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Abstract We present the theoretical study of a compressible afterbody flow in the
subsonic regime. It relies on sensitivity analyses developed in the framework of the
linear global stability theory, and aims at predicting beforehand the effect of a steady
bulk and wall forcing on the growth rate of linear global modes. Such an analysis
stands as a step in the perspective of a full control of afterbody flow unsteadiness.
The sensitivity functions are derived analytically using adjoint methods, and pre-
sented for the global mode responsible for the onset of a periodic regime. Various
control methods are investigated, including an additional control device in the lee of
the main body, heat sources and boundary forcing. Our results show that the global
mode is sensitive to momentum forcing along the separation line, to a localized
heating in the core of the recirculating bubble, and to a blowing velocity close to the
edge of the base.

1 Introduction

Open-loop control relies on the simple idea that a fixed modification in the flow
conditions is susceptible to affect the whole flow dynamics. In the context of the
cylinder wake flow, Strykowski & Sreenivasan [?] have experimentally investigated
how a small control cylinder could alter the vortex-shedding phenomenon if suitably
placed in the lee of the main cylinder. These authors successfully identified flow
regions where the addition of the control cylinder leads to a complete suppression
of the phenomenon.
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Such an approach is however empirical as it relies on a ‘trial and error’ pro-
cess. Consequently, it can be extremely time-consuming if the number of degrees of
freedom is large. A more systematic approach for the open-loop control of vortex-
shedding, based on sensitivity analyses, has been introduced by Hill [?] and revis-
ited by Marquet et al. [?]. The main idea underlying these studies is that the effect
of a steady control is to modify the base flow on which the perturbation develops.
The effect of the control on the flow stability can then be simply estimated from
the computation of a gradient (or sensitivity function). These concepts are extended
here to the case of nonparallel compressible flows and applied to the control of un-
steadiness in a subsonic afterbody flow, for which we consider additional control
methods, namely the addition of heat sources and boundary forcing.

2 Theoretical framework

We consider an axisymmetric body of revolution of diameter D and total length
l = 9.8D, with a blunt trailing edge and an ellipsoidal nose of aspect ratio 3 : 1,
placed into a uniform flow at zero angle of attack (see figure ??). Standard cylindri-

Fig. 1 Schematic of the configuration under study: the slender body of revolution has a diameter
D and a total length l = 9.8D.

cal coordinates (r,θ ,z) with origin taken at the center of the base are used. The fluid
is taken as a non-homogeneous compressible perfect gas with constant specific heat
cp, thermal conductivity κ , and dynamic viscosity µ , related by a unit Prandtl num-
ber. The fluid motion is described by the state vector qqq = (ρ ,uuu,T, p)T , where ρ is the
density, T the temperature, p the pressure and uuu = (u,v,w)T the three-dimensional
velocity field with u, v and w its radial, azimuthal and streamwise components. qqq
obeys the unsteady compressible Navier-Stokes equations, thus leading to a set of
six nonlinear equations (continuity, momentum, internal energy and perfect gas)
formulated in non-conservative variables and made non-dimensional using the body
diameter and the upstream flow quantities:
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∂tρ +ρ∇∇∇ ·uuu+uuu ·∇∇∇ρ = m , (1a)

ρ∂tuuu+ρ∇∇∇uuu ·uuu+
1

γM2 ∇∇∇p− 1
Re

∇∇∇ · τττ(uuu) = fff , (1b)

ρ∂tT +ρuuu ·∇∇∇T + p∇∇∇ ·uuu− γ(γ−1)
M2

Re
τττ(uuu) : ddd(uuu)− γ

PrRe
∇∇∇222T = h , (1c)

In (??), Re, M are the Reynolds and Mach numbers, whereas ddd(uuu) et τττ(uuu) are the
strain and viscous stress tensors. Equations (??) are formally written as

B(qqq)qqq+M (qqq,G ) = (m, fff ,h,0)T , (2)

where B and M are differential operators and G represents the set of control param-
eters (Reynolds and Mach numbers, angle of attack...) which remains constant here,
so that the dependence in G is omitted so as to ease the notation. The right-hand side
in (??) defines the bulk forcing, fff (resp. m et h) being the volumetric momentum
flux (resp. volumetric heat and mass fluxes) associated to the control. The effect of
wall forcing is also taken into account by adding a subsonic inlet condition at the
base, whose surface is denoted Γc:

uuu = uuuW , T = TW . (3)

In the following, the Mach number is set to M = 0.5. The state vector is split
into an axisymmetric steady base flow qqq000 = (ρ0,u0,0,w0,T 0, p0)T and a three-
dimensional perturbation qqq111 = (ρ1,u1,v1,w1,T 1, p1)T of small amplitude. We con-
sider here the case of an axisymmetric steady control only, so that the base flow
equations read

M0(qqq000) = (m, fff ,h,0)T , uuu000 = uuuW , T 0 = TW on Γc , (4)

where M0 is the axisymmetric form of the evolution operator M . Perturbations are
chosen under the form of normal modes

qqq1 = q̂qq1(r,z)e(σ+iω)t+imθ + c.c. , (5)

where q̂qq1 = (ρ̂1, û1, v̂1, ŵ1, T̂ 1, p̂1)T is the so-called global mode, characterized by
an integer azimuthal wavenumber m, a growth rate σ and a pulsation ω . The global
mode q̂qq1 and the complex pulsation λ = σ + iω are solutions of a generalized eigen-
value problem reading

λB(qqq000)q̂qq1 +Am(qqq000)q̂qq1 = 000 , ûuu1 = 000, T̂ 1 = 0 on Γc , (6)

where Am is the differential operator obtained by linearization of operator M about
qqq000 and substitution of the ∂θ terms by the product by im.

We use a finite elements method to discretize equations (??) and (??) on a com-
putational domain Ω corresponding to the azimuthal plane θ = 0, whose boundary
is denoted Γ = Γw ∪Γ∞, where Γw corresponds to the afterbody walls. All pressure
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terms are eliminated and replaced by their expressions issuing from the perfect gas
equations for p0 et p̂1. The base flow equations (??) are solved using an iterative
Newton method (Barkley [?]), and the disturbance equations (??) are solved us-
ing a Shift and Invert Arnoldi method (Ehrenstein & Gallaire [?]). In the present
compressible regime, the choice of appropriate far-field radiation conditions may be
particularly involved. Consequently, we use sponge zones where all fluctuations are
progressively damped to negligible levels through artificial dissipation before they
reach the boundary of the computational domain. The boundary conditions satisfied
by the base flow and the disturbances are then deduced from that satisfied by the
state vector qqq = (ρ,uuu,T )T :

uuu = (0,0,1)T , ρ,T = 1 on Γ∞, (7a)
uuu = 000, ∂nT = 0 on Γw\Γc . (7b)

We consider now the unforced flow, for which

m = 0 , fff = 000 , h = 0 , uuuW = 000 , TW = 1+
γ−1

2
M2 . (8)

The effect of a small-amplitude forcing on the flow stability is assessed by inves-
tigating the variation of a given eigenvalue δλ = δσ + iδω . In the present linear
framework, the eigenvalue variation resulting from the introduction of the forcing
can be written as the scalar product between the forcing term and a sensitivity func-
tion or gradient:

δλ =
∫

Ω
(∇∇∇mλ ·δm+∇∇∇ fff λ ·δδδ fff +∇∇∇hλ ·δh)rdrdz

+
∫

Γc

(∇∇∇uuuW
λ ·δδδuuuW +∇∇∇TW

λ ·δTW)rdz ,
(9)

where · refers to the canonic hermitian scalar product in Cn, and ∇∇∇mλ , ∇∇∇ fff λ and
∇∇∇hλ are complex vectors defining the sensitivity of the eigenvalue to a source of
mass, momentum and internal energy, respectively. Similarly, ∇∇∇uuuW

λ and ∇∇∇TW
λ de-

fine the sensitivity of the eigenvalue to a wall velocity and temperature. The ana-
lytical expression of these gradients is derived using a Lagrangian method relying
on the definition of adjoint variables, an approach similar to that widely used in the
context of optimization problems (Gunzburger [?]). We obtain

(∇∇∇mλ ,∇∇∇ fff λ ,∇∇∇hλ )T = (ρ0†,uuu0†,T 0†)T , (10a)

∇∇∇uuuW
λ = ρ0ρ0†nnn+

1
Re

(
−2

3
(∇∇∇ ·uuu0†) III +∇∇∇ûuu0† +∇∇∇ûuu0† T

)
·nnn ,(10b)

∇∇∇TW
λ =

γ
PrRe

∇∇∇T 0† ·nnn , (10c)

where nnn is the normal to the afterbody wall oriented from the body towards the fluid.
qqq0† = (ρ0†,uuu0†,T 0†)T is termed the adjoint base flow, and is solution of the forced
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linear problem

A †
0 (qqq000)qqq0† =−λ ∗R†(qqq000, q̂qq111)q̂qq1†−S †

m(qqq000, q̂qq111)q̂qq1† , (11)

where the superscript ∗ designate the complex conjugate. In (??), A †
0 is the adjoint

of the axisymmetric operator A0, obtained by integrating by parts the axisymmetric,
steady form of the disturbance equations (??). Similarly, operators R† and S †

m are
the adjoints of operators R and Sm, defined as

R(qqq000, q̂qq111) =
∂

∂qqq000

(
B(qqq000)q̂qq111

)
, Sm(qqq000, q̂qq111) =

∂
∂qqq000

(
Am(qqq000)q̂qq111

)
. (12)

Finally, q̂qq1† is the adjoint global mode, solution of the adjoint stability problem

λ ∗B(qqq000)q̂qq1† +A †
m(qqq000)q̂qq1† = 000 . (13)

The procedure to be followed to compute the sensitivity of an eigenvalue to a small-
amplitude steady forcing acting at the base flow level can be summarized as follows:

1. resolution of the unforced base flow equations (??),
2. resolution of the generalized eigenvalue problem (??) and selection of an eigen-

value λ and of the associated global mode q̂qq111,
3. computation of the adjoint global mode q̂qq1† by resolution of the adjoint stability

problem (??),
4. computation of the right-hand side in (??),
5. computation of the adjoint base flow by resolution of the linear problem (??),
6. computation of the sensitivity functions according to (??). The sensitivity func-

tions relative to the growth rate σ are then deduced by retaining only the real
parts of these complex sensitivity functions.

3 Results

3.1 Global stability analysis

The global stability analysis shows that the unforced axisymmetric base flow sus-
tains two subsequent instabilities: a first bifurcation occurs at the critical Reynolds
number ReA = 483.5, and involves a stationary global mode A of azimuthal wavenum-
ber m = 1 and frequency ω = 0 (not shown here). A Hopf bifurcation then occurs at
ReB = 983, involving a m = 1 global mode B oscillating at the frequency ωB = 0.399
(St = f D/U∞ = 0.06). The associated complex eigenvector is from now on referred
to as q̂1

B . Mode B exhibits positive and negative velocity perturbations alternating
downstream of the body, in a regular, periodic way, as illustrated by the streamwise
velocity distribution shown in figure ??. These results are in agreement with the
global stability analysis carried out by Natarajan & Acrivos [?] in the context of the
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incompressible flow past disks and spheres, for which mode B dominates the dy-
namics of the fully 3D flow at large Reynolds numbers, and triggers the occurrence
of a fully 3D periodic state (Fabre et al. [?]; Meliga et al. [?]). Consequently, in the
following, we focus on the effect of open-loop control on the growth rate σB of the
oscillating mode B.

Fig. 2 Streamwise velocity component of the oscillating global mode B at the threshold of instabil-
ity - ReB = 983.0, M = 0.5 (the background grey hue stands for vanishing perturbation amplitudes).

3.2 Effect of a control ring

We study first the effect of a small control device, chosen here as a ring of width e
and radius rc, mounted at the rear of the main body, at a distance zc of the base. As
in the studies of Hill [?] and Marquet et al. [?], we consider that the flow exerts a
localized drag force on the control ring, and that the ring exerts in return an opposite
force on the flow, modeled as

δδδ fff (r,z) =−1
2

Ceρ0(r,z)‖uuu000(r,z)‖uuu000(r,z)δ (r− rc,z− zc) , (14)

where C is a drag coefficient depending on the value of the Reynolds number Ree
built from the ring width and the local flow velocity. Typical values of Ree in the
recirculating bubble are of order Ree ' 30, so that we choose here C = 1, an empir-
ical value estimated from the drag coefficient of a circular cylinder in this range of
Reynolds numbers. To each position of the ring (rc,zc) corresponds a variation of
the growth rate δσB that can be expressed simply as the scalar product between the
induced force δδδ fff and the sensitivity function ∇∇∇ fff σB, i.e.

δσB(rc,zc) =−1
2

Cercρ0(rc,zc)‖uuu000(rc,zc)‖∇∇∇ fff σB(rc,zc) ·uuu000(rc,zc) . (15)

Figure ??(a) presents the spatial distribution of the growth rate variation δσB(rc,zc).
Since the global mode is marginally stable, negative variations δσB < 0 (resp. posi-
tive variations δσB > 0) correspond to a stabilization (resp. a destabilization) of the
global mode. We find that the ring induces a strong stabilization if placed along the
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separation line. However, it should be noted that the effect of such momentum forc-
ing is complex, since several regions contributing either to a weak stabilization or
destabilization of the global mode are visible around the main stabilizing region.

3.3 Effect of a heat source

We consider now the effect of a localized heat source modeled by

δh(r,z) =
1

2πrc
δ ĥδ (r− rc,z− zc) . (16)

Physically, δ ĥ is the flux of internal energy imposed by the control, so that a positive
(resp. negative) value of δ ĥ corresponds to a heating (resp. a cooling) of the flow.
Again, to each position of the source corresponds a growth rate variation δσB given
by the scalar product between the forcing term δh and the sensitivity function ∇∇∇hσB:

δσB(rc,zc) =
1

2π
∇∇∇hσB(rc,zc)δ ĥ . (17)

We show on figure ??(b) the results obtained for δ ĥ = 10−2, i.e. the flow is heated
and the cost of the control represents 1% of the internal energy flux of the incoming
flow. We find that heating the flow within the recirculating area has a stabilizing ef-
fect, whatever the position of the source. The maximum stabilizing effect obtained
by this method corresponds to a variation δσB =−0.06, and is however less impor-
tant than that achieved using the control ring.

Fig. 3 (a) Spatial distribution of the growth rate variation δσB(rc,zc) obtained when the presence
of a small control ring is modeled by the force (??). (b) Same as (a) when using a heat source
modeled by (??) with δ ĥ = 10−2 - Re = 983, M = 0.5. The background grey hue stands for
vanishing variations.
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3.4 Effect of wall blowing - base bleed

We consider now the case of a wall forcing where fluid is blown through the base,
the wall temperature being unchanged. We investigate only the case of a wall-normal
blowing velocity δδδuuuW = δwW eeezzz, so that the growth rate variation δσB reads

δσB = ρ0ρ0†δwW +
1

Re

(
−2

3
∇∇∇ ·uuu0† +2∂zw

0†
)

δwW . (18)

The variation δσB arise from two distinct contributions: the product ρ0ρ0† corre-
sponds to the effect of the additional mass flux, where as the contribution weighted
by the inverse of the Reynolds number corresponds to the modification of the vis-
cous forces applied at the base. The solid line in figure ?? shows the distribution of
the sensitivity function ∇∇∇wW

σB as a function of the radial position r at the base, at the
threshold of the instability (Re = 983, M = 0.5). The sensitivity is negative whatever
the position at the base, meaning that blowing fluid (δwW > 0) has systematically a
stabilizing effect, a result consistent with the documented effect of such strategies.
The level of sensitivity is almost constant at the center of the base (r < 0.3), but it
increases dramatically as one moves closer to the edge, the maximum value being
reached in the vicinity of the separation point. Therefore, an actuator imposing a
steady blowing will achieve maximum efficiency if placed at the edge of the base.
The dashed line in figure ?? shows the same sensitivity function, now computed at
the supercritical Reynolds number Re = 2000, for which the unforced growth rate
is σB = 8.5× 10−2. Interestingly, we find that the sensitivity level has significantly
increased with the Reynolds number, which opens the way to the control of unstable
configurations. Using the sensitivity function defined in (??), we obtain a complete
stabilization of the global mode B for a uniform blowing velocity δwW ' 0.03. How-
ever, it is possible to use the sensitivity function to optimize the blowing velocity,
by increasing (resp. reducing) the blowing velocity in the base region where the
sensitivity level is high (resp. low), the blowing flow rate being kept constant. This
makes it possible to achieve a complete stabilization with a critical flow rate smaller
by 8% than that found in the uniform case (not shown here).

4 Conclusions et perspectives

This study presents sensitivity analyses to a steady forcing, applied to a subsonic af-
terbody flow. These analyses allow to determine which open-loop control strategies
are most efficient to alleviate the unsteadiness arising in this class of flows. We show
that the global mode responsible for the onset of unsteadiness can be stabilized by
placing a small control ring close to the separation line, by heating the flow within
the recirculating area, or by blowing fluid through the base.

Currently, we aim at using this formalism to interpret physically the stabilizing
effects documented here. This is done by carrying out similar sensitivity analyses,
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Fig. 4 Spatial distribution of the sensitivity function ∇∇∇wW
σB to a blowing velocity as a function of

the radial position at the base, for Re = 983 (solid line) and Re = 2000 (dashed line) - M = 0.5.

where the growth rate variation is no more investigated as a function of the forc-
ing, but as a function of the base flow modification induced by the forcing. The
results obtained so far suggest that all control strategies investigated act in the same
way, namely they modify the base flow momentum distribution, which results in an
increase of the disturbances advection.

References

1. Barkley, D., Gomes, M.G.M. & Henderson, R.D. (2002). Three-dimensional instability in
flow over a backward-facing step. J Fluid Mech 473, 167–190.

2. Ehrenstein, U. & Gallaire, F. (2005). On two-dimensional temporal modes in spatially evolv-
ing open flows: the flat-plate boundary layer. J Fluid Mech 536, 209–218.

3. Fabre, D., Auguste, F. & Magnaudet, J. (2008). Bifurcations and symmetry breaking in the
wake of axisymmetric bodies. Phys Fluids 20, 051702 1–4.

4. Gunzburger, M.D. (1999). Sensitivities, adjoints and flow optimization. Int J Numer Meth
Fluids 31, 53–78.

5. Hill, D.C. (1992). A theoretical approach for analyzing the restabilization of wakes. NASA
Tech Report 103858.

6. Marquet, O., Sipp, D. & Jacquin, L. (2008). Sensitivity analysis and passive control of the
cylinder flow. J Fluid Mech 615, 221–252.

7. Meliga, P., Chomaz, J.-M. & Sipp, D. (2009). Global mode interaction and pattern selection
in the wake of a disk: a weakly nonlinear expansion. J Fluid Mech (in press).

8. Natarajan, R. & Acrivos, A. (1993). The instability of the steady flow past spheres and disks.
J Fluid Mech 254, 323–344.

9. Strykowski, P. J. & Sreenivasan, K.R. (1990). On the formation and suppression of vortex
shedding at ’low’ Reynolds numbers. J Fluid Mech 218, 71–107.


