mesh comprised 193708 tri-
angles (97659 vertices), which led to 0.9× 106 degrees of
freedom for a velocity-pressure (u,v, p) unknown. The mem-
ory usage and computational time are given in Tab. 1: the
computations may be achieved on a single processor, take
170 seconds and require 2.7 Gb of memory. In the case of
the two-dimensional Blasius boundary layer at Re = 200000
(§6), the mesh comprised 491416 triangles (247735 ver-
tices), which led to 2.2× 106 degrees of freedom for the
velocity-pressure unknown. From Tab. 1, it is seen that,
comparing to the open cavity flow case, both the computa-
tional time and the required memory has been multiplied by
2.5, which is precisely the ratio between the number of el-

15www.freefem.org
16MUMPS. http://mumps.enseeiht.fr/

ements in the Blasius boundary layer case and in the open
cavity flow case. Hence, the memory usage and computa-
tional time scales linearly with the number of elements in
the mesh. All two-dimensional configurations studied within
this review article may be handled out on a PC computer.
For three-dimensional configurations, the cost rises substan-
tially. In the case of a low-aspect ratio NACA0012 wing
(AR = 4), the mesh comprised 491653 tetrahedra (83290
vertices), leading to 2.2× 106 degrees of freedom for an
(u,v,w, p) unknown. An inversion was completed on a clus-
ter using 48 processors: from Tab. 1, it is seen that the inver-
sion lasts 2700 seconds (elapsed CPU time) and that 3.5Gbs
of memory per processor were required. The cost therefore
increases drastically from 2D to 3D configurations, although
the same number of degrees of freedoms are involved in the
last two presented computations. The reason for this blow-up
stems from the difference in sparsity of the two matrices: in
two-dimensional settings, the matrices have approximately
29 non-zero elements per line (with Taylor-Hood elements),
while for a three-dimensional mesh, this value raises to 98.
On the whole, the computations are short in time but require
a large amount of memory. Moving to domain decomposi-
tion methods should greatly improve scalability of the large
scale linear problems when using a high number of proces-
sors.

Matrix-free methods, in which the Jacobian matrix A is
never formed explicitly, have also been developed over the
past years. The original idea was worked out by Tucker-
man et al. [33, 154, 155]. It has been taken over recently
by Henningson et al. [148, 156], with the aim of performing
global stability analyses by using solely a linear or non-linear
DNS-solver. For example, following [157], the action of the
Jacobian matrix on a given vector u′ may be approximated
through Au′ = (R(uB + αu′)−R(uB))/α for a sufficiently
small α. Here, solely the evaluation of the non-linear residual
of the Navier-Stokes equations is required to perform Au′.
The initial-value problem (3) may then be solved numeri-
cally with the method of exponential propagation [33], which
only requires evaluations of Au′ or directly from the time in-
tegration of the non-linear governing equation (1) by using
u = uB +αu′ (see Mack et al. [157]). It is then possible, with
Krylov sub-space methods [33], to look for the least damped
global modes by identifying the largest eigenvalues (in mod-
ulus) of the matrix eAT , where T is an arbitrary time of the or-
der of the instability time-scale. Indeed, ARPACK in regular
mode solely requires the action of eAT on some given vector
û, which may be obtained by time-marching Eqs. (3) or (1)
with the initial condition u′(t = 0) = û from t = 0 to t = T .
As for the computation of the resolvent, one may just march
in time the equations dû/dt = −iωû + A û + f̂ until conver-
gence — we note that (−iωI +A) is an asymptotically stable
matrix in the case of noise amplifiers which justifies the con-
vergence of the equations —. As for the identification of base
flows, a vast literature deals with implementing cheap new-
ton methods [33]. Also DNS-based approaches for the iden-
tification of base flows have recently emerged with the se-
lective frequency damping technique (Akervik et al. [158]).
On the whole, the matrix-free methods take much more CPU



Table 1. Computational time and memory usage for a real matrix inverse in 2D and 3D configurations using a scalable direct LU solver.

Conf # elements # dofs (×106) # procs Mem (Gb) Mem/proc (Gb) Time (s) Time/proc (s)

Cavity 2D 193708 0.9 1 2.7 2.7 175 175

Flat plate 2D 491416 2.2 1 6.7 6.7 431 431

Wing 3D 491653 2.1 48 168 3.5 129144 2700

time but require a smaller amount of memory. A first three-
dimensional global stability computation has been performed
using such strategies by Bagheri et al. [40].

7.2 Non-linearity
This review article concerns linearized equations which

govern the dynamics of a small-amplitude perturbation in the
vicinity of a base flow uB. The influence of non-linearities
is now briefly discussed in the case of oscillators and noise
amplifiers.

In the case of oscillator flows, effects of non-linearities
have partly been addressed in §3.2 when the various control
approaches have been presented in the light of bifurcation
analyses, in §1.3.3 when the local instabilities were related
to the global ones, and in §5.4 when testing the robustness
of the LQG control law for initial perturbations of increas-
ing amplitude. Within the linearized framework presented in
this review article, the effects of non-linearities may be ac-
counted for only in the case of weakly super-critical flows
(0 < ε� 1): the non-linearities are then weak and may be
captured by a weakly-non-linear approach. For such an anal-
ysis to hold, the base flow should no be to parallel. Indeed, in
the case of weakly-non-parallel flows, the dynamics associ-
ated to exponential instabilities becomes strongly non-linear
immediately above the critical linear threshold [44, 60]. A
local description of the flow in terms of front dynamics is
then more appropriate [44]. In the present review article,
we have studied configurations that were in fact sufficiently
non-parallel so that the dynamics near the critical threshold
was captured by a weakly-non-linear approach. Although
not covered in this review, secondary global linear insta-
bilities, as discussed by Chomaz [44, 159] may also be an-
alyzed straightforwardly within the present global stability
approach: one then studies the global stability of the bi-
furcated states, which appear above the primary linear in-
stability threshold. In this case, continuation methods have
first to be used to identify the bifurcated states. In the case
of the cylinder flow where a Hopf bifurcation occurs, the
bifurcated state is a periodic flow, that may be identified
by time marching the two-dimensional Navier-Stokes equa-
tions. Then a Floquet stability analysis may be used to study
the three-dimensional linear stability characteristics of this
new state [34]. Note that sub-critical instabilities may also
exist in open flows, for which the linear dynamics is stabi-
lizing and the non-linear dynamics destabilizing [131, 132]:
a finite amplitude perturbation is then required to destabilize
the flow and these instabilities are out of reach of a purely lin-
ear description. At least, for sufficiently non-parallel flows,
a weakly-non-linear approach, as presented in §3.2, has to

be used to tackle such problems (the coefficient µr + νr, as
introduced in §3.4, will then be negative).

For noise-amplifier flows, the influence of non-
linearities is governed by the amplitude of the upstream forc-
ing. If this amplitude is sufficiently small, then the linear
approach presented in §6 is valid and one does not need to
take into account non-linearities. If not, then a first step
would be to achieve a weakly-non-linear approach based on
a small parameter being the amplitude of the upstream forc-
ing. If one aims at predicting transition to turbulence, then
a strongly non-linear approach is required. The linear mech-
anisms just yield the potential for amplification but the non-
linearities determine the critical threshold (in terms of am-
plitude of the perturbation) for transition towards a fully tur-
bulent flow. This amplitude threshold may be determined by
exploring, with a Direct Numerical Simulation approach, the
so-called edge-states, discovered recently by Nagata [160],
Waleffe [161] and Faisst et al. [162]. These edge states are
located on a hypersurface which constitutes a laminar / turbu-
lent boundary, separating initial conditions which relaminar-
ize uneventfully from those which become turbulent (Duguet
et al. [163]). For the control of transitional flows, such as
boundary layers, it may be less expensive to consider these
edge-states as objectives for closed-loop control. Indeed,
these states may be easier to reach than the initial short-term
unstable configurations. Finally, note also that secondary in-
stabilities may be studied in noise amplifier configurations,
as for example Cossu et al. [164] with the perturbations de-
veloping on streaks in a plane channel flow.

7.3 High-Reynolds number flows
As the Reynolds number increases, the determination of

base flows to linearize about becomes an increasingly dif-
ficult task. Indeed, continuation methods are effective on
moderately large Reynolds numbers only. But, for very high
values of this control parameter, these flows may not even
exist. Note that, in the case of noise amplifiers such as jets
or boundary layers, finding base flows seems more easy than
for oscillator flows. In a numerical approach with high-order
discretization schemes (so as to minimize discretization er-
rors which could be seen as upstream sustained noise), since
the base flow is asymptotically stable, one just solves the
non-linear equations (1) in time until convergence [43]. For
example, it is easy to compute the base flow for a flat plate
boundary layer, even for Reynolds numbers up to 106, while
this is impossible for the cylinder or open cavity flow owing
to the numerous successive bifurcations that may exist, as the
Reynolds number increases.

For very high Reynolds numbers, such as the buffet-



ing of airfoils, a solution to the above issue may be to con-
sider the unsteady Navier-Stokes equations augmented by a
turbulence model. In the English literature on this subject,
the acronym URANS is used for this set of equations (Un-
steady Reynolds Averaged Navier-Stokes equations). Usu-
ally, the assumption of a decoupling of scales is made to jus-
tify the adequacy of these models: small spatial scales re-
lated to high frequencies are accounted for by the turbulence
model, while large scales, characterized by low frequencies,
are captured by temporal integration. This way it is possi-
ble to redefine the concept of an equilibrium point, which
now means a steady flow field of the URANS equations. By
this extension, equilibrium points may exist even for flows
at very large Reynolds numbers. The concept of linear dy-
namics thus makes reference to large spatial scales and low
frequency perturbations whose dynamics is governed by the
URANS equations linearized around an equilibrium point
defined above. Techniques derived from optimal control the-
ory can then be applied to determine the best possible ac-
tions — within the validity of this model — to stabilize or
destabilize the low frequency modes. The first global sta-
bility analysis that included a (Spalart-Allmaras) turbulence
model has been carried out by Crouch et al. [165] who stud-
ied the onset of transonic shock-buffeting on airfoils. The
same technique has been considered by Cossu [166] to iden-
tify streaks in turbulent boundary layers. As far as model
reduction is concerned, Luchtenburg et al. [72] considered
URANS simulations with a k−ω turbulence model to build a
physics-based reduced-order-model based on a Galerkin pro-
jection with POD modes. The model is intended to capture
the effect of high frequency actuation on the mean flow and
therefore on the natural instabilities that develop on it.
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