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The flow past an axisymmetric body is generically unstable to a steady and a time-periodic global
instability, the latter being thought to lead the low-frequency unsteadiness of the wake even at larger
Reynolds numbers. The present paper examines how the growth rate of the oscillatory unstable mode
developing in the wake of bullet-shaped objects can be reduced by a steady forcing, whose effect is
to modify the base flow. The use of the compressible Navier–Stokes equations allows to consider
control through steady mass, momentum and heat forcing applied in the bulk and at the wall. To
do so, we extend to compressible flows and axisymmetric geometries the method first proposed
by Hill (NASA Tech. Rep. 103858, 1992) to analyze the control of the two-dimensional mode of
the incompressible cylinder wake. This method aims at evaluating the sensitivity of one particular
eigenvalue to forcing by resolution of adjoint equations. Considering control at the wall, it allows
to compute directly the eigenvalue gradient with respect to the wall variables. We show that the
oscillating mode can be stabilized by a steady blowing at the wall (the so-called base-bleed control).
Expressing the gradient as a sum of production, streamwise advection and cross-stream advection
terms, we show that this stabilizing effect is due to cross-stream advection, in contradiction with the
up to now accepted interpretation based on the local absolute and convective instability analysis of
parallel profiles. The same technique allows to compute the gradient of the oscillatory eigenvalue
to bulk mass, momentum and heat sources. Momentum control can be achieved by placing a small
ring in the lee of the afterbody. Similar to the 2-D case studied by Hill, the effect of such a ring is
twofold, as it induces a steady drag force which modifies the base flow, and a fluctuating drag force
proportional to the perturbation momentum at the ring location. We show that the efficiency of
the control can be improved by heating the ring, which then acts as an additional heat source.

I. INTRODUCTION

The transonic flow past an afterbody is dominated by the low-frequency shedding of large-scale
coherent structures. This vortex-shedding may be detrimental to the engineering application, as it
may induce unsteady side loads and cause flow induced vibrations. Alleviation or control of such
unsteadiness is therefore required to improve the aerodynamic performances and reliability of future
launch vehicles. We consider here a compressible afterbody flow at moderate Reynolds number and at
a Mach number M = 0.5, a parameter setting which may be of practical interest for the low-density
flows encountered in the stratosphere by high-altitude rockets and re-entry vehicles. In this range
of Reynolds numbers, the vortex-shedding activity has been linked to an instability of helical modes
of azimuthal wavenumbers m = ±11–3. For the higher Reynolds numbers found at lower altitudes,
vortex-shedding persists as a coherent large-scale phenomenon superimposed on the turbulent flow
field4–6, which suggests that the present results rigorously derived at moderate Reynolds numbers can
carry over as a first step towards the control of the turbulent flow.

Control of vortex-shedding in the wake of bluff bodies has been a subject of great interest in the
last decades (see Choi7 for a review). In this study, we focus on open-loop methods, which rely on the
simple idea that the dominant dynamical processes can be altered by imposing a steady modification
of the flow conditions. Simple bulk strategies are based on the action of a small secondary body,
referred to as the control device, placed past the main body whose unsteadiness is to be controlled.
For instance, a suitably positioned control cylinder can yield a complete suppression of unsteadiness
in the flow past a circular cylinder8 and in a transonic cavity flow9. Similarly, a small control disk
mounted at the rear of an afterbody can trigger a significant reduction of drag and of the vortex-
shedding activity10,11. Localized gas discharges acting as heat sources in the bulk have also been
used to stabilize the unsteady shock wave on a truncated body equipped with a central spike12. In
the general context of flow control, many tractable control strategies are achieved through forcing
at the wall: for instance base bleed control, i.e. the injection of fluid into the wake of a bluff-body,
allows to alleviate unsteadiness13,14. Wall cooling15,16 and surface rugosities17 have been used to
delay the transition to turbulence in boundary-layer flows, whereas the use of surface discharges was
proven fruitful to prevent flow separation18. However, such heuristic approaches can be extremely
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time-consuming if the number of degrees of freedom is large. Indeed, the effect on the disturbance
growth must be evaluated for each control setting by carrying out either experimental measurements,
numerical simulations or direct stability analyses, hence motivating the development of systematical
optimization techniques.

As will be demonstrated in the following, the flow under consideration is characterized by a specific
sequence of bifurcations that gives credence to the interpretation of the observed intense, periodic
oscillations in terms of the saturation of an unstable global mode, i.e. an eigenmode inhomogeneous
in both the cross-stream and the streamwise directions. This approach, early introduced in the case of
the cylinder wake flow19,20, has been used to describe the dominant instability mechanisms at work in
a wide variety of flows in complex geometry (see Theofilis21 for a review). The so-gained information
can therefore be used to derive efficient flow control strategies, as discussed for instance in the review
by Collis et al.22 and the references therein. The present paper considers, as recent studies did, how
the dynamics of the global mode whose instability leads to vortex-shedding can be modified by a
small but finite-amplitude steady forcing applied in the bulk and at the wall. To this end, a precursor
study has been carried out by Hill23, who investigated theoretically the control of the incompressible
cylinder wake flow by means of a small control cylinder modeled by the drag force it exerts on the
flow. Hill predicted the existence of specific flow regions where the presence of the control cylinder
inhibits the vortex-shedding activity, his results exhibiting a striking agreement with that obtained
experimentally by Strykowski & Sreenivasan8. Such an approach has known a renewed interest, as
Marquet et al.24 and Giannetti & Luchini25 recently reconsidered the effect of the control cylinder at
the base flow level and at the perturbation level, respectively.

This paper presents a gradient-based sensitivity formalism for the forcing of global modes governed
by the compressible Navier–Stokes equations. It aims at providing a systematic method for open-loop
control of afterbody flow unsteadiness viewed as a global instability, in contrast with previous studies
on compressible boundary-layers relying on the parabolized approximation of the equations26. As in
Hill23 and Marquet et al.24, the forcing acts by modifying the base flow on which the disturbances
develop. Using a complementary sensitivity framework to study how small modifications of the Mach
number may affect the dynamics of global modes, we have indeed shown that such a change in the
base flow profiles is a key mechanism allowing to interpret the stability of compressible wake flows27.
We use adjoint methods to compute the gradients of the eigenvalue with respect to the forcing by
solving only once the state and adjoint problems, which requires a relatively ‘low’ computational cost.
The compressible formalism includes novel bulk control strategies, such as mass and heat sources,
but also forcing at the wall, which allows to obtain quantitative results for control by base bleed and
wall heating and cooling. Such gradient-based control techniques are physically tractable, and have
therefore potentially many practical applications. In particular, the results obtained for heat control
remain valid even when the Mach number tends to zero. Moreover, the present approach can be used
to provide optimal and robust control strategies by means of an iterative algorithm based on the
repeated computation of the adjoint state28.

The paper is organized as follows: the flow configuration and numerical method are presented in
Sec. II-III. The base flow and disturbance equations are solved in Sec. IV, where we identify the
global mode expected to trigger the onset of the periodic regime. In Sec. V, we develop the sensitivity
formalism and derive the analytical expression of the gradients, also termed sensitivity functions.
Forcing in the bulk is investigated in Sec. VI, where we consider successively the effect of momentum
and heat sources. In the case of momentum forcing, the analysis is particularized by considering the
effect of a small control ring placed at various positions in the wake, whose effect is modeled by a
pure drag force. Forcing at the wall is considered in Sec. VII, where we further examine the case of
base bleed. We also propose physical interpretations for the observed stabilizing effects by analyzing
the base flow modification induced by the forcing.

II. FLOW CONFIGURATION

We investigate the control of the axisymmetric flow developing in the compressible regime past
the afterbody of revolution shown in Figure 1. It models a rocket shape, with a blunt trailing
edge of diameter D placed into a uniform flow at zero angle of attack10,11, and is identical to that
experimentally investigated by Sevilla & Mart́ınez-Bazàn29, with a total length l = 9.8D and an
ellipsoidal nose of aspect ratio 3 : 1. The problem is formulated using a standard cylindrical coordinate
system (r, θ, z) of axis Γa, whose origin is taken at the center of the body base.

The fluid is a variable density, compressible, perfect gas with constant specific heats cv and cp,
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Figure 1: Configuration under study: the slender body of revolution has a diameter D and a total length
l = 9.8D.

thermal conductivity κ, and dynamic viscosity µ, related by a ratio of specific heats γ = 1.4 and
a Prandtl number Pr = 1. The fluid motion is described by a state vector formulated either in
terms of non-conservative variables as q = (%,u, Θ, p)T , or in terms of conservative variables as
q = (%, %u, %Θ, p)T , where % is the density, Θ the temperature, p the pressure and u = (u, v, w)T the
three-dimensional velocity field, with u, v and w its radial, azimuthal and streamwise components.
We use here non-conservative variables, so that q obeys the compressible Navier–Stokes equations
formulated as

∂t% + %∇ · u + u ·∇% = j , (1a)

%∂tu + %∇u · u +
1

γM2
∇p− 1

Re
∇ · τ (u) = f , (1b)

%∂tΘ + %u ·∇Θ + (γ − 1)p∇ · u− γ(γ − 1)
M2

Re
τ (u) : d(u)− γ

PrRe
∇2Θ = h , (1c)

p− %Θ = 0 . (1d)

Forcing in the bulk is taken into account through the mass, momentum and heat source terms noted
j, f , and h in the right-hand side of equations (1). Physically, f (resp. j and h) represents the
volumetric momentum rate (resp. volumetric mass and energy rates) applied by the control. Finally,
d(u) and τ (u) are the strain and stress tensors defined as

d(u) =
1
2

(
∇u + ∇uT

)
, τ (u) = −2

3
(∇ · u) I + 2d(u) . (2)

Equations (1) have been made nondimensional using the body diameter D and the upstream quan-
tities W∞, %∞, Θ∞ and p∞ as respective velocity, density, temperature and pressure scales, and the
Reynolds and Mach numbers are defined as

Re =
%∞DW∞

µ
, M =

W∞√
γRgΘ∞

, (3)

with Rg the ideal gas constant.
The additional effect of forcing at the wall is taken into account in the boundary conditions. To

this end, we define a specific control surface Γc that can be any arbitrary part of the body wall Γw,
on which we impose a velocity uw and temperature Θw modeling a subsonic wall injection:

u = uw, Θ = Θw on Γc . (4)

We chose here the control surface as the base of the model rocket, as sketched in Figure 1. On all
other body walls, we enforce no-slip, adiabatic wall conditions:

u = 0, ∂n% = ∂nΘ = 0 on Γw\Γc , (5)

where ∂/∂n is the derivative normal to the surface, and the density condition in (5) is derived from
the perfect gas state equation30. Note that condition (4) may not be relevant to the case of a subsonic
suction, as the number of degrees of freedom corresponding to subsonic inlet and outlet conditions is
not the same.
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III. NUMERICAL METHOD

From now on, all governing equations are written as formal relations between differential operators.
System (1) can thus be written as

B(q)∂tq +M(q,G) = (j, f , h, 0)T , (6)

where B and M are differential operators and G is a set of relevant control parameters (Reynolds
and Mach numbers, angle of attack...) assumed to be constant here, so that the dependence in G
is omitted for clarity. In the following, one must distinguish between the complete form of these
operators, defined for the state vector q = (%, u, Θ, p)T , and the reduced form defined for the state
vector q = (%,u,Θ)T , that can be straightforwardly deduced by replacing the pressure terms by their
expression issuing from the perfect gas state equation. The complete form is more suitable to the
presentation of the theoretical framework, whereas the reduced form is used in the numerics as it
requires smaller computational resources. To ease the reading, we omit voluntarily the difference
between both forms, the choice of the relevant one being clear from the context. The complete form
of all operators is detailed in Appendix B.

Figure 2: Schematic of the computational domain: the inner solid lines delimit regions characterized by
different vertex densities. z−∞, z∞ and r∞ stand for the dimensions of the inner enclosing cylinder. The
inlet, outlet and external boundaries are located at z = z−∞ − ls, z = z∞ + ls and r = r∞ + ls respectively,
where ls is the size of the sponge regions used in the numerics, shown as the light grey shaded area. The dark
grey shaded area corresponds to the near-wake domain used to normalize the eigenmodes.

The choice of the remaining boundary conditions is crucial in compressible flows. In order to apply
appropriate far-field conditions, the body is enclosed into two concentric cylinders defined as

r ≤ r∞ and z−∞ ≤ z ≤ z∞ (inner cylinder), (7a)
r ≤ r∞ + ls and z−∞ − ls ≤ z ≤ z∞ + ls (outer cylinder). (7b)

The inner enclosing cylinder corresponds to the footprint of the computational domain that would
have been used for an incompressible flow, whereas the outer cylinder defines the location of the inlet,
outlet and external boundaries (denoted Γin, Γout and Γext respectively) in the numerics. In the
domain enclosed between the cylinders, shown as the light grey shaded area in Figure 2, all fluctuations
are progressively damped to negligible levels through artificial dissipation, as the Reynolds number is
smoothly decreased from its value defined in (3) to the small value Res = 0.1 at the boundary of the
computational domain. The purpose of such sponge regions is to minimize numerical box size effects
by gradually attenuating all vortical and acoustic fluctuations before they reach the boundary of the
domain31. The Reynolds number in all equations should therefore be replaced by a computational
Reynolds number R̃e defined by R̃e(r, z) = Re in the inner cylinder, and

R̃e(r, z) = Re + (Res −Re)ζ(z, z∞) if r ≤ r∞ and z > z∞ , (8a)

R̃e(r, z) = Re + (Res −Re)ζ(z, z−∞) if r ≤ r∞ and z < z−∞ , (8b)

R̃e = R̃e(r∞, z) + (Res − R̃e(r∞, z))ζ(r, r∞) if r > r∞ , (8c)
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where ζ is the function defined by

ζ(a, b) =
1
2

+
1
2

tanh
{

4 tan
(
−π

2
+ π

|a− b|
ls

)}
. (9)

In addition to this artificial damping, numerical dissipation in the sponge zones is increased by pro-
gressive grid stretching. The governing equations are then solved using a uniform free-stream flow
condition

u = (0, 0, 1)T , %, Θ = 1 on Γin ∪ Γext ∪ Γout . (10)

We use the FreeFem++ software ? to generate a two-dimensional triangulation of the azimuthal
plane θ = 0 with the Delaunay–Voronoi algorithm. The mesh refinement is controlled by the vertex
densities imposed on both external and internal boundaries. Regions where the mesh density varies are
depicted by the solid lines in Figure 1. All equations are numerically solved by a finite-element method
using the same mesh, built with z−∞ = −100, z∞ = 300, r∞ = 25 and ls = 200, hence resulting in
692606 triangles. A set of equations is first multiplied by r to avoid the singularity on the r = 0 axis.
The associated variational formulation is then derived and spatially discretized onto a basis of Arnold-
Brezzi-Fortin MINI-elements32, with 4-node P1b elements for the velocity components and 3-node P1

elements for the density and temperature. The sparse matrices resulting from the projection of these
variational formulations onto the basis of finite elements are built with the FreeFem++ software.

IV. GLOBAL STABILITY ANALYSIS

The state vector q is split into q = Q + εq′, with Q = (ρ, U, 0,W, T, P )T a steady axisymmetric
base flow and q′ = (ρ′, u′, v′, w′, T ′, p′)T a three-dimensional perturbation of infinitesimal amplitude
ε. Unless specified otherwise, we consider only steady, axisymmetric forcing terms, now rewritten as
J , F , H, Uw and Tw for consistency.

A. Base flow computations

The base flow is solution of the steady, axisymmetric form of the nonlinear system (6) reading

M0(Q) = (J,F ,H, 0)T , (11)

where M0 is the axisymmetric form of operator M. Q satisfies the same boundary conditions as for
the Navier–Stokes equations, along with the additional condition U = 0, ∂rW = ∂rρ = ∂rT = 0 on
Γa, obtained for axisymmetric solutions from mass, momentum and internal energy conservation as
r → 0. In particular, the condition on Γc reads U = Uw and T = Tw. We carry out here the global
stability analysis of the unforced afterbody flow, for which

J = 0 , F = 0 , H = 0 , Uw = 0 , Tw = 1 +
γ − 1

2
M2 , (12)

i.e. the wall temperature is equal to the free-stream total temperature.

Figure 3: Spatial distribution of streamwise velocity for the steady axisymmetric base flow at Re = 999 and
M = 0.5. The solid line in the flow indicates the separatrix of the recirculation zone.
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In the present study, Q is obtained using an iterative Newton method33 involving successive iter-
ations of a guess value Q̄. At each step, a linear problem is solved using the UMFPACK library ? ,
which consists in a sparse direct LU solver34,35. The iterative process is carried out until the L2-norm
of the residual of the governing equations for Q̄ becomes smaller than 10−12. In the limit of low
Mach numbers, the flow quantities are expanded as power series in γM2, 36 and the initial guess is
obtained by continuation from the incompressible solution computed using the solver presented in
Meliga et al.37. For Mach numbers M > 0.3, the initial guess is simply chosen as a solution of the
compressible equations computed for a lower value of the Mach number. Since we do not use the gov-
erning equations under their conservative form, the numerical method cannot easily account for the
presence of shock waves in the computational domain, as this would require to use mesh refinement
techniques to fully resolve the viscous structure of the shock. Consequently, the local Mach number
Ml = M‖U‖/√T must remain smaller than one everywhere in the flow, and the free stream Mach
number can therefore be increased up to M ∼ 0.7 for the present computations.

The accuracy of the numerical method has been assessed by computing first the flow past a sphere
at low Mach numbers M = 0.1 and 0.2, and by comparing the drag coefficients and recirculation
lengths to the incompressible values documented in the literature39,40. The dynamics is from now
on exemplified by setting M = 0.5. Figure 3 shows contours of the base flow streamwise velocity for
Re = 999 and M = 0.5. The solid line is the streamline linking the separation point to the stagnation
point on the r = 0 axis, and defines the separatrix delimiting the recirculation bubble behind the
base. The classical topology of wake flows is retrieved, with a recirculation region of length ∼ 2.5D
developing in the wake of the afterbody, and negative values of the streamwise velocity reaching 30%
of the free-stream velocity close to the axis.

B. Eigenvalue computations

All perturbations are sought under the form of normal modes

q′ = q̂(r, z)e(σ+iω)t+imθ + c.c. , (13)

where q̂ = (ρ̂, û, T̂ , p̂)T is the so-called global mode and c.c. denotes the complex conjugate of the
preceding expression. The azimuthal wavenumber of the global mode is m, its growth rate and
pulsation are σ and ω respectively. Substituting q = Q + εq′ into (11) and retaining only terms
of order ε yields a system of linearized equations governing the normal mode under the form of a
generalized eigenvalue problem for λ = σ + iω and q̂:

λB(Q)q̂ +Am(Q)q̂ = 0 . (14)

In (14), Am is the complex operator obtained from A = ∂M/∂q by replacing the θ derivatives by
im. The global mode satisfies homogeneous boundary conditions linearized from the Navier–Stokes
conditions. For the m = ±1 modes discussed in the following, we use the additional condition
ŵ = ρ̂ = T̂ = 0, ∂rû = ∂rv̂ = 0 at the axis. Eigenproblem (14) is solved using the ”Implicitly
Restarted Arnoldi method” of the ARPACK library ? based upon a shift and invert strategy41.

To normalize the m = ±1 global modes, we impose first the phase of the radial velocity to be zero
at r = 0 and z = 1, i.e. û(0, 1) is real positive. To normalize the mode amplitude, we introduce the
near-wake domain Ωin defined arbitrarily as z ∈ [−12.3, 5.25] and r < 2 (shown as the dark grey
shaded area in Figure 2) and the inner product

∫
Ω

â · b̂ rdΩ, where â and b̂ belong to Cn, dΩ is the
surface element on the computational domain Ω, and · refers to the canonical hermitian scalar product
in Cn. The ‘energy’ defined by the induced norm is then normalized to unity in the near-wake, so
that

∫

Ωin

q̂ · Bq̂ rdΩ = 1 . (15)

Note that for compressible flows, the choice of this inner product is convenient for the numerics but is
not physically motivated, as the ‘energy’ in (15) does not represent any meaningful physical quantity,
neither the total energy, nor the total enthalpy of the perturbation.

The results of the stability analysis are somehow reminiscent of that documented in the incom-
pressible wake past a sphere and a disk40. The axisymmetric base flow is destabilized at Re1 = 484.5
by a first m = 1 mode, named mode 1. This mode is stationary (i.e. ω = 0) and its eigenvector
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Figure 4: Spatial distribution of streamwise velocity for the three-dimensional disturbances. (a) Stationary
mode 1 at the threshold of the first instability - Re1 = 484.5, M = 0.5. (b) Oscillating mode 2 at the threshold
of the second instability - Re2 = 999, M = 0.5 (only the real part is shown). The dark grey hue corresponds
to vanishing perturbations.

chosen as q̂1 = (ρ̂1, û1, iv̂1, ŵ1, T̂1)
T is real using the present normalization. It exhibits streamwise

velocity disturbances extending far downstream of the body, as seen from Figure 4(a). The azimuthal
wavenumber of this mode being m = 1, the velocity perturbation is opposite on the other side of the
revolution axis, meaning that this mode induces an off-axis displacement of the wake, as in the case
of a sphere at zero Mach number43. A subsequent instability of the axisymmetric solution occurs
at Re2 = 999 for a second m = 1 mode, named mode 2. This mode is oscillating with a frequency
ω0 = 0.399 (the associated Strouhal number being St = ω0D/2πU∞ = 0.063), and its eigenvector
q̂2 is complex. The real part of the streamwise velocity ŵ2 shown in Figure 4(b) exhibits positive
and negative velocity perturbations alternating downstream of the body in a regular, periodic way
that defines a local spatial wavelength of about 12 diameters. The imaginary part (not shown here)
displays a similar structure, but is approximately in spatial quadrature, its extrema being located
close to the nodes of the real part with a small pitch. This mode therefore corresponds to a spiral
perturbation rotating in time at the frequency ω0. Owing to the symmetries of the problem, this
mode comes in pair with a second mode being the complex conjugate of the one plotted here, and
corresponding to a spiral perturbation rotating in time and winding in space in the opposite direction.
In the following, we focus on the oscillating mode 2, which dominates the dynamics of the afterbody
flow at larger Reynolds numbers37,44. The subscript 2 is thus systematically omitted in order to ease
the notation.

V. OPEN-LOOP CONTROL AND SENSITIVITY ANALYSIS TO A STEADY FORCING

We extend here to compressible flows the analyses introduced by Hill23 and refined by Giannetti &
Luchini25,45, Chomaz46 and Marquet et al.24 for incompressible flows. In the perspective of open-loop
control, we investigate how the stability of the oscillating global mode may be affected by the addition
of a small, finite-amplitude forcing in the bulk and at the wall, whose effect is to modify the base flow.

An eigenvalue solution of eigenproblem (14) is explicitly a function of the base flow variables λ =
λ(Q), Q itself being a function of the forcing through equations (11). The eigenvalue can therefore
be viewed as a function of the forcing λ = λ(J, F ,H, Uw, Tw), and the variation δλ can be computed
with respect to the small variations δJ , δF , δH, δUw and δTw, thus defining the sensitivity analysis
to a steady forcing. In the following, the complex fields ∇Jλ, ∇F λ and ∇Hλ denote the sensitivity of
the eigenvalue to bulk mass, momentum and energy sources respectively. Similarly, ∇Uw

λ and ∇Tw
λ

denote its sensitivity to a wall velocity and temperature.
The variations are such that

δλ =
∫

Ω

(∇Jλ · δJ + ∇F λ · δF + ∇Hλ · δH) rdΩ +
∫

Γc

(∇Uw
λ · δUw + ∇Tw

λ · δTw)rdΓ , (16)
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where dΓ is the length element along the control surface. The derivation of the sensitivity functions
relies on the computation of an adjoint global mode q̂† = (ρ̂†, û†, T̂ †, p̂†)T , i.e. a Lagrange multiplier
for the global mode, and of an adjoint base flow Q† = (ρ†, U†, T †, P †)T , i.e. a Lagrange multiplier for
the base flow. q̂† and Q† are herein computed as the solutions of an eigenvalue problem and of a forced
linear problem, respectively. Such an approach is classically used in flow control and optimization
problems47,48. It is worthwhile noting that although the definition of the gradients depends on the
choice of the inner product through the computation of the adjoint quantities, the eigenvalue variation
computed from (16) does not. All calculations are detailed in Appendix A2, and we only mention
here that the adjoint global modes are normalized with respect to the global modes, so that

∫

Ω

q̂† · Bq̂ rdΩ = 1 . (17)

This yields the following expressions:

(∇Jλ , ∇F λ , ∇Hλ) = (ρ†, U†, T †) , ∇Uw
λ = ρρ†n +

1
Re

τ (U†) · n , ∇Tw
λ =

γ

PrRe
∇T † · n ,

(18)
where n is the outward normal to the control surface oriented from the body to the fluid. Similar
functions for the growth rate are obtained by retaining the real parts of these complex fields.

VI. CONTROL IN THE BULK

We use now the formalism presented in Sec. V to appraise how the oscillating mode, taken at the
threshold of instability (Re = 999 and M = 0.5), can be stabilized by forcing in the bulk (δUw = 0,
δTw = 0). The sensitivity analysis being linear in essence, the effect of each forcing term (i.e. of each
control means) is analyzed individually.

A. Effect of a small control ring

Figure 5: View of a control ring mounted at the rear of the main body, whose action on the base flow is
modeled by (19).

We investigate first the effect of momentum forcing in the bulk, for which δJ = δH = 0. In
practice, such a forcing can be achieved by mounting a small control ring of radius rc and width e
at a distance zc from the base (Figure 5). We assume that e is small enough for the ring to act as
a localized momentum source at the station (rc, zc). We also assume that whatever its location, the
wake of the device remains steady, meaning that the Reynolds number Ree based on the width e and
the magnitude of the local base flow velocity ‖U‖ must be small enough. The presence of the ring
is not accounted for by any mesh modification, but is modeled by the force it exerts on the flow, an
approximation that may be justified through an asymptotic expansion with a viscous inner layer.

As in Hill23, the force exerted by the ring onto the flow is set opposite to the drag force it experiences.
Since the presence of the mode at any arbitrarily small amplitude ε creates a modulation of the drag
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vector of same amplitude23,49, one must linearize the total drag vector to compute the force induced
by the ring, which can be split into two distinct components

δf = δF + εδf̂ . (19)

δF is the steady component of the drag force, which acts by modifying the base flow profiles:

δF (r, z) = −1
2
eCρ‖U‖Uδ(r − rc, z − zc) , (20)

where C is a drag coefficient depending on Ree. We use here e = 0.1, a value for which the Reynolds
number in the recirculating bubble is of order Ree ' 30. Consequently, we set C = 1, an empirical
value determined from the drag coefficient of a cylinder in this range of Reynolds numbers, where it
happens to exhibit only very weak variations. δf̂ is the time-periodic component of the drag force
that beats at the same frequency as the global mode. In the quasi-static limit, i.e. assuming that the
force follows instantaneously the variation of the flow, it can be written as

δf̂ (r, z) = −1
2
e

[
Cρ‖U‖û +

(
Cρ̂‖U‖+

(
C

‖U‖ +
Ree

‖U‖
∂C

∂Ree

)
ρU · û

)
U

]
δ(r − rc, z − zc) , (21)

where the underlying modification of the drag coefficient ∂C/∂Ree is assumed to be zero for simplicity.
From a physical point of view, the first term in (21) corresponds to a variation in the direction of
the drag vector, whereas the last two terms correspond to a variation in the drag magnitude. If e
is small, this force acts as a weak perturbation of the linearized evolution operator under the form
of a localized ‘force-velocity’ coupling, that can also be viewed as a feedback induced by an actuator
located at the same station as the sensor25,45.

The eigenvalue variation induced by the ring can therefore be written as

δλ = δF λ + δf̂ λ . (22)

The variation δF λ owing to the steady force is computed using the sensitivity functions (18), whereas
the variation δf̂ λ owing to the feedback force is directly given by projection of the force onto the
adjoint global mode. Using the normalization condition (17), we obtain

δF λ =
∫

Ω

U† · δF rdΩ , δf̂ λ =
∫

Ω

û† · δf̂ rdΩ , (23)

and the corresponding growth rate variations are obtained retaining only the real parts.
Figure 6(b) presents the spatial distribution of the growth rate variation δF σ arising from the steady

drag force. We find both negative and positive variations corresponding respectively to a stabilization
and a destabilization of the global mode. The ring has a stabilizing effect when placed along the front
part of the separation line, where the shear is maximum. In contrast, it slightly destabilizes the flow
if placed on the rear part of the separation line. Figure 6(c) presents the spatial distribution of the
variation δf̂ σ induced by the fluctuating feedback force. The ring has a weak stabilizing effect if placed
at the internal periphery of the separation line, and a destabilizing effect of same magnitude if placed
at the external periphery. In return, the stabilizing effect in Figure 6(a), showing the distribution of
the total variation δσ = δF σ + δf̂ σ, is dominated by the steady component, whereas the contributions
of the steady and fluctuating forces add up in the flow region where the ring is destabilizing.

B. Physical interpretation of the stabilizing mechanism in terms of base flow modifications

Since the stabilizing effect can be estimated with a good precision by considering only the contribu-
tion of the steady drag force, we propose to further analyze the underlying mechanism by investigating
the base flow modification δQ induced by the control. Indeed, when the forcing varies, the eigenvalue
modification can be interpreted as resulting straightforwardly from the change in the forcing, as has
been done in Sec. V, or as resulting from the implicit change in the base flow profiles, as will be done
in the following. To this end, we derive here a second sensitivity analysis in which the eigenvalue
variation is expressed as a function of δQ, thus defining the sensitivity analysis to base flow modifica-
tions, as originally formulated for parallel flows by Bottaro et al.50 and Hwang & Choi51 and recently
generalized to spatially developing flows by Marquet et al.24.
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Figure 6: Growth rate variation δσ(rc, zc) owing to the introduction of a small control ring whose presence
is modeled by (19), with e = 0.1 - Re = 999, M = 0.5. The total variation in (a) can be decomposed into
δσ = δF σ + δf̂ σ. The variation δF σ shown in (b) originates from the steady force δF modeled by (20) and

the variation δf̂ σ shown in (c) results from the feedback force δf̂ modeled by (21). The color look-up table is
identical for all three figures to ease the comparison between results. The circle symbol at (rc, zc) = (0.6, 0.5)
denotes the position for which we carry out the sensitivity analysis to base flow modifications.

For each specific ring position, the base flow modification δQ can be computed explicitly as the
solution of the linear problem

A0δQ = (0, δF , 0, 0)T (24)

forced by the drag force (20), with homogeneous boundary conditions at the base. Using a Lagrangian
formalism similar to that introduced in Sec. V, we introduce now the complex fields ∇ρλ , ∇ρUλ ,
∇ρT λ and ∇P λ defining the sensitivity of the eigenvalue to a modification of the base flow density,
momentum, internal energy and pressure. We can now compute the eigenvalue variation δλ as

δλ =
∫

Ω

(∇ρλ · δρ + ∇ρUλ · δ(ρU) + ∇ρT λ · δ(ρT ) + ∇P λ · δP) rdΩ , (25)

the corresponding sensitivities for the growth rate being obtained as above by retaining only the real
parts of these complex fields. The sensitivity of the eigenvalue to base flow modifications is defined
by the field ∇Qλ = (∇ρλ, , ∇ρUλ , ∇ρT λ , ∇P λ)T , so that

δλ =
∫

Ω

∇Qλ · (HδQ) rdΩ . (26)

In (26), H is the matrix mapping from non-conservative onto conservative perturbation quantities, so
that HδQ represents the base flow modification recast into conservative variables. All calculations
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are detailed in Appendix A1. Using the normalization condition (17), we obtain

(∇ρλ , ∇ρUλ , ∇ρT λ , ∇P λ)T = −H−1†
{

∂

∂Q
(λBq̂ +Amq̂)

}†
q̂† , (27)

where the † superscript denotes the adjoint of the preceding operator.
For a modification δQ, such an approach allows to compute separately the four integrals

δρλ =
∫

Ω

∇ρλ · δρ rdΩ , δρUλ =
∫

Ω

∇ρUλ · δ(ρU) rdΩ ,

δρT λ =
∫

Ω

∇ρT λ · δ(ρT ) rdΩ , δP σ =
∫

Ω

∇P λ · δP rdΩ ,

(28)

δλ being then the sum of these four contributions. Physically, δρUσ corresponds to the growth rate
variation that would be computed in a fictitious flow for which only the momentum components
would be allowed to vary, all other components being kept artificially fixed. If only the contribution
of the streamwise component is considered, one retrieves the variation previously investigated in
the framework of the local stability of parallel flows50,51. It should be kept in mind that for real
developing flows such as those considered here, the ring acts by modifying all components of the
base flow, meaning that the modifications of density, momentum, internal energy and pressure cannot
be prescribed individually but are connected one to another through (24). Such a decomposition is
therefore qualitative and used only as a means to gain insight at the mechanisms at work by estimating
the importance of each individual base flow component in the stabilizing effect.

It is also possible to interpret the eigenvalue variation in terms of a competition between an advection
mechanism and a production mechanism. In the local theory, this distinction has been formalized via
the concepts of convective and absolute instability: the flow is said to be locally convectively unstable if
its advection by the base flow dominates over its production, and locally absolutely unstable otherwise.
For incompressible flows, Marquet et al.24 have shown that it is straightforward to split the sensitivity
function and to identify contributions accounting for the advection and production of disturbances.
The case of compressible flows is more involved, as the perturbation may exchange energy with
the base flow in different ways. To identify such advection and production terms, we linearize the
governing equations, first expressed into integral formulation and conservative variables. The physical
origin of all terms in (14) then naturally arises when turning back into non-conservative variables.
For instance, the nonlinear term %u ·∇Θ in the energy equation (1c) corresponds to the advection of
energy by the flow. Its linearization gives rise to two classes of terms in the linearized energy equation:

1. ρ̂U ·∇T + ρU ·∇T̂ is an advection term associated to the advection of the energy disturbance
ρ̂T + ρT̂ by the base flow,

2. ρû ·∇T is a production term associated to the reciprocal advection of the base flow energy ρT
by the perturbation.

Consequently, we gather all advection terms into the single advection operator Cm accounting for
the advection of the perturbation (see Appendix B for a detailed expression). All other terms are
production terms accounting for the production of disturbances through the advection of the base
flow quantities and through the sink/source terms of the governing equations.

It is now possible to split the eigenvalue variation into δλ = δλA + δλP , where δλA is the variation
issuing from the change in the advection terms and δλP is the variation issuing from the change in
the production terms. Physically, a positive value of δλA indicates a destabilization of the eigenmode
owing to a weakening of the disturbances advection. Similarly, a positive value of δλP indicates
a destabilization owing to an increase of the disturbances production. These terms are computed
respectively as

δλA =
∫

Ω

∇Q,Aλ · HδQ rdΩ , δλP =
∫

Ω

∇Q,P λ · HδQ rdΩ , (29)

where ∇Q,Aλ and ∇Q,P λ are the advection and production sensitivity functions, computed by iso-
lating the contribution of the advection and production terms to the sensitivity functions (27). We
obtain simply

∇Q,Aλ = −H−1†
{

∂

∂Q
(λBq̂ + Cmq̂)

}†
q̂† , ∇Q,P λ = ∇Qλ−∇Q,Aλ . (30)
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Total δρ δ(ρU) δ(ρT ) δP

−4.2× 10−1 3.4× 10−3 −4.3× 10−1 2.2× 10−3 −2.6× 10−6

Total Adv. Prod.

−4.2× 10−1 −3.8× 10−1 −4.4× 10−2 2.2× 10−3 −2.6× 10−6

Table I: Growth rate variation δσ resulting from the base flow modification induced by a steady drag force,
as defined by (20) with e = 0.1 - Re = 999, M = 0.5. This force models the presence of a small control ring
at the station (rc, zc) = (0.6, 0.5). We also provide the contributions to δσ arising from the modification of
density, momentum, internal energy and pressure, as computed from (28). Results split into the contributions
of advection and production, as computed from (29), are provided on the second line.

In order to ease the reading, the mapping matrix H is from now on omitted and δQ stands either for
the non-conservative or the conservative form of the base flow modification, unless the choice of the
relevant form is not clear from the context.

The analysis is now exemplified by placing the ring at the station (rc, zc) = (0.6, 0.5) for which
the stabilizing effect achieved is close to the maximum (circle symbol in Figure 6). For this location,
the growth rate variation is δσ = −4.19 × 10−1, a value straightforwardly computed from (23). δσ
can also be computed in two steps, namely by computing first the base flow modification δQ from
(24), the variation being then retrieved from (25). To this end, the Dirac distribution in (20) is
smoothed out in the numerics by a gaussian function of standard deviation χ = 1.25× 10−2 centered
at (rc, zc), which yields δσ = −4.23 × 10−1. It has been checked that this value varies by less
than 1% when decreasing the standard deviation by half, meaning that the chosen gaussian models
appropriately a delta function. These values are consistent and validate the present computations
since the relative error between the results issuing from both approaches is about 1 %. We have
carried out decomposition (28): the results are detailed in Table I, where the dominant contribution
is systematically displayed in a grey shaded cell, so as to ease the reading. Interestingly, we find that
among the four individual variations accounting for the modification of density, momentum, energy
and pressure, the momentum variation δρUσ contributes by more than 95% to the total variation
δσ. Table I also details the results of decomposition (29), showing that the effect of the advection
mechanism dominates over that of production, as δσA represents 90% of the overall variation. This
means that a strong increase in the advection of perturbations arising from the modification of the
base flow momentum profiles is the leading mechanism involved in the stabilizing effect.

C. Effect of a heat source localized in the bulk

We set now δJ = 0 and δF = 0, and investigate the growth rate variation resulting from an
axisymmetric heat source localized in the bulk, modeled as

δH(r, z) =
α

2πrc

δ(r − rc, z − zc) , (31)

with α the energy rate applied by the control. We chose to heat the flow (α ≥ 0), so that the control
can be viewed as mimicking an axisymmetric gas discharge. We set α = 10−2, i.e. the dimensional
internal energy rate induced by the control represents 1% of the free-stream internal energy rate based
on D, i.e. %∞cvW∞Θ∞D2. The growth rate variation is then given by

δσ(rc, zc) =
∫

Ω

∇Hσ(r, z) · δH(r, z) rdΩ =
1
2π

∇Hσ(rc, zc)α . (32)

Figure 7 presents the spatial distribution of δσ as given by (32). Heating the base flow has a stabilizing
effect for almost all positions in the recirculation region, whereas forcing in the outer region has no
effect. Since δσ is directly proportional to α, the opposite effect would have been obtained by cooling
the flow.

In practice, such a forcing can also be achieved by heating the control ring considered in Sec. VIA.
The sensitivity analysis being linear in essence, the total growth rate variation achieved by such a
technique is simply obtained by adding the individual variations presented in Figures 6(a) and 7,
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Figure 7: Growth rate variation δσ(rc, zc) induced by a localized heat source modeled by (31) with α = 10−2

- Re = 999, M = 0.5. The circle symbol at (rc, zc) = (0.6, 0.5) indicates the position for which the sensitivity
analysis to base flow modifications is carried out.

Total δρ δ(ρU) δ(ρT ) δP

−2.0× 10−2 1.6× 10−3 −2.2× 10−2 6.9× 10−5 −2.4× 10−7

Total Adv. Prod.

−2.0× 10−2 −1.9× 10−2 −1.0× 10−3 2.2× 10−3 −2.6× 10−6

Table II: Same as Table I, the base flow modification being now induced by a heat source modeled by (31)
with α = 10−2, localized at the station (rc, zc) = (0.6, 0.5) - Re = 999, M = 0.5.

which yields an increase of the maximum stabilization by 7% (not shown here). Note however that
such a comparison is only qualitative, as one can set the relative effects of momentum and heat forcing
by modifying either the ring width e or the energy rate α.

The sensitivity analysis to base flow modifications introduced in Sec. VI B can again be used to gain
insight at the stabilizing mechanism. The base flow modification is computed by solving equation
(24) now forced by the heat source (31), the Dirac distribution being approximated by the same
gaussian function already used for the ring computations. For a heat source at (rc, zc) = (0.6, 0.5)
(circle symbol in Figure 7, located at the same station as the ring in Sec.VIB), we obtain a growth
rate variation δσ = −1.31× 10−3 as straightforwardly computed from (32) and δσ = −1.38× 10−3 as
retrieved from the computation of the base flow modification. Decomposition (28) has been carried
out and yields results strikingly similar to that found for the control ring (Table II), as we find that
the momentum variation δρUσ contributes by more than 90% to the overall variation. Since the
modification of the base flow energy component is one order of magnitude larger than that of the
momentum components (not shown here), the domination of momentum results from a larger level of
sensitivity. The advection/production decomposition (29) has also been carried out, and shows that
the effect of the advection mechanism dominates over that of production, as δσA represents 95% of
the overall variation. The increase in the disturbances advection resulting from the modification of
the momentum profiles is therefore again the dominant mechanism involved in the stabilizing effect.

VII. CONTROL AT THE WALL: APPLICATION TO BASE BLEED

In many practical applications, a localized forcing in the bulk may not be easily tractable, and it
is far more convenient to implement only forcing at the wall, obtained in the present framework by
setting δJ = δH = 0 and δF = 0. We investigate here the effect of wall heating and cooling and
of base bleed, i.e. the injection of fluid into the wake by means of a velocity set normal to the wall.
This particularizes the analysis to the case of a streamwise velocity δUw = δWwez, referred to as the
bleed velocity. In this case, the eigenvalue variation reads

δσ =
∫

Γc

∇Ww
σ · δWw rdΓ +

∫

Γc

∇Tw
σ · δTw rdΓ , (33)
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with ∇Ww
σ and ∇Tw

σ the sensitivity functions obtained from (18) as

∇Ww
σ = ρρ† +

1
Re

(
−2

3
∇ ·U† + 2∂zW

†
)

, ∇Tw
σ =

γ

PrRe
∂zT

† . (34)

In the incompressible limit (ρ → 1), it can be checked that the wall velocity contribution provided by
Hill23 is retrieved, provided one keeps in mind that our adjoint base flow density ρ† and the field P † in
Hill’s formula play identical roles, as they denote the Lagrange multiplier for the continuity equation.
Substituting (34) into (33) allows to distinguish between three distinct contributions associated to
mass, viscous and diffusion effects. The first term in the first integral, i.e. the product of the base flow
and adjoint base flow densities ρρ† with the bleed velocity δWw accounts for the effect of the mass
flux. The contributions weighted by the inverse of the Reynolds number account for the modification
of the viscous friction and of the heat flux owing to diffusion at the wall.

The distributions of the corresponding sensitivity functions are shown at threshold of the instability
as the solid lines in Figures 8(a) and 8(b). The sensitivity to the bleed velocity is negative for all radius,
thus confirming the stabilizing effect of base bleed early observed by Bearman13. The sensitivity is
almost constant for r < 0.3, and reaches a maximum before the edge, where an actuator imposing a
steady blowing should be placed to achieve maximum efficiency. Concerning the sensitivity to a wall
temperature, we find positive values at the center decreasing down to negative values at the edge,
where the maximum magnitude is reached. To obtain a stabilizing effect, one should thus cool the
inner region of the base or heat its periphery. However, the magnitudes of sensitivity are almost two
orders of magnitude lower than that to the bleed velocity, meaning that a small-amplitude heating or
cooling of the base will have only a limited effect. Confirmation comes from the distributions of the
sensitivity functions computed at the supercritical parameter setting Re = 2000 and M = 0.5, for
which the growth rate of the oscillating global mode is σ ' 8.2×10−2. Results are shown as the dashed
lines in Figure 8: the sensitivity to the bleed velocity has significantly increased with the Reynolds
number, giving more control authority. On the contrary, the sensitivity to the wall temperature is
about the same as for smaller Reynolds numbers, and remains two order of magnitudes lower. In the
following, the wall temperature is therefore kept constant and only a uniform bleed velocity is applied
at the base.

Figure 8: Spatial distribution of the sensitivity to (a) streamwise velocity at the wall ∇Ww
σ and (b) wall

temperature ∇Tw
σ at M = 0.5. The solid and dashed lines correspond to the results obtained at Re = 999

(i.e. at threshold of the instability) and at Re = 2000.

A. Physical interpretation for the stabilizing effect of base bleed

From now on, the Reynolds number is set to Re = 2000. We use here a bleed velocity δWw =
0.01 representing 1% of the free-stream velocity. The sensitivity analysis to base flow modifications
can be again used to gain insight at the stabilizing mechanism. In practice, δQ is computed by
solving the homogeneous form of equation (24) along with the conditions δU = δWwez and δT = 0
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Total δρ δ(ρU) δ(ρT ) δP

−3.0× 10−2 7.2× 10−4 −3.1× 10−2 1.7× 10−4 2.2× 10−7

Total Adv. Prod.

−3.0× 10−2 −2.1× 10−2 −9.5× 10−3 2.2× 10−3 −2.6× 10−6

Total δ(ρU)⊥ δ(ρU)‖
−3.0× 10−2 −2.7× 10−2 −4.2× 10−3 2.2× 10−3 −2.6× 10−6

Table III: Same as Table I, the base flow modification being now induced by a uniform bleed velocity δWw =
0.01 - Re = 2000, M = 0.5. The separate contributions of the cross-stream and streamwise momentum
components have also been computed and are provided on the third line.

at the base. We obtain δσ = −2.96 × 10−2 using the sensitivity to a steady forcing and δσ =
−3.03×10−2 using the sensitivity to base flow modifications. Decompositions (28) and (29) have been
carried out (see Table III for the detailed results). Once again, the stabilizing effect is dominated
by the contribution of momentum which represents 98% of the overall variation. The novelty here
is that both the modifications of the advection and of the production mechanisms contribute to the
stabilization, but the effect of advection still dominates, as δσA represents 70% of the total variation.
Base bleed therefore induces simultaneously a strong strengthening of the perturbations advection
and a weakening of their production. The contribution owing to the viscous and diffusion terms in
(34) represents approximatively 1 % of the overall variation, meaning that the base flow modification
owing to the additional mass flux is the leading mechanism involved in the stabilizing effect.

Figure 9: Spatial distribution of the integrand ∇Q,Aσ · HδQ(r, z). The integration over space of this field
yields the variation δσA that dominates the overall growth rate variation - Re = 2000, M = 0.5, δWw = 0.01.
The vertical lines at z = 0.1 and z = 1.5 correspond to the stations for which the base flow momentum profiles
are presented in Figures 10 and 11.

Figure 9 presents the spatial distribution of the advection momentum integrand ∇Q,Aσ ·HδQ(r, z),
whose integration over space yields the variation δσA that dominates the overall growth rate variation.
At a given station, a positive (resp. negative) value indicates that the base flow modification δQ
induces a destabilization (resp. stabilization) of the global mode. Several stabilizing and destabilizing
regions are visible in Figure 9, thus outlining the complex effect of base bleed. For instance, the
vicinity of the base and the separation line contribute to a strong stabilization of the global mode,
whereas the core of the recirculation contributes to its destabilization. Figure 10 shows the streamwise
and cross-stream momentum distributions at the streamwise station z = 0.1, i.e. in the core of
the upstream stabilizing region located close to the base (leftmost vertical line in Figure 9). The
solid and dashed lines refer respectively to the base flow Q and the modified base flow Q + δQ,
whereas the dash-dotted line stands for the corresponding base flow modification δQ. The grey
shaded area evidences the position of the shear-layer region, its center being located at the cross-
stream position of maximum shear and its width being equal to the vorticity thickness δ computed
from the streamwise momentum profile. The base flow modification is concentrated at the centerline
and in the shear-layer region. Owing to the positive values of δ(ρW ) at the centerline, blowing
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Figure 10: Effect of a bleed velocity δWw = 0.01 on the base flow momentum profiles at the streamwise
station z = 0.1. Spatial distribution of the (a) streamwise momentum ρW and (b) cross-stream momentum
ρU . The solid and dashed lines stand for the base flow and the modified base flow, respectively, whereas the
dash-dotted lines stand for the corresponding base flow modification. The grey shaded areas evidence the
location of the shear-layer region, with δ the vorticity thickness computed from the streamwise momentum
profile. The vertical dotted line marks the zero value. Re = 2000 - M = 0.5.

Figure 11: Same as Figure 10 for the streamwise station z = 1.5.

reduces the streamwise backflow velocity by approximatively 18 %, whereas the effect on the cross-
stream component is somehow subtle. Figure 11 shows similar momentum distributions at the station
z = 1.5, i.e. in the core of the downstream stabilizing region (rightmost vertical line in Figure 9). The
base flow modification is now concentrated in the only shear-layer region, so that the effect of blowing
on the streamwise component is barely visible. In contrast, it significantly spreads out the cross-
stream momentum gradients over a large cross-stream distance. The stabilizing effect of base bleed is
therefore twofold. Close to the base, it increases the streamwise advection, which results in a reduction
of the counterflow rate. Further downstream, it increases the cross-stream advection, which tends to
reduce the momentum gradients. We have computed the separate contributions of the cross-stream
and streamwise momentum components to the variation δρUσ. It is worthwhile recalling here that the
bleed velocity modifies all components of the base flow, and that the individual contribution of density,
momentum, energy and pressure cannot be prescribed arbitrarily. Still, the present decomposition
stands as an attempt to compare our interpretations to those previously derived in the framework
of the local stability theory, in which one captures only the modification of streamwise momentum,
all other components of the base flow being kept artificially constant. The results provided in Table
III show that base bleed stabilizes the flow mainly through cross-stream advection, the contribution
of streamwise advection to the overall variation δσ being smaller by one order of magnitude. This
questions the usual interpretations based on the local stability theory, stating that base bleed stabilizes
the flow by increasing the streamwise advection and by so, increasing the convective nature of the
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local instability, as discussed in Sevilla & Mart́ınez-Bazàn29. The present results strongly suggest that
the action of base bleed is non-parallel in essence, and may not be fully captured nor interpreted by
performing only local analyses, at least in the range of Reynolds numbers prevailing in the present
study.

B. Discussion: impact of base flow nonlinearities

It should be kept in mind that the sensitivity analysis is linear and assumes that the departure of
Qw from the unforced base flow Q is finite but weak. To appraise the effect of base flow nonlinearities
on the present problem, we investigate now the nonlinearly forced base flow Qw, obtained by solving
directly the homogeneous form of the nonlinear base flow equations (11) with the additional condition
U = δWwez at the base. We present on Figure 12 streamwise velocity contours of the forced base
flow Qw computed for different magnitudes of the bleed velocity ranging from δWw = 0.001 to 0.06.
Increasing the bleed velocity shifts downstream the recirculating bubble, which is delimited by the
streamline linking the leading and trailing stagnation points (evidenced as the solid line). Simultane-
ously, the recirculating length, defined as the distance between both stagnation points, increases from
2.7D at δWw = 0.001 to 3.9D at δWw = 0.06, whereas the backflow velocity significantly decreases
from 37% to only 17 %.

Figure 12: Spatial distribution of streamwise velocity for the nonlinearly forced base flow Qw, obtained by
solving directly the homogeneous form of the nonlinear base flow equations (11) along with the additional
condition U = δWw at the base - Re = 2000, M = 0.5. (a) δWw = 0.001, (b) δWw = 0.02, (c) δWw = 0.04,
and (d) δWw = 0.06.

The growth rate of the oscillating global mode, directly computed by carrying out the stability
analysis of the base flows presented in Figure 12, is shown in Figure 13(a) as a function of δWw (grey
circle symbols), or alternatively as a function of the bleed flow rate δD through the base, defined as

δD = 8
∫

Γc

ρδWw rdr . (35)

The growth rate decreases as the bleed velocity increases, confirming the stabilizing effect of base
bleed. The solid line corresponds to the evaluation of σ assuming δWw is small enough for the linear
approximation to hold, i.e.

σ(δWw) = σ(δWw = 0) +
∫

Γc

∇Ww
σ · δWw rdΓ . (36)

The agreement between both approaches is excellent in the range δWw ≤ 0.01, the difference be-
tween linear sensitivity predictions and direct stability computations being not even measurable for
δWw ≤ 0.001. For larger bleed velocities, we observe small discrepancies, as nonlinearities set in.
We observe in particular that the decrease in the growth rate computed by the sensitivity analysis
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Figure 13: Comparison of the linear results obtained from the sensitivity analysis (solid line) with the nonlinear
results obtained from the direct stability analysis of the forced base flow (circle symbols) - M=0.5. (a) Growth
rate σ as a function of the bleed velocity δWw/bleed flow rate δD, at Re = 2000. The dashed line stands for
the linear results obtained applying the sensitivity analysis to the forced base flow computed for δWw = 0.03.
(b) Boundary separating the unstable domain (U-labeled shaded area) from the stable domain (S-labeled area)
in the (δWw, Re)-plane.

slightly overestimates the stabilizing effect of forcing, which turns out to be limited by the nonlinear
modifications of the base flow. The critical wall velocity for which the zero-growth rate is achieved is
shifted from δWw ' 0.028 (δD ' 0.026), which stands for the value predicted by the sensitivity anal-
ysis, to δWw ' 0.047, as predicted by direct stability calculations (white circle symbol). However, the
difference between both sets of results remains small up to δWw ' 0.02, indicating that the sensitivity
approach is valid even for non-small bleed flow rates close to the one needed to stabilize the flow.
Figure 13(b), presents the critical bleed velocity computed as a function of the Reynolds number.
The values issuing from the sensitivity analysis (solid line) have been obtained simply by canceling
the linear growth rate defined by (36). The values issuing from the direct stability analysis of the
forced base flow are also reported as the grey circle symbols. The critical bleed velocity increases
monotonically with the Reynolds number, and the sensitivity analysis systematically overestimates
the stabilizing effect of the forcing. Still, the magnitude of the bleed velocity necessary to stabilize
the flow is predicted reasonably well up to Reynolds numbers Re ≤ 1200, the agreement being only
in order of magnitude afterwards.

Figure 14: (a) Recirculation length and (b) backflow velocity computed as functions of the bleed velocity. The
solid and dashed lines refer to the forced base flow Qw and to its linear approximation Q + δQ, respectively
- Re = 2000, M = 0.5.
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We present in Figures 14(a) and 14(b) the recirculating length Lr and the backflow velocity com-
puted for different values of the bleed velocity. The solid lines (resp. the dashed lines) correspond to
the forced base flow Qw (resp. the linear approximation Q + δQ). The recirculating length is well
predicted, although slightly underestimated, by the linear sensitivity approach, the maximum differ-
ence being of order 1 %. The agreement on the backflow velocity is remarkable up to δWw = 0.03, a
value after which the solution Qw departs strongly from its linear estimation. In return, the linear
approach fails to reproduce the significant reduction of the backflow velocity discussed previously.
This limit value of δWw corresponds approximately to the one above which the stabilization by base
bleed starts being badly estimated by the linear sensitivity approach (Figure 13(b)).

C. Effect of the bleed velocity profile

The present sensitivity formalism can be extended and used to derive optimal control strategies.
Such an extension is out of the scope of this study. Still, we aim now, as a simple illustration,
at optimizing the stabilization of the oscillating global mode by varying the bleed velocity profiles.
Figure 15(b) shows the evolution of the growth rate computed for three different bleed velocity dis-
tributions, all results being displayed as functions of the bleed flow rate δD to allow comparison.
The solid line corresponds to the uniform distribution investigated in Sec. VII A. The dashed line
corresponds to a roughly optimized piecewise-constant distribution depicted in the upper part of
Figure 15(a), with low velocity blowing in the center region (r < 0.3), i.e. in the region where the
sensitivity is the lowest according to Figure 8(a), and high velocity blowing close to the edge, of
magnitude twice that at the centerline. The dash-dotted line corresponds to the realistic gaussian
jet profile depicted in the lower part of Figure 15(a), whose standard deviation represents 4% of the
base diameter and whose center is located at r = 0.4, i.e. close to the region of maximum sensitivity.
A stronger stabilization is achieved using the optimized bleed distributions, as the critical flow rate
drops by approximately 10% using the piecewise-constant distribution (from δD ' 0.026 to 0.023),
and by more than 30% using the gaussian jet profile (down to 0.018), thus illustrating the importance
of using physically motivated bleed distributions.

Figure 15: (a) Piecewise-constant distribution and gaussian jet profile used to optimize the stabilization of
the oscillating global mode. (b) Growth rate σ as a function of the bleed flow rate δD. Comparison of
the linear results obtained from the sensitivity analysis with a uniform velocity distribution (solid line), the
piecewise-constant velocity distribution sketched in the upper part of (a) (dashed line), and the gaussian jet
profile shown in the lower part of (a) (dash-dotted line) - Re = 2000, M = 0.5.

From this result, one can imagine a more powerful nonlinear control algorithm based on a steepest
descent technique, in which one would apply recursively the computation carried out above, and would
converge to an optimal bleed distribution minimizing the growth rate by defining at each step a new
forcing descending in the direction of the negative gradient. Considering for simplicity the case of
uniform bleed, such an algorithm would consist in moving along the curve linking the grey circles
in Figure 13(b). At each point, the present sensitivity analysis provides with an accurate estimation
of the sensitivity with respect to a modification of the bleed velocity. For instance, the dashed line
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in Figure 13(a) stands for the values of σ obtained by applying the sensitivity analysis no more to
the unforced base flow, but to the forced base flow Qw computed for δWw = 0.03. We obtain a
good estimation of the actual growth rate obtained when varying the base bleed intensity around this
specific value. This formalism therefore stands as a promising tool for the design of future control
strategies, even at realistic parameter settings were nonlinear effects may be important.

VIII. CONCLUSION

The global stability of a compressible afterbody flow has been investigated in the high subsonic
regime. The base flow and stability equations have been derived and numerically solved. The resulting
bifurcation sequence is the same as for incompressible axisymmetric wakes, with a first instability
occurring for a stationary global mode of azimuthal wavenumber m = 1, and a second instability
occurring for an oscillating global mode of same azimuthal wavenumber. Following Hill23, a theoretical
framework for the control of unstable global modes has been developed. It stands for a systematic
approach of open-loop control, in which gradients, also named sensitivity functions, are used to
predict beforehand the eigenvalue variation induced by a steady forcing in the bulk or at the wall.
This variation can be investigated as a function of the forcing itself, or as a function of the base
flow modification induced by the forcing. In both cases, the analytical expression of the sensitivity
functions has been derived using adjoint methods.

This formalism has been applied to the oscillating global mode. We have studied the ability of
various open-loop control techniques to stabilize this mode as a possible way to alleviate afterbody
flow unsteadiness. The global mode is most sensitive to bulk forcing within the recirculating bubble.
Momentum forcing may be achieved in practice by introducing a small ring in the lee of the afterbody.
When sufficiently small, the control ring is modeled by the force it exerts on the flow, which is
the opposite of the pure drag force it experiences. Since the drag vector at the location of the
ring is modulated by the momentum perturbation, the effect of such a control device is twofold: it
modifies the eigenvalue both by modifying the steady base flow and by introducing a feedback on
the perturbation. Both contributions are of the same order, but for the present case, the effect of
the base flow modification dominates over that of the feedback. We have shown that the efficiency
of the control can be improved by heating the ring, which then acts as an additional heat source.
Mass injection at the wall has a stabilizing effect if fluid is blown through the whole base (a method
termed base bleed), the sensitivity of the global mode being dominated by the effect of the additional
mass flux. Physical interpretations have been proposed for the observed stabilizing effects, that rely
on the identification of advection and production terms. The proposed decomposition shows that, for
all techniques considered, the stabilization is due to a strengthening in the downstream advection of
disturbances.

The present approach can be easily applied to other compressible flow configurations, as for
instance cavity flows or hot jets that are known to sustain global instabilities. Extending the present
approach to the case of transonic and supersonic flows, where one must deal with the presence of
shock waves in the flow, also deserves future efforts, for instance it may open new ways to explore
the problem of the shock-induced transonic-buffet onset on airplanes30.
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Appendix A: DERIVATION OF THE SENSITIVITY FUNCTIONS

We use from now on the compact notation

〈â , b̂〉 =
∫

Ω

â · b̂ rdΩ , 〈〈â , b̂〉〉 =
∫

Γc

â · b̂ rdΓ . (A1)
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1. Sensitivity to base flow modifications

The eigenvalue variation δλ and the base flow modification δQ are such that

δλ = δσ + iδω = 〈∇Qλ , δQ〉 . (A2)

In the present formalism, the base flow Q is the control variable, the eigenpair {q̂, λ} is the state
variable and eigenproblem (14) is the state equation, i.e. the constraint to be satisfied. We introduce a
Lagrange multiplier q̂† (also known as adjoint or co-state variable) for the state variable, now referred
to as the adjoint perturbation, and define the functional

L(Q, q̂†, q̂, λ) = λ− 〈q̂† , λB(Q)q̂ +Am(Q)q̂〉 . (A3)

The gradient with respect to any variable s is defined as

∂L
∂s

δs = lim
ε→0

L(s + εδs)− L(s)
ε

. (A4)

We assume that the state equation is satisfied for any arbitrary base flow modification, so that the
gradient of the functional with respect to the adjoint variable is zero. It can be checked that the
gradient with respect to the state variable is zero, provided we define q̂† as the solution of the adjoint
eigenvalue problem

λ∗B† (Q) q̂† +A†m (Q) q̂† = 0 , (A5)

along with the normalization condition (17). In (A5), B† and A†m are the adjoint of operators B and
Am, obtained by integrating by parts the disturbance equations52. The boundary conditions to be
fulfilled by the adjoint perturbations are such that all boundary terms arising during the integration by
part vanish, which imposes conditions identical to that of the global modes. The eigenvalue variation
now reads

δλ =
∂L
∂Q

δQ . (A6)

The gradient of the functional with respect to the base flow can be expressed as

∂L
∂Q

δQ = −〈q̂† ,
∂

∂Q
(λB(Q)q̂ +Am(Q)q̂)δQ〉 = −〈{

∂

∂Q
(λB(Q)q̂ +Am(Q)q̂)

}†
q̂† , δQ〉 ,

(A7)
so that the sensitivity function ∇Qλ is given by

∇Qλ = −
{

∂

∂Q
(λB(Q)q̂ +Am(Q)q̂)

}†
q̂† . (A8)

Because we use non-conservative variables in the numerics, expression (A8) corresponds to the sen-
sitivity function ∇Qλ = (∇ρλ, , ∇Uλ , ∇T λ , ∇P λ)T , where ∇ρλ, ∇Uλ, ∇T λ and ∇P λ define the
sensitivity of the eigenvalue to a small modification of the base flow density, velocity, temperature
and pressure, such that

δλ =
∫

Ω

(∇ρλ · δρ + ∇Uλ · δU) + ∇T λ · δT + ∇P λ · δP) rdΩ . (A9)

To derive the sensitivity functions in term of the conservative variables, as defined by (27), we simply
substitute δQ by its conservative counterpart HδQ into (A7), since both relations (25)− (A9) are to
be simultaneously satisfied.

In closing this section, it should be noted that such an approach is very similar to that used in
optimization problems, where one enforces the stationary of a Lagrangian as a means to minimize a
given functional under specific constraint. We would like to insist that no such stationarity is enforced
here, and that the functional is only used as a means to compute the different gradients of interest.
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2. Sensitivity to a steady forcing

The base flow Q and the eigenpair {λ, q̂} solution of the state equations (11) − (14) are now the
state variables, and the forcing terms F = {J, F ,H, Uw, Tw} are the control variables. In addition
to the adjoint perturbation q̂†, we introduce a Lagrange multiplier for the base flow Q†, referred to
as the adjoint base flow, and Lagrange multipliers U †

w and T †w for the wall velocity and temperature
at the base. We define a new functional as

L (s ,Q†, Q, q̂†, q̂, λ) = λ− 〈q̂† , λB(Q)q̂ +Am(Q)q̂〉− 〈Q† , M0(Q)− (J,F , H, 0)T〉
− 〈〈U †

w , U −Uw〉〉− 〈〈T †w , T − Tw〉〉 .

(A10)

As in appendix A 1, we assume that the state equations are satisfied for any modification, and that
the adjoint perturbation is solution of eigenproblem (A5) along with the normalization condition (17).
This yields

δλ =
(

∂L

∂F
+

∂L

∂Q

∂Q

∂F

)
δF . (A11)

If we enforce that the gradient of the functional with respect to the base flow Q is zero, as will be
discussed in the following, (A11) can be rewritten as

δλ =
∂L

∂F
δF =

∂L

∂J
δJ +

∂L

∂F
δF +

∂L

∂H
δH +

∂L

∂Uw

δUw +
∂L

∂Tw

δTw , (A12)

and the sensitivity functions can be expressed from the gradients of the functional according to

∂L

∂J
δJ = 〈∇Jλ , δJ〉 ,

∂L

∂F
δF = 〈∇F λ , δF〉 ,

∂L

∂H
δH = 〈∇Hλ , δH〉 , (A13)

and

∂L

∂Uw

δUw = 〈〈∇Uw
λ , δUw〉〉 ,

∂L

∂Tw

δTw = 〈〈∇Tw
λ , δTw〉〉 . (A14)

We consider first the case of forcing in the bulk only, for which δUw = 0 and δTw = 0. The gradient
with respect to Q reads

∂L

∂Q
δQ = −〈q̂† ,

∂

∂Q
(λB(Q)q̂ +Am(Q)q̂)δQ〉− 〈Q† , A0(Q)δQ〉

= −〈{
∂

∂Q
(λB(Q)q̂ +Am(Q)q̂)

}†
q̂† , δQ〉− 〈A†0(Q)Q† , δQ〉 .

(A15)

Cancelling this gradient, we obtain that the adjoint base flow Q† is solution of the non-degenerate,
linear, non-homogeneous problem reading

A†0(Q)Q† = −
{

∂

∂Q
(λB(Q)q̂ +Am(Q)q̂)

}†
q̂† = ∇Qλ , (A16)

with A†0 the adjoint operator for the axisymmetric linearized operator A0. One recognizes in the
right-hand side the sensitivity to base flow modifications which turns out to be a prerequisite for the
present analysis. The boundary conditions to be fulfilled by the adjoint base flow are such that all
boundary terms arising during the integration are zero. Admissible variations are such that δU = 0
and δT = 0 on Γc. In the unforced case solved in the present study, the condition on the control
surface Γc therefore reads U† = 0, T † = 0. Since the gradients with respect to the control variables
J , F and H are simply given by

∂L

∂J
δJ = 〈ρ† , δJ〉 ,

∂L

∂F
δF = 〈U† , δF〉 ,

∂L

∂H
δH = 〈T † , δH〉 , (A17)
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it can be deduced from (A13) that ∇Jλ = ρ†, ∇F λ = U† and ∇Hλ = T †.

We add now the forcing at the wall. The gradient with respect to Q now reads

∂L

∂Q
δQ = −〈q̂† ,

∂

∂Q
(λB(Q)q̂ +Am(Q)q̂)δQ〉− 〈Q† , A0(Q)δQ〉

−〈〈U †
w , δU〉〉− 〈〈T †w , δT〉〉 (A18a)

= −〈{
∂

∂Q
(λB(Q)q̂ +Am(Q)q̂)

}†
q̂† , δQ〉− 〈A†0(Q)Q† , δQ〉

︸ ︷︷ ︸
(i)

−〈〈U †
w , δU〉〉− 〈〈T †w , δT〉〉+ BT

︸ ︷︷ ︸
(ii)

(A18b)

Since Q† is solution of (A16), the term (i) in (A18b) is zero. However, admissible variations on Γc

are now such that δU = δUw and δT = δTw, so that the boundary term BT arising during the
integration is not zero anymore. Cancellation of the term (ii) in (A18b) thus yields the definition of
the adjoint wall quantities U †

w and T †w as

U †
w = ρρ†n +

1
Re

τ (U†) · n , T †w =
γ

PrRe
∇T † · n . (A19)

Since the gradients with respect to Uw and Tw are simply given by

∂L

∂Uw

δUw = 〈〈U †
w , δUw〉〉 ,

∂L

∂Tw

δTw = 〈〈T †w , δTw〉〉 , (A20)

it can be deduced from (A14) that ∇Uw
λ = U †

w and ∇Tw
λ = T †w.

3. Link between both approaches

Both approaches are connected through the base flow modification δQ induced by the variation of
the forcing terms. δQ is solution of the linear problem

A0δQ = (δJ, δF , δH, 0)T , (A21)

along with the boundary conditions δU = δUw and δT = δTw on Γc. The eigenvalue modification
δλ can be expressed in the framework of the sensitivity to base flow modifications as

δλ = 〈∇Qλ , δQ〉 . (A22)

Using (A16)− (A18) and (A21), this relation turns into

δλ = 〈A†0Q† , δQ〉 = 〈Q† , A0δQ〉+ BT = 〈Q† , (δJ, δF , δH, 0)T〉+ BT . (A23)

Since the term (ii) in A18(b) is zero, and using the expressions of the sensitivity functions to a bulk
forcing derived in Sec. A 2, we obtain finally

δλ = 〈∇Jλ , δJ〉+ 〈∇F λ , δF〉+ 〈∇Hλ , δH〉+ 〈〈∇Uw
λ , δUw〉〉+ 〈〈∇Tw

λ , δTw〉〉 , (A24)

and retrieve the variation (16) defined formally in the framework of the sensitivity to steady forcing.

Appendix B: DETAILED EXPRESSION OF THE DIFFERENTIAL OPERATORS

All operators pertain here to the state vector q = (ρ, u, T, p)T . The reduced form used in the
numerics, pertaining to the state vector q = (ρ,u, T )T , can be straightforwardly deduced by replacing
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the pressure terms by their expression issuing from the perfect gas state equation. I being the identity
operator, the non-zero components of operators B, Am and Cm governing the dynamics of the direct
modes read

B11 = 1 ,

B22 = ρI ,

B33 = ρ ,

Am11 = U ·∇ + ∇ ·U ,

Am12 = ∇ρ ·+ρ∇ · ,

Am21 = ∇U ·U ,

Am22 = ρ∇[ • ] · U + ρ∇U · [ • ]− 1
Re

∇ · τ [ • ] ,

Am24 =
1

γM2
∇ ,

Am31 = U ·∇T ,

Am32 = ρ∇T ·+(γ − 1)P∇ · −γ(γ − 1)
M2

Re
(τ (U) : d [ • ] + τ [ • ] : d(U)) ,

Am33 = ρU ·∇− γ

PrRe
∇2 ,

Am34 = (γ − 1)∇ ·U ,

Am41 = −T ,

Am43 = −ρ ,

Am44 = 1, .

Cm11 = U ·∇ + ∇ ·U ,

Cm21 = ∇U ·U ,

Cm22 = ρ∇[ • ] · U ,

Cm31 = U ·∇T ,

Cm33 = ρU ·∇ .

Similarly, the non-zero terms of the adjoint operators A†m and C†m governing the dynamics of the
adjoint modes read
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A†m11 = −U ·∇ ,

A†m12 = (∇U ·U) · ,

A†m13 = U ·∇T ,

A†m14 = −T ,

A†m21 = −ρ∇ ,

A†m22 = −ρ∇[ • ] · U + ρ∇U T · − 1
Re

∇ · τ [ • ] ,

A†m23 = ρ∇T − (γ − 1)∇(P [ • ]) + 2γ(γ − 1)
M2

Re
∇ · ([ • ]τ (U)) ,

A†m33 = −ρU ·∇− γ

PrRe
∇2 ,

A†m34 = −ρ ,

A†m42 = − 1
γM2

∇ · ,

A†m43 = (γ − 1)∇ ·U ,

A†m44 = 1 ,

C†m11 = −U ·∇ ,

C†m12 = (∇U ·U) · ,

C†m13 = U ·∇T ,

C†m22 = −ρ∇[ • ] · U ,

C†m33 = −ρU ·∇

Finally, operator A†0 is obtained simply by taking the axisymmetric form of operator A†m.
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