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Introduction A large body of works has been devoted to the wake of the sphere in the last decades
([1,3,4,7,8]). For Reynolds numbers Re & 280, the flow is dominated by an instability of the helical mode,
resulting in the low frequency shedding of large-scale coherent structures in the form of two superimposed
modes of azimuthal wavenumbers m = ±1. Low Strouhal numbers of 0.2, characteristic of vortex shed-
ding phenomena, have been reported, based on the body diameter. In this paper, we calculate the global
modes leading the successive bifurcations undergone by the axisymmetric steady wake for Re < 300. The
corresponding adjoint global modes are computed, whose physical interpretation is discussed in terms of
receptivity. These results are used to build an extended dynamical system for which we carry out a weakly
non-linear stability analysis. A system of coupled Stuart-Landau amplitude equations is derived, aiming
at giving a precise description of the periodic regime which appears after the transition from steady to
unsteady wakes.

Base flow computation and global linear stability analysis We consider a sphere of diameter D in
a uniform flow of velocity U∞. Standard cylindrical coordinates r, θ and z with origin taken at the center
of the sphere are used. The fluid motion is governed by the incompressible Navier-Stokes equations
made non-dimensional by D and U∞. u = (u, v, w) is the fluid velocity where u, v and w are the radial,
azimuthal and axial components, and p is the pressure. The computational domain Ω is made of a single
azimuthal plane. We impose standard boundary conditions on ∂Ω, namely uniform inlet and no-strain
outlet conditions, along with no-slip conditions on the sphere. The condition at the r = 0 axis depends
on the solution symmetries and will be discussed further. The spatial discretization is achieved by use of
Taylor-Hood finite-elements (P2 elements for u and P1 elements for p).

In the linear global stability theory, the aerodynamic flow field q = (u, p) is decomposed into an axisym-
metric steady base flow q0 = (u0, 0, w0, p0) and a three-dimensional perturbation q1 = ε1/2(u1, v1, w1, p1)
where ε1/2 is the small amplitude of the perturbation. The base flow is searched as a steady axisymmetric
solution of the governing equations, verifying

∇.u0 = 0 ∇u0.u0 + ∇p0 − Re−1∇2u0 = 0 . (1)

q0 is obtained from time-dependent simulations based on a Lagrange-Galerkin temporal discretization.
Figure 1 shows the base flow obtained for a subcritical Reynolds number Re = 200.

Figure 1: Contours of axial velocity w0 and streamlines for the base flow q0 at Re = 200.

At leading order in ε1/2, q1 is a solution of the unsteady equations linearized about q0

∇.u1 = 0 ∂tu1 + C[u0,u1] + ∇p1 − Re−1∇2u1 = 0 (2)

where C[u,v] is the linearized convection operator ∇u.v + ∇v.u. Since all quantities are 2π periodic in
the azimuthal direction, all perturbations are chosen in the form of global normal modes

q1 = q̂1(r, z)eσt+imθ + c.c. (3)
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where q̂1 = (û1, v̂1, ŵ1, p̂1) is the so-called global mode. m is the integer azimuthal wavenumber and σ
is the complex pulsation, σr and σi being respectively the growth rate and frequency of the global mode
(σr > 0 for a global mode whose amplitude grows exponentially in time). Substitution of the development
(3) in equations (2) leads to a generalized eigenvalue problem for σ and q̂1 that reads

M.q̂1 = σN .q̂1 (4)

where M and N are two real matrices and q̂1 is the complex eigenvector associated to σ. This eigen-
value problem is solved by use of an Arnoldi method based on a shift-invert strategy. The boundary
conditions at the symmetry axis are derived from the asymptotic behavior of q̂ near the axis. We impose
u0 = ∂rw0 = 0 for the base flow and ∂ru1 = ∂rv1 = w1 = 0 for m = 1 disturbances.

Results of the global stability analysis are consistent with that obtained by use of spectral methods
([6]). The axisymmetric steady base flow undergoes a first bifurcation at the critical Reynolds number
Rec1 = 213 for an m = 1 non-oscillating global mode q̂A

1 (σi = 0). The spatial structure of the as-
sociated eigenmode displays strong large-scale axial velocity disturbances under the form of a pair of
counter-rotating streamwise vortices (not shown here). Figures 2(a) and (b) show the bifurcated flow at
the supercritical Reynolds number Re = 250, obtained by the superposition of an arbitrary amount of
perturbation on the base flow. The vortices induce a loss of symmetry of the base flow and the wake
is shifted in a given direction (θ = 0 here, due to the chosen normalization of q̂A

1), whereas it remains
symmetric with respect to r = 0 in the orthogonal plane (θ = π/2).

Figure 2: Contours of axial velocity w and streamlines for the total flow q0 + ε1/2qA
1 at Re = 250 (arbitrary

value of ε1/2). The dash-dotted line represents the symmetry axis of the base flow. (a) θ = 0, π. (b)
θ = π/2, 3π/2.

A second bifurcation occurs at Rec2 = 281 for an m = 1 oscillating global mode q̂B
1 of frequency

σi = 0.699. The corresponding Strouhal number St = fD/U∞ of 0.111 is in excellent agreement with the
experimental frequency St = 0.118 measured at this transitional Reynolds number ([7]). The associated
eigenmode exhibits the spatially periodic downstream structure characteristic of the oscillatory wake in-
stability (figure 3), hence indicating that this mode leads the periodic vortex shedding phenomenon.

Figure 3: Axial velocity ŵB
1 of the oscillating global mode at Re = 281 (arbitrary normalization).

Adjoint analysis and non-normality The most amplified modes resulting from the global stability anal-
ysis, i.e. the leading global modes, govern the large-time dynamics of the flow. In this section, we use
an adjoint analysis to investigate how this dynamics is affected by the small imperfections that are en-
countered in real flows. This point is of particular importance when considering experimental set-ups: for
instance even the smallest sphere holding device induces perturbations that can be understood as local
modifications of the base flow in the near wake.
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Given the linear operator M defined in (4), the adjoint operator M† is defined as the operator such
that, for any vectors q̂ and q̂† fulfilling respective appropriate boundary conditions,

〈q̂†,M.q̂〉 = 〈M†.q̂†, q̂〉 . (5)

where 〈 , 〉 denotes the usual complex scalar product on Ω, i.e. 〈q̂1, q̂2〉 =
∫

Ω
q̂1T q̂2dΩ. It can be shown

that q† is solution of the eigenvalue problem

M†.q̂† = σN .q̂† (6)

where σ is the complex conjugate of σ.
Figure 4 shows the adjoint axial velocity and adjoint pressure distributions for the oscillating adjoint

global mode q̂
B†
1 . We find very similar distributions for the non-oscillating adjoint global mode q̂

A†
1 (not

shown here). Due to the non-normality of the operator M, the adjoint global mode is located slightly
upstream of the sphere and mainly within the recirculating area (marked by the thick solid line), whereas
the associated global mode is located downstream of the sphere and extends down to large streamwise
positions. The adjoint mode can be interpreted in terms of receptivity of the base flow to a volumic forcing,
given by the velocity component û†, and to a boundary forcing, given at leading order by the wall pressure
component p̂† ([2]). The adjoint analysis is therefore of particular interest in the elaboration of efficient
control strategies (base-bleed, for instance) as we find that the adjoint axial velocity is concentrated within
and at the periphery of the recirculating area, whereas the adjoint pressure peaks at the separation point.
It can also be shown that it is possible to estimate the receptivity of the base flow to local modifications by
considering the cooperation between a global mode and its adjoint global mode ([5], not shown here).

Figure 4: Oscillating adjoint global mode at Rec2 = 281 (arbitrary normalization). The thick solid line
marks the limit of the recirculating area. (a) Adjoint axial velocity ŵB†

1 . (b) Adjoint pressure p̂B†
1 .

Global weakly non-linear analysis In this section, we model the base flow undergoing two successive
bifurcations by an extended dynamical system undergoing a multiple codimension bifurcation at the critical
Reynolds number Rec2 = 281. This assumption holds at leading order because both critical Reynolds
numbers are close one from the other, so that ξ = Re−1

c1 − Re−1
c2 is a small parameter of the problem.

Substitution of the asymptotic expansion

q = q0 + ε1/2q1 + εq2 + ε3/2q3 + ... (7)

in the governing equations, where ε is the small parameter ε = Re−1
c2 − Re−1, leads to a series of equa-

tions of successive order εi/2. At order 0, we find the non-linear equation specifying that q0 is a steady
solution of the Navier-Stokes equations at the critical Reynolds number Rec2. At order 1, we obtain the
homogeneous linear equation specifying that q1 may be taken as a superposition of global modes of the
steady flow field q0 at Rec2. We can therefore choose q1 as the superposition of the marginal eigenmodes
existing at the critical Reynolds number, each mode being multiplied by some complex scalar amplitude.
Note that three global modes are to be considered, i.e. the system undergoes a codimension-three bifur-
cation: one mode for the first steady bifurcation and two superimposed modes of frequencies ±σi for the
unsteady bifurcation. q̂1 can therefore be written in the form

q̂1 =
(

Aq̂A
1 + B+q̂B+

1 eσt + B-q̂B−
1 eσt

)

eiθ + c.c. (8)

where A is the complex amplitude of the non-oscillating mode q̂A
1, and B+ (resp. B-) is that of the oscillating

mode q̂B+
1 (resp. q̂B−

1 ) of frequency σi (resp. −σi). At orders 2 and 3, we obtain inhomogeneous linear
equations that can be understood as the harmonic linearized Navier-Stokes operator about q̂0 forced by
terms involving quantities of lower orders, which have therefore been determined. The homogeneous
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operator is non-degenerate at order 2 but degenerate at order 3, where the Fredholm alternative is used
and compatibility conditions are applied, yielding a system of Stuart-Landau amplitude equations for
the complex amplitudes (A,B+, B-). Although this system can be calculated from the full equations, it
arises naturally by considering that invariance under the transformation (A,B+, B-) −→ (A,B+, B-)eiϕ is
required, where ϕ is an arbitrary phase. The system of coupled amplitude equations finally reads

dA/dt = ελAA − εA
(

µA |A|2 + νA |B
+|2 + νA |B

-|2
)

− εχAB
+B-A (9a)

dB+/dt = ελBB
+ − εB+

(

µB |B
+|2 + νB |B

-|2 + ηB |A|2
)

− εχBB
-A2 (9b)

dB-/dt = ελBB
- − εB-

(

µB |B
-|2 + νB |B

+|2 + ηB |A|2
)

− εχBB
+A

2
. (9c)

By use of the compatibility conditions, the coefficients of system (9) arise as scalar products between
the adjoint global modes computed in the previous section and the forcing terms of order 3 of appropriate
complex amplitude. For instance, µA = 〈q̂†

1A, f̂
A|A|2

3 〉 where f̂
A|A|2

3 is the forcing term of complex amplitude
A|A|2, arising from the non-linear interaction of q̂A

1 with the order 2 mode of amplitude |A|2 and of q̂A
1 with

the order 2 mode of amplitude A2, i.e.

f̂3
A|A|2

= −C[q̂A
1, q̂

|A|2

2 ] − C[q̂A
1, q̂

A2

2 ] . (10)

Numerically, we obtain

λA = 147 λB = 200 − 8.45 i
µA = 16.2 µB = 0.355 + 0.0301 i
νA = 0.415 − 0.0155 i νB = 0.308 + 0.168 i

ηB = 20.1 − 1.83 i
χA = 0.0165 χB = 8.55 + 1.90 i .

We will discuss the formation of slowly rotating horseshoe vortices as a particular solution of this complex
system, that may even admit chaotic solutions (3 degrees of freedom for amplitudes and 3 others for
phases).

Conclusion The first and second bifurcations of the steady axisymmetric wake of the sphere is investi-
gated numerically in the framework of the global linear stability. The adjoint problem is solved as a step
towards a weakly non-linear analysis and the adjoint global modes are discussed in terms of receptivity
to flow control and base flow modifications. A system of coupled amplitude equations is derived for a
dynamical system undergoing a codimension-three bifurcation, whose resolution is expected to provide
useful information for the description of the early stage of the periodic regime.
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