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Introduction

This document proposes an overview and summary of my research since my PhD defense in 2009 and my
arrival at LadHyX as an Assistant Professor in Mechanics in 2010.

My PhD work was dedicated to a reduced-order model for fluid-solid interactions in high-Re flows based
on a particular vortex shedding representation, and to its applications to a large variety of problems rang-
ing from the dynamics of falling cards to flapping flexible wings and flags. This was my first opportunity
to consider problems of bio-inspired locomotion, studying for example the effect of flexibility on propulsive
performance. This experience triggered my interest for this type of fluid-solid interaction problems and mo-
tivated me to focus on locomotion at both ends of the Re spectrum, significantly developing over the last
four years an important research activity on locomotion in low-Re flows. In parallel, and continuing with
my initial interest for high-Re fluid-solid instabilities, I developed a research activity at LadHyX on the
applications of such instabilities to energy harvesting: such instabilities indeed enable the spontaneous and
self-sustained motion of a solid under the effect of a steady flow. Studying their potential applications to
energy harvesting (i.e. the production of electricity from this self-sustained solid motion) therefore represents
a natural evolution of my activity from my previous research topics.

The present document therefore articulates around these two main axes: biolocomotion in low-Re flows
and fluid-solid instabilities in high-Re flows. This diversity in the problems that I consider in my research
results from and illustrates the progressive evolution of my scientific interests over the last five years. It
also emphasizes the main scientific question that is at the core of my research, namely understanding how
deformable solids move and interact with a surrounding flow and may passively or actively take advantage
of it. The different topics covered in this manuscript show how diverse this interaction may be, depending
on the flow regime (small-scale viscous flows vs. large scale inertial flows) and on the applications considered
(active locomotion vs. passive energy harvesting).

In both cases, the interaction of the solid with the surrounding fluid leads to a local fluid-solid energy
transfer through the work of the fluid forces on the solid, but the two types of problems considered here differ
fundamentally on the direction of this energy transfer. In the locomotion problem, energy is transferred and
lost to the fluid by the swimming organism, through the swimmer’s deformation to which the fluid is resisting
or reacting. In a fluid-solid instability problem, the net energy transfer is reversed: a fraction of the fluid
kinetic energy is transferred to the solid body and leads to its spontaneous motion.

A brief outline of the main questions addressed in this manuscript is presented below. The last section
of each chapter will be dedicated to some open questions that are either the focus of my ongoing research or
that I would like to develop in the future.

Chapter 1 focuses on biolocomotion of micro-organisms in viscous flows and is organized around two
main objectives: (i) characterizing the relationship between the energy cost of a particular swimming stroke
and its performance either in terms of swimming or feeding for the cell, and (ii) studying and modeling of
a particular type of micro-swimmers, namely reactive colloids, which use surface reactions to create a net
swimming motion. The work presented in this chapter results from collaborations with Eric Lauga (UCSD)

5



and more recently with Denis Bartolo (ESPCI/ENS Lyon).

Chapter 2 presents a summary of my recent research on fluid-solid instabilities in inertial flows and their
application to energy harvesting systems. It is dedicated to the following three main objectives: (i) under-
standing the two-way coupling between the fluid-solid system and the energy harvesting/dissipating device,
(ii) modeling the coupled non-linear dynamics and (iii) assessing how much energy can be harvested using
such systems. Part of the work presented in this chapter is the result of a collaboration with Emmanuel de
Langre (LadHyX) and corresponds to the PhD work of Clément Grouthier (2010–2013) and the postdoctoral
work of Kiran Singh (2010–2012). The last part of this chapter, which focuses on the piezoelectric flag, is
an ongoing collaboration with Olivier Doaré (ENSTA ParisTech), and is also currently the focus of the PhD
work of Yifan Xia at LadHyX.

The common approach to both types of problems is a combination of theoretical analysis and numerical
simulations to study the nonlinear coupled dynamics of the fluid-solid system. Rather than using direct
numerical simulations of the fluid flow for general systems, an effort is systematically made to simplify
the system’s geometry (e.g. a spherical model organism, a purely two-dimensional motion for the flapping
plate,...) in order to simplify the fluid-solid dynamics and to focus on the main physical processes at stake in
this problem (e.g. the impact of swimming on feeding, the role of the output circuit in a harvesting system).
Such simplifications may originate, for example, from the symmetries of the geometry considered or from the
small aspect ratio of the structure.

Both problems (locomotion and energy harvesting) are concerned with energy transfers between the fluid
and solid systems, whether as a cost (the amount of work that must be done by an organism to swim) or as a
product (the amount of energy that can be harvested using an instability). In each case, I will provide some
insight on how to optimize the system or, equivalently, maximize its efficiency: in the locomotion problem, it
will correspond to maximizing the biological performance (displacement or feeding) for a fixed energy cost;
in the energy harvesting problem, it will correspond to maximizing the fraction of the kinetic energy flux in
the oncoming flow that can be actually transferred to an output electrical loop.
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Chapter 1

Self-propulsion in low-Re flows

1.1 Introduction

Although unnoticed to our eyes, micro-organisms are omnipresent in the world we live in, performing
a large variety of biological functions (e.g. bacteria and spermatozoa in our own bodies, small protozoa
and algae in the ocean). For many such organisms, locomotion is a critical function, whether to move
toward regions with different chemical concentrations (e.g. chemotaxis of E. Coli), to escape aggressions
(e.g. Paramecium escaping larger predators) or to enable reproduction (e.g. spermatozoa swimming toward
the ovum). Like a swimmer in a pool performs his stroke and deforms his body to put the fluid around him
in motion and create a forward displacement, such organisms rely on shape deformations (e.g. flagella or
cilia beating) to produce their locomotion.

Although similar in appearance, both problems concerning swimmers are strikingly different because of
the scales at which the motion takes place. In the world of Olympic swimmers whose typical size is of the
order of 2m with velocities of the order of a few m.s−1, the solid and fluid inertia play a major role. Viscous
effects are limited to the immediate vicinity of a solid boundary in so-called boundary layers, but may play an
essential role in generating vorticity. In the realm of bacteria and larger micro-organisms whose sizes range
from 1 to 100µm and velocities from 10 to 100µm.s−1, inertia’s role is only marginal, and flow forces are
completely dominated by the effect of viscosity. This contrast is quantified by the Reynolds number, defined
later on as Re = ρfUa/ηf with U and a the characteristic velocity and size of the organism and ρf and ηf
the density and shear viscosity of the fluid. Re is a measure of the relative effect of inertia and viscosity on
the flow, and while it can be as high as 105 for a human swimmer, its value is only 10−6–10−3 for typical
swimming micro-organisms.

Understanding how such organisms move in their environment is interesting from a fundamental biophys-
ical point of view, but also because of the critical role these organisms have in their ecosystem, from the
impact of phytoplankton on ocean mixing to the role of sperm cell mutations in reproductive disorders of
larger organisms. From an engineering point of view, this swimming problem at the micro-scale is particu-
larly interesting in biomimetic applications: understanding how to create devices that are able to swim at the
micron or millimeter scale can be essential for future biomedical applications such as targeted drug delivery.

As for the Olympic swimmer, moving in a fluid has a cost for the swimming bacteria or micro-robots.
While obviously not the only factor influencing the natural evolution of micro-organism species, energy
efficiency (that is, how much an organism can do with a fixed amount of energy) can clearly give an organism
a competitive advantage, and energy efficiency is a critical element in any man-made device in order to
minimize either the fuel consumption or the applied forcing. Understanding the energetic implications of
biolocomotion at these scales is therefore critical for such applications.

Motivated by such considerations, the focus of my research has been on a better understanding of funda-
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mental techniques used by natural micro-organisms to move in their environment, and in particular on the
relative advantages of different swimming strokes from an energetic point of view. A significant part of the
research presented below is therefore dedicated to determining the optimal swimming strokes for different
biological functions: displacement or nutrient absorption.

This chapter is organized as follows. Section 1.2 presents a brief overview of the swimming problem at
low Re and of different classical approaches that can be used to solve it. In sections 1.3 and 1.4, a particular
type of micro-organism is considered (ciliates) for which optimal strokes are determined either to maximize
locomotion (Section 1.3) or feeding (Section 1.4). Section 1.5 offers some insight on a particular type of
artificial swimmer, typically a reactive colloid particle, and presents some of the most recent results I have
obtained on that topic. Finally, some conclusions and perspectives are presented in Section 1.6.

1.2 Swimming in viscous flows

1.2.1 A geometric problem

The locomotion problem can be formalized mathematically as determining the net motion (translation U
and rotation Ω) of a swimming or flying organism Ω as a result of a prescribed deformation of its surface S.
This stroke is characterized, in the reference frame of the center of mass of the organism, by a deformation
velocity ũ defined on S. To solve this swimming problem, i.e. to determine (U,Ω) as a function of ũ, the
response of the fluid to the solid motion must be determined either through the local modeling of the flow
forces (e.g. slender body theory in both viscous and inertial flows) or by a direct computation of the flow
generated around the organism.

One should point out that this formulation is only one possible approximation: in many instances, the
organism’s muscles or structure will prescribe surface stresses rather than displacements (Kanevsky et al.,
2010). In some other cases, as for an insect’s wing or a bacterium’s flagella, a forcing is prescribed by the
organism only on part of its body (e.g. the wing tip or the flagellum’s base), with the rest of the structure
deforming passively.

The particular swimming problem considered here can then be formalized as follows assuming an incom-
pressible Newtonian fluid.

(a) In the fluid, the velocity and pressure fields satisfy the Navier-Stokes equations:

ρf
Du

Dt
= −∇p+ ηf∇2u, ∇ · u = 0, (1.1)

where ρf and ηf are respectively the density and dynamic viscosity of the fluid.

(b) The conservation of linear and angular momentum for the solid body are written as

M
dU

dt
=

�

S
σ · n dS + Fext,

d

dt
(J ·Ω) =

�

S
(x− xG)× (σ · n) dS + Text, (1.2)

where M and J are respectively the mass and moment of inertia tensor of the solid body (which may
depend on time due to the body deformation), σ = −p1+ ηf (∇u+∇uT ) is the fluid stress tensor, and
n is the normal vector pointing into the fluid domain. Fext and Text correspond to the external body
force and torque (e.g. gravity effects if the organism is not neutrally buoyant and homogeneous).

(c) The kinematic boundary condition imposes the adherence of the fluid to the solid boundary:

u = U+Ω× (x− xG) + ũ = uS for x ∈ S. (1.3)
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(d) Finally, at infinity the fluid is at rest
u → 0 for x → ∞. (1.4)

Equations (1.1)–(1.4) form a complete set of equations for the variables (u, p,U,Ω).
The motion of the fluid originates from the motion of the solid boundary: the characteristic velocity

scale U is therefore determined by the stroke ũ. In incompressible flows, the pressure acts as a Lagrange
multiplier to ensure the fluid’s incompressibility. Its typical scale is therefore that of the dominant term in
Eq. (1.1). Choosing a, the typical size of the organism as the reference length scale, and a viscous scaling for
the pressure, the Navier-Stokes equations Eq. (1.1) then take the following non-dimensional form

Re
Du

Dt
= −∇p+∇2u, ∇ · u = 0, (1.5)

with the Reynolds number Re = ρfUa/ηf characterizing the relative importance of inertia and viscous effects
in the flow. Ranging from Re ≈ 10−5 for bacteria in water to Re ≈ 105 for large birds, the Reynolds number
characterizes the locomotion regime: while fluid inertia and vortex shedding are dominant in the fluid forces
for flying insects and swimming fish, the locomotion of micro-organisms is controlled by viscous forces and
fluid inertia plays essentially no role. The Reynolds number also characterizes the distance d over which the
organism would coast, should it stop performing its stroke (Lauga & Powers, 2009): when inertia dominates,
d/a ∼ ρs/ρf = O(1) but in viscous flows, d/a ∼ Re(ρs/ρf ) � 1: the organism stops moving as soon as it
stops deforming. From a mechanical point of view, in Eq. (1.2), the left hand side (solid inertia) is negligible
in comparison with the fluid forces so that these equations simplify into the no-force and no-torque condition
(in the case considered here where Fext = Text = 0):

�

S
σ · n dS = 0,

�

S
(x− xG)× (σ · n) dS = 0. (1.6)

This illustrates the absence of history effect in the swimming problem for Re � 1: the swimming motion
(U,Ω) at time t only depends on the deformation velocity ũ at this same instant and not on the deformation
history. Also this dependence is linear, so that superposition principles may be used. Time now only comes
into play through the modification of the problem’s geometry if the body Ω is deformed. The swimming
problem becomes a geometric problem: how to find the relationship between the surface velocity (or shape
changes) and the swimming motion at each instant independently. This is illustrated by the instantaneous
formal solution of this problem obtained by applying the reciprocal theorem to Stokes equations: for a
swimmer of arbitrary shape S (which may be time-dependent), if σ̂ denotes the stress-field in the fluid
generated by an arbitrary solid body motion (Û, Ω̂) of S and resulting in a force and torque (F̂, L̂) applied
by the fluid on the rigid body, the translation and rotation velocities U and Ω resulting from the deformation
velocity ũ of S for a force-free and torque-free swimmer satisfies (Stone & Samuel, 1996):

F̂ ·U+ L̂ ·Ω = −
�

S
n · σ̂ · ũ dS. (1.7)

The previous equation states that, at each instant independently, the swimming motion is obtained explicitly
and linearly from ũ if the solution to the steady solid body motion problem is known. Note that for a
swimmer with a time-varying shape, the solid body problem needs to be solved for each successive shape.

A direct consequence of the absence of history effects is that the trajectory of a swimming body in viscous
flows only depends on the sequence of the surface displacements, not on how fast this sequence is performed.
Also, if performing a particular sequence or stroke brings the organism from point A to point B, performing
the opposite stroke (that is, the same sequence in reversed order) will bring the organism back to point A,
leading to no net swimming motion. This is the essence of the well-known scallop theorem (Purcell, 1977)

9



and a major difference between the swimming problem in viscous and inertial flows: an organism performing
a time-reciprocal stroke can not swim in Stokes flow.

To overcome this difficulty, micro-organisms and artificial micro-robots must use non reciprocal strokes
and the main encountered strategy is based on wave propagation. Bacteria and sperm cells deform their
flagella in the form of planar or helical wave patterns. Ciliates (e.g. Paramecium) break symmetry at two
different levels: each individual cilium, a slender flapping appendage attached to the cell’s surface, has an
asymmetric beating pattern with distinct effective and recovery strokes; at the organism’s level, coordination
of neighboring cilia leads to the formation of so-called metachronal waves (Brennen & Winnet, 1977).

It is worth noting that this absence of history effects in the swimming problem at Re = 0 is also observed
in the opposite limit (Re = ∞) for inviscid potential flows: to swim in that limit also requires performing
non-reciprocal strokes, and a swimmer that stops deforming at t = t0, stops instantaneously (Kanso et al.,
2005; Kanso & Marsden, 2005). This similarity is rather counter-intuitive given the fundamental difference
of the swimming problem in inertial and viscous flows, but it stems from the similar mathematical nature
of both problems: in both cases, the velocity field u can be derived from a solution of Laplace’s equation
(the velocity potential φ in potential flows or the pressure p in Stokes flows), forced instantaneously at the
boundaries.

1.2.2 Fundamental singularities in Stokes flow

In the limit of no inertia, the Navier–Stokes equations simplify into Stokes’ equations

∇2u = ∇p, ∇ · u = 0, (1.8)

and the pressure p satisfies Laplace’s equation ∇2p = 0. The Stokes flow problem is linear and can be solved
using the superposition principle of fundamental solutions. Using the single-layer and double-layer potentials
formalism, the Stokes flow problem outside the swimmer can be solved explicitly (Pozrikidis, 1997)

u(x) = − 1

8πηf

�

S
G(x, s) · f(s) dS(s)− 1

8π

�

S
[T(x, s) · ũ(s)] · n(s) dS(s) (1.9)

where G(x, s) is the Green’s function corresponding to the flow field generated at x ∈ Ω by a point force
located at s ∈ S and T(x, s) is the corresponding stress tensor. f is the imposed (but unknown) stress on the
swimmer’s boundary. The exact expressions for G and T depend on the geometry of the fluid domain and
are respectively equal to (r21+ rr)/r3 and −6rrr/r5 with r = x− s for the free flow case. This development
is at the heart of the boundary integral methods for Stokes flow: from ũ, and the analog to Eq. (1.9) for
x ∈ S, the traction f at the boundary can be determined. From ũ and f , the velocity at any point in Ω can
be computed using Eq. (1.9).

Equation (1.9) illustrates that the general solution of the Stokes flow problem can be formulated as a
superposition of fundamental singularities. The stokeslet G(x,x0) (flow field created by a point force), and
its derivatives with respect to x0, represent fundamental singular solutions that can be superimposed to
obtain the solution of the Stokes problem (Batchelor, 1970; Blake & Chwang, 1974).

For example, superimposing a stokeslet and a source dipole of carefully-chosen intensities describes the
flow field around a sphere and leads to the classical Stokes drag formula F = −6πηfaU. Using a continuous
distribution of such singularities along a slender but finite rod, leads to the following relationship between
the velocity U of the rod and the force F applied to it

F = −[(ζ�tt+ ζ⊥(1− tt)] ·U. (1.10)

where t is the local tangential vector to the centerline of the structure and ζ� and ζ⊥ are the local drag
coefficient in the tangential and normal directions, respectively. ζ� and ζ⊥ are generally not equal, and in
the limit of a long, slender, and smooth rod ζ⊥ ≈ 2ζ�.
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These fundamental singularities also play an essential role in the description of the far-field flow associated
with the presence of an active or passive solid boundary: the stokeslet, whose intensity is equal to the net
force applied on the fluid by the solid boundary, is generally dominant in the far-field with a slow (1/r)
decay of the velocity field. Associating two Stokeslets of opposite intensities corresponds to a force dipole
that can be decomposed into its symmetric (the stresslet) and anti-symmetric parts (a rotlet). The latter is
a measure of the torque applied on the fluid by the particle, and for both cases, the velocity field decays as
1/r2. Higher-order singularities with faster spatial decays are then obtained through further differentiation
and pairing of fundamental singularities (Batchelor, 1970; Blake & Chwang, 1974; Chwang & Wu, 1975).
Although most convenient in the case of a particle in an unbounded fluid, fundamental singularities may
also be used together with the method of images to model the swimming motion near a boundary (Blake
& Chwang, 1974; Crowdy et al., 2011; Spagnolie & Lauga, 2012) or for various shape swimmers (Chwang &
Wu, 1975).

The superposition of fundamental singularities is at the core of two fundamental simplified theories to
compute the flow forces on slender flexible appendages, which are omnipresent in the realm of micro-swimmers
in the form of flagella and cilia. When the radius of the flagellum is much smaller than its typical wavelength,
Resistive Force Theory identifies locally the filament to a fraction of a long straight rod and Eq. (1.10) is
used locally to relate the force to the local flagellum velocity. Slender body theory, introduced by Hancock
(1953) and Gray & Hancock (1955), builds on this approach by including far-field hydrodynamic interactions
between distant parts of a curved flagellum.

1.2.3 An application to hydrodynamic interactions

For a torque-free and force-free swimmer (1.6), there is no Stokeslet nor rotlet and the far-field velocity
is dominated by the stresslet contribution which emphasizes its importance in accounting for hydrodynamic
interactions between multiple swimmers. Indeed, when considering two force-free and torque-free swimmers,
the stresslet associated with the first swimmer will be the first flow perturbation that will be seen by the
second swimmer and that will influence its trajectory. In suspensions, the stresslet is associated with the
modification of the bulk stress by the presence of the swimmers (Batchelor, 1970). The pressure and velocity
field associated with a stresslet Σ are given by

u = − 3

8πηf

(r ·Σ · r)r
r5

, p = − 3

4π

(r ·Σ · r)
r5

(1.11)

with Σ, the stresslet intensity, a symmetric order-2 tensor and tr(Σ) = 0 when the volume of the solid
particle does not change in time. Defining Σ as the eigenvalue with largest magnitude (positive or negative),
two types of swimmers can be considered: (a) pushers when Σ < 0 and (b) pullers when Σ > 0. Pushers
(resp. pullers) correspond to swimmers with the drag-generating center (e.g. head) located in front of (resp.
behind) the thrust-generating element (e.g. flagellum). A typical example of pusher is a sperm cell while
Chlamydomonas, a cellular organism actuating two flagella located in the front in a breast-stroke fashion, is
a classical example of puller swimmer.

This is the essence of the work presented in Michelin & Lauga (2010b) on the far-field interaction of two
particular swimmers that have circular trajectories when they are isolated. Using the leading-order hydrody-
namical coupling between these two swimmers, we showed that hydrodynamic interactions can have a major
role in the long-time collective dynamics of the two organisms. In particular, we showed that any relative
equilibrium of the averaged swimming trajectories is unstable, and that only two long-time behaviors are
possible: (i) an attraction of the swimmers (leading to a more complex short-range hydrodynamic coupling)
or (ii) a repulsion leading to the two swimmers drifting away from each other (Figure 1.1, Michelin & Lauga,
2010b). The distinction between the different regimes can be identified in terms of the nature of the swimmers
(pusher vs. puller) and their initial relative orientation (Figure 1.1).
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(c) Pushers (Σ < 0)
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Figure 1.1: (a) Long-time hydrodynamic interaction of two swimmers with intrinsic circular trajectories. (b)
Example of trajectories of the interacting swimmers: an initial attraction is followed by a rapid switch in the
plane of their trajectories to lead to a repulsive regime. (c,d) Bifurcation diagram of the long-time dynamics
for pushers (c) and pullers (d). The coefficients A and C are conserved geometric quantities depending only
on the relative orientation of the trajectories (as characterized by θ1, θ2 and ξ), and not on the initial relative
distance (see Michelin & Lauga, 2010b, for more details).
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1.2.4 A canonical micro-swimmer model: the squirmer

Although the Stokes equations (1.8) are linear, solving the swimming problem can quickly become in-
tractable by hand for complex geometries. Beyond the direct numerical simulations of Stokes flow around
a realistic geometry, two main strategies are generally followed: (i) using a local approximation for the flow
forces or (ii) choosing simple enough geometries to simplify the Stokes flow problem.

A classical example of the former approach is illustrated by the resistive force and slender body theories,
which were briefly presented above. One of the best examples of the latter is the so-called squirmer, a
spherical model organism prescribing its surface velocity. The existence of an explicit solution to the Stokes
flow problem around a sphere makes this model particularly attractive to study different effects and properties
of low-Re locomotion for a simple geometry. In the remainder of this chapter, this model will be extensively
used in the particular case of a stroke corresponding to purely tangential and axisymmetric displacements of
the organism’s boundary so that its shape remains spherical at all times (Lighthill, 1952; Blake, 1971). For a
force-free and torque-free squirmer, the entire flow field, in the co-moving frame, can be obtained analytically
by super imposing so-called squirming modes. In the streamfunction formulation,

ψ(r, µ, t) =
∞�

n=1

αn(t)(1− µ2)L�
n(µ)Ψn(r) (1.12)

with
Ψ1(r) =

1

2

�
1

r
− r2

�
and Ψn(r) =

2n+ 1

2n(n+ 1)

�
1

rn
− 1

rn−2

�
for n ≥ 2, (1.13)

where the squirming mode intensity αn(t) are obtained by projection of the surface tangential velocity

αn(t) =
1

2

� 1

−1

�
1− µ2uθ(r = 1, µ)L�

n(µ)dµ (1.14)

Here, µ = cos θ refers to spherical polar coordinates in a reference frame centered on the swimmer and Ln(µ)
is the n-th Legendre polynomial. The velocity field is obtained from ψ as

u = − 1

r2
∂ψ

∂µ
er −

1

r
�
1− µ2

∂ψ

∂r
eθ. (1.15)

The squirming modes correspond to increasing orders of azimuthal dependence and, apart from the first mode,
increasing orders of far-field decay of the velocity field (Figure 1.2). The first mode is the only one contributing
to the swimming velocity of the organism so that U(t) = α1(t), and it corresponds to a slip velocity oriented
from front to back on the entire sphere: it is therefore often referred to as the swimming or “treadmill”
mode. Note that this mode also corresponds to purely potential flow (ω = 0), even though we consider
here viscous inertia-less flows. The second squirming mode is dominant in the far-field (in the labframe)
and corresponds to the stresslet with a spatial decay of the velocity field in 1/r2. As mentioned previously,
this quantity corresponds to the modification of the bulk stress by the swimming particle (Batchelor, 1970)
and also characterizes the nature of the swimmer: swimmers with α2 > 0 are of puller type, while α2 < 0
corresponds to pushers.

Determining the intensity (possibly unsteady) of the squirming modes αn(t) is therefore an essential step
as it provides important information about the stroke ũ considered (e.g. swimming velocity, intensity and
sign of the stresslet...). Later on, we will discuss the cost of the swimming motion. From a hydrodynamic
point of view, it can be defined as the work done by the squirmer on the fluid:

P(t) = −
�

S
ũ · (σ · n)dS =

�

Ω
(σ : d)dV (1.16)
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Figure 1.2: Streamlines of the first three squirming modes for unit intensity and a force-free and torque-free
swimming particle. (Left) n = 1, “treadmill” or swimming mode, (Center) n = 2, Stresslet mode (note that
α2 = 1 corresponds to a puller-type squirmer) and (Right) n = 3.

and is also equal to the total energy lost through viscous dissipation (in the equation above, d is the strain
rate tensor). Using the squirming mode decomposition, Eq. (1.12)–(1.14), it can be computed in terms of
the squirming mode amplitudes as

P(t) = 12πηfa
∞�

n=1

γnαn(t)
2, with γ1 = 1 and γn =

(2n+ 1)2

3n(n+ 1)
for n ≥ 2. (1.17)

The squirmer model was extensively used in its steady (αn(t) = αn) and unsteady versions to study
hydrodynamic interactions (Ishikawa et al., 2006), mixing (Lin et al., 2011), suspension rheology (Ishikawa
et al., 2007) and instabilities (Ishikawa & Pedley, 2007; Evans et al., 2011). In this work, we use it to
analyze optimal strokes for locomotion (Michelin & Lauga, 2010a) and feeding (Michelin & Lauga, 2011,
2013). Section 1.5 presents some of my recent work, based on the squirmer model, on the dynamics of active
auto-phoretic particles, or chemical swimmers. The approach followed here considers exclusively tangential
displacements of the surface (slip velocity) but the squirmer model can in fact be generalized to a larger
variety of strokes associated with normal velocity at the interface. This normal velocity can be associated
either with a jetting mechanism (Spagnolie & Lauga, 2010a) or with a displacement of the interface. In
the latter case, the geometry is time-dependent and the squirmer’s framework is only applicable through a
perturbation analysis in the limit of small normal boundary displacements (Blake, 1971).

1.3 Optimal swimming strokes of model ciliates

To swim in low Re flows, Paramecium and other ciliates rely on the beating of many individual cilia
distributed on their surface. Much shorter than the cell’s body, they have similar diameter, beating frequency
and internal structure to that of eukaryotic flagella. Both deform under a distributed actuation all along
their length, resulting from the relative sliding of neighboring polymeric filament in microtubule doublets. As
emphasized earlier, their mode of propulsion provide ciliates with two different means of breaking the time
symmetry and produce a net forward motion: (i) through the asymmetric beating of each individual cilium
and (ii) through the coordinated beating of neighboring cilia leading to the formation of so-called metachronal
waves (Brennen & Winnet, 1977; Blake & Chwang, 1974). The origin of this synchronization is still debated,
but several recent studies have suggested that hydrodynamic interactions between neighboring cilia might
play an important role (Gueron et al., 1997; Vilfan & Julicher, 2006; Lenz & Ryskin, 2006; Guirao & Joanny,
2007; Niedermayer et al., 2008). Synchronization of cilia beating is also essential to many biological functions
in the animal kingdom: metachronal waves of the cilia covering the lung epithelium produce a net mucus
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flow that enables the evacuation of foreign particles out of the respiratory tract (Sleigh et al., 1988), and the
beating of cilia lining the oviduct are responsible for the egg transport (Halbert et al., 1976). Several recent
studies have suggested that cilia coordination in metachronal waves may reduce the collective energetic cost
of beating (Gueron & Levit-Gurevich, 1999; Osterman & Vilfan, 2011).

In Michelin & Lauga (2010a), we consider this energy efficiency from a different perspective. Considering
that the organism has access to a fixed amount of energy that it can dedicate to propulsion (determined,
for example, by its metabolism), we search for the swimming stroke (i.e. the sequence of shape changes)
that maximize the distance travelled. This question of optimality of a particular swimming pattern to a
specific biological function is at the center of many recent studies on low-Re locomotion and generally takes
two different forms, namely seeking optimal shapes or optimal gaits. In the former, the optimal morphology
is considered (Vilfan, 2012) while the latter focuses on a particular organism and aims at determining the
optimal sequence of body deformation that maximizes a particular biological performance function (Michelin
& Lauga, 2010a, 2011, 2013; Tam & Hosoi, 2007, 2011a,b; Spagnolie & Lauga, 2010b; Eloy & Lauga, 2012;
Osterman & Vilfan, 2011).

In this section and the following, we successively determine optimal swimming and feeding gaits. While
the former maximize the distance travelled with a fixed amount of energy, the latter maximize the nutrient
absorption under the same energetic constraint. To this end, we use the squirmer model presented in the
previous section as a model for a ciliated cell. Computing the flow around a ciliate accurately is very complex
and computationally expensive due to the number and deformable geometry of the flapping appendages. To
address this problem, two different modeling approaches have been followed: (i) sublayer models and (ii)
envelope models. The former explicitly considers the dynamics of the cilia layer either with a discrete
representation of the cilia (Gueron & Liron, 1992, 1993) or with a continuum approach by modeling the cilia
layer as a porous and deformable medium (Hussong et al., 2011). Motivated by the relatively short length
of the cilia with respect to the cell’s body and by their dense coverage of the cell’s surface, envelope models
adopt a different approach, representing only the outer cilia layer (the cilia tips) through the deformation
of a continuous surface (Brennen & Winnet, 1977; Blake & Sleigh, 1974). Optimizing the swimming stroke
is therefore now equivalent to finding the optimal sequence of deformation of the envelope surface, a much
simpler modeling route, well-suited for optimization computations.

1.3.1 The squirmer model as an envelope model: Lagrangian vs. Eulerian strokes

The presentation of the squirmer model in Section 1.2.4 voluntarily followed an Eulerian approach: the
stroke is defined through a slip velocity field ũ(x, t) on the sphere corresponding to the instantaneous velocity
of the material point located at position x at time t. The envelope model of a ciliate implicitly assumes that
this spherical surface is a representation of the motion of the different cilia tips, which are material points
connected through the cilium to a fixed basal attachment at the cell wall. Squirming strokes can therefore
alternatively be described by the complete description of the cilia tips trajectories. For a dense distribution
of the cilia, this can be done by defining a continuous field of trajectories µ = ξ(µ0, t) with µ0 the average
position, acting as a Lagrangian label of the trajectory. The Eulerian and Lagrangian formulations are
related:

∀(µ0, t),
∂ξ

∂t
= −

�
1− µ2

a
uθ(µ = ξ(µ0, t), t). (1.18)

The intensity of the squirming modes can therefore be defined indifferently from the slip velocity uθ or the
trajectory set ξ.

In the following, we are interested in the optimal periodic stroke. The definition of periodicity is how-
ever different in each framework: a periodic Eulerian stroke corresponds to a periodic slip velocity field
(∀(µ, t), uθ(µ, t) = uθ(µ, t+ T )), while a periodic Lagrangian stroke corresponds to periodic Lagrangian tra-
jectories (∀(µ0, t), ξ(µ0, t) = ξ(µ0, t+T )). Any periodic Lagrangian stroke is also a periodic Eulerian stroke,
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but the reverse is in general not true. In particular, the pure treadmill swimmer (αn(t) = α1δ1n) is periodic
in an Eulerian sense but corresponds to a non-periodic Lagrangian stroke: material points are continuously
transported from one pole to the other.

1.3.2 Swimming efficiency

We use here the traditional definition of low-Re swimming efficiency, η,

η =
�U� T ∗

�P� , (1.19)

where �·� denotes the time-averaging operator over a swimming period, U is the swimming velocity and P
is the energy cost of locomotion, defined here as the work of the squirmer’s surface against the fluid. T ∗

is the force required to drag a rigid body of same shape as the swimmer at the same average velocity �U�.
Traditionally, referred to as an efficiency, η should more accurately be termed as a normalization of the
energetic cost of locomotion since nothing imposes it to be less than 1. However, for most biological cells η
is of the order of 1% (Lauga & Powers, 2009). Using Stokes’s formula for the drag force on a rigid sphere as
well as Eq. (1.17), the efficiency η is directly obtained in terms of the intensities of the squirming modes as

η =
�α1�2

∞�

n=1

γn
�
α2
n

�
· (1.20)

1.3.3 Optimal Eulerian (steady) stroke

In the Eulerian framework, finding the optimal swimming stroke is trivial as one may pick the functions
αn(t) without any constraint, therefore assigning all the energy to the swimming mode. Using the Cauchy–
Schwartz inequality, it is immediate that η ≤ 1/2 and that this upper bound can be achieved for the particular
swimming stroke corresponding to a steady treadmill swimmer (Leshansky et al., 2007):

α1(t) = α1 and αn(t) = 0 for n ≥ 2. (1.21)

Note that this Eulerian optimal stroke is steady as the slip velocity does not depend on time.

1.3.4 Optimal Lagrangian stroke (periodic motion)

Finding the optimal stroke corresponding to a periodic motion of the surface (cilia tips) imposes following
the Lagrangian point of view and describing the stroke through a set of trajectories ξ(µ0, t). In the following,
all quantities have been non-dimensionalized using the sphere’s radius a, the stroke’s frequency ω = 2π/T
and the fluid viscosity ηf , so that the characteristic velocity is now ωa. For a given stroke ξ(µ0, t), and
using Eqs. (1.14), (1.18) and (1.19), one may compute the associated swimming efficiency η[ξ]. Considering
a small perturbation δξ around a reference stroke ξ, and using the differential form of the above equations,
the gradient F [ξ](µ0, t) of the efficiency in the stroke space, defined as

∀δξ(µ0, t), δη =

�� 1

−1
F [ξ](µ0, t)δξ(µ0, t)dµ0

�
, (1.22)

can be obtained analytically:

F [ξ](µ0, t) =
2η

�α1�
∂2ξ

∂µ0∂t
− 2η2

�α1�2
∞�

n=1

γn

�
αnL

�
n(ξ)

∂2ξ

∂µ0∂t
+

∂

∂t

�
αnL

�
n(ξ)

∂ξ

∂µ

��
· (1.23)
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Figure 1.3: Snapshots of the displacement of the squirmer surface over a swimming period in the optimal
unconstrained stroke Θmax ≈ 53◦, �U� ≈ 0.33, η ≈ 22.2%. The surface color of each material point on the
surface refers to the mean polar angle of that material point. Black lines following material points on the
surface have also been added for clarity.

After projection of this gradient onto the subspace of acceptable strokes satisfying (i) the periodicity, (ii) the
absence of displacement at the poles and (iii) the monotonicity in µ0 for all time (guaranteeing that cilia do
not cross and that Eulerian fields are single-valued), the resulting gradient F̃ can be used to optimize the
efficiency η with respect to the swimming stroke ξ using a steepest-ascent algorithm. More details on the
derivations above and the numerical techniques used can be found in Michelin & Lauga (2010a).

Starting the optimization algorithm from a variety of initial conditions, the calculation converges toward
an optimal stroke whose kinematics is shown in Figure 1.3. This optimal stroke can be decomposed into
two phases: (i) an effective stroke where the surface stretches from front to back (corresponding to cilia tips
getting further away from each other) generating a large instantaneous velocity and (ii) a recovery stroke
characterized by a return of the cilia tips to their original position in the form of a shock-like structure that
minimizes its impact on the swimming velocity.

Although the motion of each individual material point remains highly symmetric (each point spends about
50% of a period traveling in one direction or the other), this stroke is characterized by a strong asymmetry at
the organism level: at the equator, the slip velocity is oriented from front to back for more than 90% of the
period. This symmetry-breaking results from a small phase shift in the periodic motion of neighboring cilia
tips and is highly reminiscent of the metachronal waves observed in most ciliate species. The metachronal
wave here is antiplectic (i.e. the direction of the wave is opposite to the direction of the effective stroke)
which is purely a result of the envelope model formulation (Michelin & Lauga, 2010a).

The optimal stroke pictured in Fig. 1.3 is characterized by an efficiency that is much larger than what
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Figure 1.4: Trajectories of the optimal swimming strokes for Θmax ≈ 11◦ (η ≈ 6%, left) and Θmax ≈ 53◦

(η ≈ 22%, right). µ = 1 (resp. µ = −1) corresponds to the front (resp. back) of the squirmer.

is typically found for swimming micro-organisms, but also by a large amount of stretching of the squirmer’s
surface throughout the stroke. This stretching corresponds to a large excursion of cilia tips around their
mean position, namely a maximum azimuthal amplitude greater than 50◦. In a real ciliated microswimmer,
the displacement of the cilia tip is constrained by the cilia length-to-cell size ratio. For Paramecium, this
ratio is about 5% and corresponds to a maximum displacement angle of about 5◦.

The optimization described above can be repeated with a penalization on the maximum cilia tip excursion
to constrain our optimization to a subset of strokes with smaller amplitudes. The trajectories of the optimal
stroke with Θmax = 11◦ are shown in Figure 1.4 and compared to that of the optimal swimmer in Figure 1.3.
The same structure for the stroke is recovered with the decomposition (in space and time) of the stroke into
an effective part (stretching) and a recovery part (shock). Moreover, a direct relationship between Θmax and
η is also obtained (Figure 1.5).

This decomposition of the optimal strokes, regardless of their amplitude, suggests the following analysis:
to be efficient instantaneously, the organism must dedicate as much of its energy as it can to mode 1
(swimming), and the existence of shock-like structures make the trajectories periodic while minimizing the
resistive effect on the flow. An ansatz for the optimal stroke can therefore be designed by super imposing
shock waves to the treadmill solution (Figure 1.6). Inside the shock, the velocity field is defined explicitly
to ensure the periodicity of all trajectories. Such a stroke is described by three parameters: the swimming
velocity, the shock velocity and the shock thickness. The result of the efficiency optimization over this reduced
stroke space is shown in Figure 1.5 and shows very good agreement with the full optimization. Further, it
extends the optimal curve beyond the swimmer of Figure 1.3 and shows that the upper bound efficiency of
50% can be reached asymptotically for Θmax → 90◦. Because of its Lagrangian approach, the numerical
optimization approach presented above is not able to capture such strokes as they become too singular.

Despite the simplicity of this model, our results identify the optimal swimming strokes of model ciliates as
those breaking the time-symmetry through the cilia coordination into patterns similar to metachronal waves.
The optimal efficiencies are consistent with those observed in nature for the correct range of amplitudes.
This approach is however limited by its simplified framework: cilia being only described through the motion
of their tip, this model accounts neither for the asymmetry in the two half-strokes of an individual cilium’s
motion nor for the energetic dissipation within the cilia layer. One consequence is for example that only
anti-plectic metachronal waves can be obtained (Michelin & Lauga, 2010a). To be able to study such effects,
a more elaborate (and computationnally expensive) model should be considered (see for example Osterman
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the treadmill solution (the Eulerian or steady optimal swimming stroke). The stroke is made periodic through
the introduction of shock-like regions (thick solid) where the velocity field is constructed so as to make all
trajectories periodic.
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& Vilfan, 2011; Eloy & Lauga, 2012; Vilfan, 2012)

1.4 Impact of swimming on feeding and optimal feeding strokes

The metabolism of swimming micro-organisms heavily relies on exchanging a variety of chemical or
organic species with their environment, from dissolved gases to larger proteins. The swimming stroke of an
organism impacts its ability to “feed” on such passive tracers in two different ways: (i) the resulting motility
enables the organism to sense and travel toward regions richer in nutrients, and (ii) the flow generated by
the organism stirs nutrients and modifies local gradients, thereby altering diffusive fluxes and intake. This
section focuses on the latter effect to quantify the impact of the swimming-induced flow on the feeding
performance of different swimming strokes. Further, generalizing the approach of the previous section where
strokes maximizing the distance travelled for a fixed energetic cost were sought, we consider and determine
the optimal strokes maximizing the nutrient uptake instead.

Unlike the swimming problem, the feeding problem is characterized by two different and independent
time-scales: (i) an advective time-scale intrisically linked to the imposed slip velocity τadv ∼ a/US and (ii)
a diffusive time-scale τdiff ∼ a2/D with D the diffusivity of the nutrient considered. The Péclet number
Pe = τdiff/τadv is a relative measure of the advective effects of the swimming stroke on the diffusive intake
of nutrients and varies by several orders of magnitude depending on the problem considered, ranging from
Pe ≈ 10−2 for a small bacteria feeding on dissolved oxygen molecules to Pe ≈ 103 for Paramecium feeding
on smaller bacteria.

1.4.1 The feeding problem

The squirmer model presented previously is extended here to study the advection-diffusion of a passive
tracer around the cell. This effectively extends to arbitrary and unsteady strokes the work of Magar et al.
(2003) and Magar & Pedley (2005). The Péclet number is defined as

Pe =
1

D

�
P a

12πηf
, (1.24)

effectively constructing the reference velocity scale on the characteristic slip velocity. For simplicity, we
consider here the case of a uniform far-field concentration C∞ and consider that a chemical equilibrium is
reached at the surface of the cell so that C = Cb < C∞. A more realistic but more complex treatment of the
surface kinetics was proposed by Magar et al. (2003), including membrane resistance to nutrient absorption,
diffusion of nutrients within the cell and finite-time kinetics of their consumption. Here, the rescaled nutrient
concentration c = (C∞ − C)/(C∞ − Cb) satisfies the following non-dimensional advection-diffusion problem

Pe√
P

�
∂c

∂t
+ u ·∇c

�
= ∇2c, c(r → ∞) = 0, c(r = 1) = 1, (1.25)

In Eq. (1.25), P =
�

γn
�
α2
n

�
is the non-dimensional energy cost of the swimming stroke, and u is the

velocity field generated by the swimming stroke, Eq. (1.12). The average instantaneous nutrient uptake is

J(t) = − 1

4π

�

S
n ·∇c dS. (1.26)

In the diffusive limit, Pe � 1, feeding is only weakly impacted by the swimming stroke and is equivalent to
that of a purely rigid sphere: the nutrient concentration is then isotropic (c = 1/r) and the nutrient uptake
(in dimensional form) is time-independent J(t) = 1. Hence, J(t) can be seen as a measure of the nutrient
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Figure 1.7: Effect of Pe on the nutrient flux J for the pure treadmill swimmer. Snapshots of the nutrient
distribution in both limits Pe � 1 and Pe � 1 are shown for reference as well as asymptotic scalings.

flux relative to the purely diffusive regime. For a given periodic stroke (e.g. given αn(t) or given surface
trajectories), the nutrient concentration c(r, t) is computed numerically. The numerical details can be found
in Michelin & Lauga (2011, 2013).

1.4.2 How does swimming impact feeding?

Considering the simplest (and most efficient) swimming stroke, a pure treadmill squirmer, Figure 1.7
shows that swimming enhances the feeding rate significantly. Two regimes can be identified corresponding
to two different scalings of the net gain in nutrient uptake �J� − 1. For Pe � 1, diffusion dominates and the
nutrient concentration around the squirmer is close to isotropic. Swimming however enables the organism
to sweep regions of fresher nutrient content with an effective cross-section Reff ∼ a that does not depend
on the swimming velocity; hence, the nutrient uptake increases linearly with Pe. The physical picture is
remarkably different for Pe � 1: advection of the nutrient dominates except in a thin boundary layer of
thickness δ ∼ a/

√
Pe near the swimmer’s boundary. As a result, �J� only scales as Pe1/2 corresponding to a

velocity-dependent effective cross-section Reff ∼ δ. For steady and arbitrary Eulerian strokes, the variations
of J in both limits were obtained using asymptotic analysis in Michelin & Lauga (2011) (see also Magar
et al., 2003).

More insight on the impact of swimming on feeding for a general unsteady stroke can be gained from
asymptotic analysis in the limit of Pe � 1: for all strokes, the leading order correction to the average feeding
rate �J� scales linearly with Pe and only depends on the average swimming velocity. The leading order
correction to the fluctuations J �(t) = J(t) − �J� is found to scale as Pe3/2. The remarkable result is that,
corrections at this order (both mean and fluctuations), only depend on the swimming velocity U(t), and not
on any higher order squirming mode. This has an immediate consequence: strokes creating an instantaneous
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motion of the organism but no net displacement over a period (e.g. reciprocal strokes for which U(t) �= 0 and
�U� = 0) show a greater feeding performance over strokes where the organism stirs the fluid while holding a
stationary position (U(t) = 0). Furthermore, these results also show that, at small Pe, the optimal feeding
strokes are simply the optimal swimming strokes of Section 1.3.

To confirm these results, numerical simulations of the nutrient concentrations were performed for a large
variety of swimming strokes. Figure 1.8 shows the evolution of this distribution in time as well as that of
the feeding rate for three typical strokes of decreasing swimming efficiency. Stroke A corresponds to the
optimal swimming stroke of Figure 1.3. Strokes B and C correspond to harmonic displacements of individual
cilia tips and differ on the cilia synchronization: Stroke C corresponds to synchroneous beating (reciprocal)
and Stroke B to a weak metachronal wave. For strokes A and B, the average swimming motion allows the
squirmer to create a sharper concentration gradient at the front that greatly enhances the nutrient uptake,
while the nutrient distribution remains relatively isotropic for Stroke C. Figure 1.9 decomposes the variations
of J(t) for the three strokes in terms of a mean feeding rate, a fluctuating feeding rate amplitude and the
unitary fluctuations, and shows excellent agreement between the asymptotic predictions and the numerical
results. Noticeably, for swimming strokes, the feeding rate appears to have a phase delay with respect to
the velocity field. The asymptotic analysis prediction (a phase shift of π/4) appears consistent with the
observations (even at Pe = O(10) for the most efficient strokes), and can be interpreted as the formation
time of the concentration gradients when the cell accelerates.

These results emphasize the critical impact of the swimming velocity (mean and fluctuations) on the
feeding ability of the cell, regardless of the value of Pe. This is illustrated in Figure 1.10 where the mean
feeding rate is plotted against Pe × U : the collapse of most data points on a single curve (precisely that
of the purely swimming squirmer) indicates that the swimming velocity U determines at leading order the
average nutrient uptake. The other components of the strokes (e.g. stirring, ...) only become significant
when U is small (corresponding to data points located above the main trend). This therefore suggests a
close link between optimal swimming and optimal feeding, a conjecture that is confirmed in Figure 1.10
where the feeding performance of the squirmer appears directly correlated to its swimming efficiency: the
most efficient feeding stroke seems to be the pure treadmill (η = 50%). In fact, Michelin & Lauga (2011)
proved analytically that the optimal steady feeding stroke slightly differs from the pure treadmill but that
this difference is so small (less than 10−3) that it is neither noticeable nor physically relevant.

1.4.3 Optimal feeding strokes are optimal swimming strokes

These results suggest that the optimal feeding and optimal swimming strokes are essentially identical. To
confirm this numerically using direct optimization, an adjoint-based framework was developed to compute
the gradient of the feeding rate with respect to the feeding stroke. The details of this method are omitted
here for clarity and can be found in Michelin & Lauga (2011, 2013). Solving for the adjoint field g that
satisfies the adjoint advection-diffusion problem

Pe√
P

�
∂g

∂t
+ u ·∇g

�
= −∇2g, g(r → ∞) = 0, g(r = 1) = 1, (1.27)

it is possible to compute explicitly the gradient in the stroke space of the average nutrient uptake, and to
project it on the subspace of swimming strokes of fixed energy cost P. Following the same approach as in
Section 1.3, we (i) perform an optimization of the stroke to maximize the feeding rate for a fixed amount of
energy dedicated to locomotion and (ii) introduce a penalization to restrict the optimization to Lagrangian
strokes with a limited displacement of the cilia tips. The results of this optimization confirm our conjecture:
the optimal feeding stroke is essentially the same as the optimal swimming stroke, regardless of the type
of strokes considered (Eulerian stroke, Lagrangian stroke, Lagrangian stroke with limited amplitude) and
regardless of the relative importance of advection and diffusion (measured by Pe).
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Figure 1.8: (Top) Nutrient concentration around the organism at Pe = 30 for stroke A (left), stroke B
(center) and stroke C (right). (Bottom) Evolution in time of the feeding rate (solid) and swimming velocity
(dashed) for strokes A, B and C (left to right); the dotted lines indicate the time corresponding to each of
the five snapshots above.
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Figure 1.10: (Left) Mean feeding rate as a function of Pe. (Right) Mean feeding rate as a function of
PeU = PeU . Both figures include the results of about 8500 different swimming strokes. On the left, the
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1.4.4 Conclusions

This apparently simple result, which stems from the intimate link between nutrient uptake and swimming
velocity, was clearly not obvious a priori : as shown in Figure 1.7, the feeding performance of a given stroke,
and therefore also the optimal nutrient uptake that an organism can achieve, does depend critically on Pe.
What is shown here is that the way to achieve this optimal uptake, namely the optimal swimming stroke,
does not depend on Pe, a result that has significant consequences from a biological point of view. First of
all, a particular organism does not have to choose between two biological functions (feeding and swimming)
if it tries to minimize its energy consumption. Also, for an organism that relies on multiple chemical species
that might have quite different diffusivity properties (and therefore associated Pe), the stroke maximizing
the nutrient uptake is independent of the chemical species.

1.5 Swimming with no deformation or actuation: autophoretic swimmers

The surging interest over recent years to study the mechanisms at the source of micro-organisms motility in
viscous flows corresponds to a search for a better understanding of these mechanisms (and their modification
in mutant cells), but also to an engineering challenge of designing artificial micro-swimmers or self-propelled
micro-robots. In that regard, swimming micro-organisms represent a source of inspiration for biomimetic
designs. Applications for such robots may be found particularly in the domain of biomedical engineering, for
example in targeted drug delivery. The challenges to reach such a goal are enormous, even just to achieve
the self-propulsion of a micro-robot that can realistically be microfabricated, and so far, no genuinely self-
propelled micro-robot has been successfully manufactured. Instead, biomimetic propellers actuated through
an external magnetic forcing currently represent a very active area for research and development (Dreyfus
et al., 2005; Ghosh & Fischer, 2009; Gao et al., 2010; Tierno et al., 2010; Pak et al., 2011; Coq et al., 2011,
to cite only a few), although the basic need for an external field to create the deformation or chiral motion
leading to propulsion is an intrinsic limitation of such devices in many engineering applications.
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1.5.1 Surface interactions and mobility

An alternative approach consists in designing autonomous self-propelled particles able to effectively gen-
erate slip velocities near their surface, achieving locomotion through a route rather similar to the model
squirmer described at length in the previous sections. The origin of this slip velocity lies in the short range
interactions of solute species in the fluid phase with the particle’s boundary (Figure 1.11). Solute concentra-
tion gradients along the surface create local imbalances in the osmotic pressure field at the origin of a net
slip velocity outside a diffuse layer. The thickness of this layer, λ, is determined by the typical range of the
interaction forces and is therefore very small in comparison with any geometric characteristic of the particle.
This mechanism, known as diffusiophoresis, is responsible for the net motion of colloid particles in externally
imposed solute gradients, and shares many similarities with other mechanisms such as electrophoresis (re-
sponse to an electric potential gradient) or thermophoresis (response to a temperature gradient) (see the very
complete review of such processes by Anderson, 1989). Later on, I will focus exclusively on the diffusiophore-
sis framework, keeping in mind that many tools or conclusions may be applicable to these other phenomena.
In the case of diffusiophoresis of a rigid particle, the slip velocity is obtained as (Anderson, 1989)

ũ = M(1− nn) ·∇C, M = −kTλ2

ηf

� ∞

0
y
�
e−Φ(y)/kT − 1

�
dy (1.28)

with C the concentration of the solute around the particle and Φ(d/λ) the interaction potential of the solute
at a distance d from the colloid’s surface. M is the mobility of the colloid and is positive (resp. negative) in
the case of repulsive (resp. attractive) solute-surface interactions.

1.5.2 Self-propulsion of anistropic autophoretic particles

If classical diffusiophoresis relies on the existence of an external forcing and therefore suffers from the
intrinsic limitations presented earlier for magnetically-driven artificial swimmers, this mechanism offers an
interesting route to self-propulsion when the particle is able to modify the local solute concentration through
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emission or absorption of solute particles, for example through reaction catalysis at the surface (Paxton
et al., 2004; Kline et al., 2005; Howse et al., 2007; Ebbens & Howse, 2010; Zhao & Pumera, 2012). In these
studies, Janus colloid particles or patterned rods are considered with asymmetric surface chemical properties:
typically one half catalyzes a chemical reaction (e.g. the dissociation of hydrogen peroxide) and the other
half is chemically inert. Through chemical reactions at their surface, such colloids generate an anisotropic
flux of solute in or out of the fluid domain, leading to a solute concentration gradient along their boundary.
This results in an asymmetric slip velocity, Eq. (1.28), and self-propulsion of the particle, Eq. (1.7).

As for real micro-organisms, such artificial fuel-based micro-swimmers need to break symmetry to swim
and this is achieved here through the anisotropic chemical treatment of their surface. The problem has
received a considerable amount of interest in recent years both experimentally and theoretically, following
in particular the establishment of a simple and generic model for this autophoretic system (Golestanian
et al., 2005, 2007). This model follows a continuum approach, describing the solute dynamics through its
concentration C(x, t) around the colloid. The activity of the colloid particle (i.e. the absorption or release
of solute imposed by the chemical properties of the surface) is A (x) on the boundary, with the convention
that A > 0 corresponds to a solute emission. Initially, described only in the purely diffusive case (the flow
generated by the phoretic slip velocity has no impact on the concentration distribution), it can be extended
to include the full advection diffusion dynamics of the solute (see for example Sabass & Seifert, 2012a,b).
This framework couples the Stokes equations for the fluid

ηf∇2u = ∇p, ∇ · u = 0, (1.29)

to the advection diffusion for the solute concentration

∂C

∂t
+ u ·∇C = D∇2C, (1.30)

through the following boundary conditions on the surface of the particle:

−Dn ·∇C = A (r), u(x) = M(1− nn) ·∇C for x ∈ S (1.31)

where for simplicity the mobility M is assumed uniform here. In the far-field, u → −U and C → C∞ with
U the unknown “swimming” velocity that is determined through the no-force requirement on the particle. In
the following, unless specified otherwise, we focus mostly on the steady state (assuming such a state exists)
so that ∂/∂t = 0.

Within this formalism (fixed solute flux at the boundary), the sign of M only matters in comparison
with that of A , and the far-field concentration of the solute does not play any role. Note, that this latter
property wouldn’t hold if the surface chemistry was represented as an absorption reaction S → ∅ of the
solute characterized by a constant of reaction k(r) non-uniform on the surface; in that case, A = −k(r)C
(see for example Córdova-Figueroa & Brady, 2008; Brady, 2010) and the activity of the particle depends on
the far-field concentration of the solute.

In the present framework, the characteristic solute concentration is prescribed by the activity [C] = Aa
D ,

where A is the typical scale of the activity (e.g. mean value or peak value) and the typical velocity scale
is [U ] = |M|[C]/a = |MA|/D. Note that this velocity scale does not depend on the size of the particle a.
From this velocity scale, a measure of the importance of advective effects is the Péclet number Pe:

Pe =
|MA|a
D2

. (1.32)

The sign of MA characterizes the type of particles (emitting vs. absorbing) and their interaction with the
solute (repulsive vs. attractive). Pe is the only non-dimensional parameter of the problem and can be seen
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Figure 1.12: Evolution of the swimming velocity with the aspect ratio of an ellipsoidal colloid in the case
of an attracting (M < 0) particle emitting solute (A > 0). The solute distribution is also represented for
sample cases and the swimming velocity is oriented to the right.

as a measure of the particle’s radius. For small particles, diffusive effects will be dominant while advection
is likely to become important for larger particles.

For simplicity, a particularly simple geometry is considered here, namely a sphere of radius a and the
formalism presented in the previous sections is used to (i) find the solution for the velocity field in terms
of the slip velocity Eq. (1.14), and (ii) solve for the solute concentration around the colloid particle. The
reciprocal theorem Eq. (1.7) and definition for the slip velocity Eq. (1.28) provide the swimming velocity, in
non-dimensional form, in terms of the first azimuthal moment of the solute distribution:

U = −M

� 1

−1
µC(r = 1, µ)dµ. (1.33)

where M = sign(M) = ±1. For a Janus colloid (A (x) = A if µ > 0 and A = 0 otherwise) and in the
limit of Pe = 0, the modification of the solute distribution C(r) − C∞ can be obtained explicitly, and the
non-dimensional velocity is computed exactly as U = −MA/4 (with A = A/|A|). This result can be easily
extended to a coverage of the particle that is not hemispheric (see for example Golestanian et al., 2007). For
a hemispheric split, the stresslet associated with the generated velocity field (related to α2 and the second
moment of the surface solute concentration) is necessarily zero.
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With a bit more algebra, it is possible to generalize this approach to an ellipsoid Janus and to obtain the
swimming velocity and solute distribution for different aspect ratios (Figure 1.12): the limit case of a disk,
with one inert side and one catalytic side, is seen to swim twice as fast as the sphere while a needle-shaped
particle does not asymptotically swim: the concentration gradients and slip velocity are only non-negligible
in the central region that has infinitesimal perimeter (see also Popescu et al., 2010).

When Pe �= 0, the solute advection modifies the local gradients and the slip velocity. The phoretic
problem, Eqs. (1.29)–(1.31), must now be solved numerically through an extension of the methods used in
Sections 1.3 and 1.4. Figure 1.13 shows the evolution with Pe of the swimming velocity and stresslet of a
Janus swimmer. When Pe � 1, one recovers the analytical diffusive solution (finite velocity and no stresslet).
When Pe increases, two cases can be found for the velocity depending on the sign of MA: either a monotonic
decrease to zero or an initial increase, leading to an optimal Pe (or radius) for maximum swimming velocity.
For larger Pe, the velocity scales as Pe−1/3. This result is consistent with Brady (2010) and Jülicher & Prost
(2009) and can be interpreted as follows. For large Pe, advection becomes dominant and a boundary layer
forms around the particle as in the feeding problem presented in section 1.4. The radial solute gradient
remains O(1) (it is fixed by the activity) so the boundary layer thickness and the characteristic surface
concentration follow the same scaling, Pea, and the definition of the slip velocity imposes that the slip
velocity also behaves like Pea The boundary layer thickness is determined by a balance of the tangential
advection and normal diffusion and leads to (U,C, δ) = O(Pe−1/3), a result consistent with the numerical
simulations. For anisotropic colloids, the swimming velocity is therefore reduced for large particles.

It is interesting to note that for intermediate Pe the colloid creates a non-zero stresslet that is always
negative (regardless of the sign of M and A): this flow corresponds to a pusher swimmer similar to that of
flagellated bacteria. Preliminary results show that this property holds for a larger class of anti-symmetric
surface property distributions.

1.5.3 Self-propulsion of isotropic autophoretic particles

The asymmetry of Janus colloids chemical properties ensure their swimming motion as they explicitly
break the right/left symmetry at their surface’s property level. Given the small size of such colloids, high-
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Figure 1.14: Evolution in time of the swimming velocity and next three moments of the solute surface
concentration for Pe = 6. Here the problem is started from rest with a nearly isotropic distribution of solute.

throughput manufacturing of such particles is however difficult. Here, I present our recent results showing
that such a chemical anisotropy is not necessary for locomotion. For an isotropic particle (with a uniform
emission/absorption activity A), the trivial non-swimming and isotropic solution (C0 = C∞ + A/r and
U = 0) is always a solution, at all Pe. This work shows that above a critical particle size (or Pe), a
supercritical transition takes place at which symmetry-breaking occurs through the non-linear coupling of
solute concentration and phoretic flows.

Indeed, when started from rest from the isotropic solution, a small anisotropic perturbation in the solute
leads to an exponential increase of the swimming velocity when Pe ≥ 4 (Figure 1.14). When a finite amplitude
is reached, saturation is achieved through the non-linear interplay of the different squirming modes and the
system converges toward a new steady state that corresponds to a net swimming velocity and a polar
distribution of the solute around the colloid.

These results are confirmed analytically by considering the linear stability of the isotropic solution. The
non-dimensional growth rate σ of the unstable swimming mode is found implicitly in terms of Pe as (see
Michelin et al., 2013):

PeAM =
12σPe + 24

√
σPe + 24

σ2Pe2
� ∞
√

σPe




exp

�√
σPe − t

�

t



 dt+ 6 + σPe − (σPe)3/2 − 2
√
σPe

· (1.34)

The right-hand side of the previous equation is always greater than 4 for positive σ: this therefore confirms
that an unstable solution exists, but only for Pe ≥ 4 and AM > 0. This latter constraint restricts the
instability to two (out of four) configurations: to self-propel, isotropic colloids must release (resp. absorb)
solute particles with repulsive (resp. attractive) interactions with the surface of the colloid. This linear
analysis can be repeated for each of the squirming modes (or moment of the surface solute concentration),
and a series of instabilities are identified for quantized Pe numbers: for Pe > Pen = 4(n + 1), the n-th
squirming mode becomes unstable (for n ≥ 2) (see Figure 1.15).

Using full non-linear numerical simulations, we are able to determine the new steady-state of the colloid
and its swimming velocity, stresslet, etc... (Figure 1.15), confirming the supercritical nature of the instability
at Pe = 4. Note that the steady-state solution above Pe = 4 includes components along each squirming
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Figure 1.15: (Left) Evolution with Pe of the growthrate of the unstable swimming mode (thick solid) and
higher order unstable squirming modes: n = 2 (dashed), n = 3 (dash-dotted) and n = 4 (thin solid).
Quantized critical Péclet number are identified for each squirming mode: Pe1 = 4 and Pen = 4(n + 1) for
n ≥ 2. Blue crosses show the results from non-linear simulations in time of the phoretic problem. (Right)
Evolution with Pe of the swimming velocity and stresslet associated with the steady-state swimming solution.
The solute distribution around the particle is represented for typical cases.

modes (despite them being stable for Pe ≤ Pen): this emphasizes the nonlinear nature of the steady-state
solution which couples all the azimuthal components of the velocity and solute concentration fields.

This establishes the possibility for spontaneous locomotion of isotropic auto-phoretic particles. For the
type of surface treatment used experimentally for Janus colloids, the critical size is estimated to be about
100µm, but could be reduced by the use of a different solute with a smaller diffusivity. This mechanism is
reminiscent of the instability of reactive non-Brownian droplets leading to their net locomotion (Thutupalli
et al., 2011; Yoshinaga et al., 2012). In their experiment, a bromine water droplet is placed in an oil
background phase containing a surfactant that can be brominated at the water-oil interface leading to a
reduced surface tension; the resulting Marangoni stresses are then responsible for the tangential velocities
and the propulsion. The similarity between those two problems suggests that they could be treated in a
unified framework (see for example Anderson, 1989; Ruckenstein, 1981).

1.6 Ongoing work and perspectives

Auto-phoretic particles represent a particularly interesting problem, both from a fundamental point of
view and from the perspective of possible applications. They represent a promising alternative to currently
engineered micro-robots and do not rely on externally-applied fields. Such a fuel-based approach is particu-
larly interesting if the chemical mechanism is relatively simple and relies on chemical species already present
in the environment considered. From a fundamental perspective, we benefit from research carried out over
the past decades on electrophoresis, diffusiophoresis and thermophoresis in the case of externally-imposed
gradients, which provides a good fundamental understanding of the mechanisms involved. However, several
questions remain open, which I would like to be able to address in the coming years:
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− What happens when the diffuse layer is not thin?
Most studies consider only the case where the diffuse layer is so thin that all phoretic effects can be
bundled into the formation of a slip velocity at the solid’s surface. Understanding the validity of this
assumption is essential, as well as determining the effect of first-order corrections on the dynamics of
the colloid. Some recent studies have provided some elements in the pure diffusive limit (Pe → 0, see
Sabass & Seifert, 2012a; Sharifi-Mood et al., 2013), and a particular attention should be given to the
effect of Pe.

− Swimming vs. pumping
As illustrated by the omni-presence of cilia in a large variety of functions in our own organism, locomo-
tion problems also have implications for pumping (e.g. mucus flows in our respiratory system generated
by the flapping cilia). The results presented here suggest that non-linear advective effects can lead to
a symmetry-breaking event and self-propulsion, and it is therefore natural to question the possibility
to use such a transition as a pumping mechanism in artificial channels with chemically-reacting walls.
If such a pumping mechanism can be designed, its efficiency should also be characterized.

− How does a self-propelled auto-phoretic particle interact with an external gradient?
Although this may be seen as a simple combination of both the classical phoretic and the autophoretic
problems, it is essential to be able to understand the dynamics of a self-propelled particle in non-
uniform solutions, and to understand the effect of boundaries and other particles on its dynamics:
indeed, confinement or other colloids will modify the local gradients seen by the particle of interest.
Beyond a fundamental interest, understanding and quantifying the effect of this local gradient is a first
step toward the study of chemical and/or hydrodynamic interactions of such systems.

− What are the collective dynamics of such particles?
This is a direct continuation of the previous problem, and is probably one of the most important
challenges in the field as such artificial swimmers are likely to be produced not as single individuals
but as large, and maybe concentrated, populations. Understanding the collective dynamics is therefore
important to identify possible organized states or transitions to chaotic motion, and to quantify the
impact on macroscopic quantities such as mixing of the background solution. The results presented
above suggested a very strong influence of the size of the particles (through Pe) on their propulsive
properties, and it remains to be studied what consequences this may have on the properties of a
suspension of such colloids.

− What are the similarities and differences between such artificial swimmers and suspensions of real micro-
organisms?
This research on artificial micro-swimmers needs to be closely linked to existing and future research
efforts to understand the individual and collective dynamics of real micro-organisms, and this parallel
study will be one of the main axes of my research in the coming years. Swimming micro-organisms
are influenced by a large number of environmental factors and are able to respond to them. From a
mechanical point of view, this response can be either passive (e.g. gravitational torque induced on
swimmer with non-uniform buoyancy leading them to swim upwards, see Pedley & Kessler, 1992) or
active (e.g. modification of the run-and-tumble motion of E. Coli in response to a chemical species
concentration to enable chemotaxis, see Berg, 2004). In comparison, the response of artificial micro-
swimmers is likely to be purely passive (from a mechanical point of view) to ensure the simplicity of
their design. An interesting question is therefore to characterize the behavior of such artificial swimmers
in the light of known behaviors and properties of natural swimmers (e.g. bioconvection, see Pedley &
Kessler, 1992).
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Chapter 2

Fluid-solid instabilities and energy
harvesting in high-Re flows

2.1 Introduction

The previous chapter focused on locomotion problems in low-Re flows where viscous effects dominate
the fluid forces. In contrast, this chapter focuses on fluid-solid instabilities at high Re, where inertial and
pressure forces dominate outside of thin boundary layers. These two chapters not only differ in the flow
regime considered, but also through the type of fluid-solid interactions. Unlike locomotion, for which a
forcing (mechanical or chemical) is applied by the solid system on the fluid, we focus here on situations
where the solid motion develops spontaneously under the destabilizing effect of a steady flow forcing.

Hence, both problems (locomotion and instabilities) fundamentally differ in the direction of the energy
flux: in the locomotion problem (for high or low Re), the solid system transfers energy to the fluid in order
to propel itself, and the energy is dissipated through viscous effects or advected away in the wake of the
organism. In this chapter, the energy transfer is reversed: the structure extracts from the steady incoming
flow the energy necessary for its vibrations, which develop spontaneously under the effect of the fluid-solid
instability. Hence, a fluid-solid instability can be seen as an “energy pump” or a mechanism that enables
the solid to extract a fraction of the incoming flow’s kinetic energy. In the permanent regime, an energy
balance is established between locations or mechanisms that extract energy from the fluid to maintain the
solid motion and those returning part of this energy to the fluid, for example in the form of a vortex wake.
The net energy budget can either be neutral (if no dissipation is present in the structure) or directed toward
the solid if any kind of structural damping or energy extraction mechanism is present. This is, in essence, the
main idea and motivation of the work presented in this chapter: a fluid-solid instability, and the associated
permanent flapping or vibrating regime, can be used as an energy extraction mechanism if one is able to
include a device in the system to convert a fraction of the solid mechanical energy into electricity. Then the
solid system only acts as a vector to transfer energy from the fluid to an electrical output circuit.

2.1.1 Fluid-solid instabilities: a new energy harvesting mechanism?

The limited availability and environmental impact of fossil fuels currently motivates a significant research
effort about the development and diversification of renewable energy production technologies. Geophysical
flows represent an attractive reservoir of energy present and accessible throughout the world, in the form of
winds, river, oceanic and/or tidal currents. Most, if not all, operating devices producing electricity from a
fluid flow rely on the horizontal-axis wind- and water-turbine concept: the lift forces on the turbine blades
generate a net torque that is used to drive an electromagnetic generator. The energy density in such flows is
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however rather low (the kinetic energy flux is typically of the order of 1–10kW/m2) which makes it difficult to
replace a conventional power-plant, unless very large systems are used, with a non-negligeable environmental
impact. This limitation is intrinsic to the energy source (geophysical flows) and will therefore exist regardless
of the extraction mechanism considered. A different approach consists in encouraging the development of
small-scale power units that are ill-suited for a connection to a classic grid, but can be used to power isolated
or mobile devices. Turbine technologies are quite inefficient at such reduced scales (in particular in terms of
operating flow velocities), and a critical research and development challenge of the next ten years will be to
design and develop new prototypes to harvest energy from fluid flows.

In that regard, and as emphasized above, fluid-solid instabilities are promising candidates: by promoting
spontaneous and self-sustained solid motion, they can be used to passively extract fluid kinetic energy in the
form of solid kinetic or deformation (e.g. elastic) energy that can be harvested using classical electromagnetic
or piezoelectric systems. In recent years, several designs based on such fluid-solid couplings have been
proposed (see a brief review of early prototypes in Westwood, 2004): to name only a few, the VIVACE
design (Bernitsas et al., 2008) is based on the Vortex-Induced Vibrations (VIV) of rigid cylinders in cross
flow (Williamson & Govardhan, 2004) and the STINGRAY (or wind-mill) on the coupled-mode flutter of a
rigid heaving and pitching airfoil (Zhu & Peng, 2009; Peng & Zhu, 2009; Zhu, 2012). The flapping of an elastic
sheet in the unsteady wake of a rigid cylinder is at the core of the energy harvesting eel design, where electric
power is obtained through the deformation of the thin piezoelectric sheet (Allen & Smits, 2001; Techet et al.,
2002): although not technically a fluid-solid instability (the flow upstream of the sheet is unsteady), this
particular geometry has motivated a significant part of my research (Doaré & Michelin, 2011; Singh et al.,
2012b,a; Michelin & Doaré, 2012), as well as other authors’ over the last five years (Tang & Païdoussis, 2009;
Giacomello & Porfiri, 2011; Akcabay & Young, 2012), in particular because this system illustrated a way to
convert deformation of a thin flapping sheet into electricity rather than relying exclusively on electromagnetic
generators as for other prototypes.

This application of classical fluid-solid instabilities and coupling mechanisms to energy harvesting repre-
sents an original point of view on such problems: in the past, such instabilities have always been considered
as a nuisance, if not a danger, for the integrity of the structure, since the resulting vibrations may gener-
ate fatigue and damage. Most of the existing research on these mechanisms is therefore motivated by the
identification of the instability in order to avoid or control its development. VIV research was for instance
largely motivated and supported by the need to control the vibrations of cables and risers exposed to oceanic
currents in offshore applications (e.g. oil platforms). From that point of view, it is not surprising that the
majority of the existing literature on such fluid-solid couplings focus on linear analysis: one is interested in
minimizing the amplitude of the vibrations. Applying such concepts to energy harvesting is a new twist on
these problems, as the vibrations are now seen as a benefit that should be enhanced, and large amplitude
cycles are sought. This, in return, requires a thorough understanding of the nonlinear phenomena responsible
for the saturation of the vibrations and the development of the permanent regime. This is clearly one of
the main challenges of this research topic: while the fundamental mechanisms responsible for the motion of
the solid body have been well-known for a long time, the non-linear dynamics of these systems and their
sensitivity to operating conditions (e.g. flow velocity) or even to the energy extraction mechanism, remains
in most instances to be understood. Aside from the fundamental interest of such understanding, it is also
crucial to be able to assess properly the energy efficiency of such systems as well as to identify some possible
optimization strategies.

This chapter is organized around two main geometries: (i) the Vortex-Induced Vibrations of a rigid
cylinder or of a long flexible cable in cross flows and (ii) the flutter dynamics of a flexible slender body (e.g.
a flag) in axial flows. While the formalism and models may differ significantly for these applications, several
fundamental questions are common to both problems and are presented below in more detail.
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2.1.2 Outline and transverse questions

Regardless of the geometry considered, the research presented in this chapter is motivated by the following
transverse questions:
(a) What is the impact of the harvesting system on its dynamics and efficiency, and how can it be modeled?

(b) What is the operating range of the system and how may it be improved?

(c) What is the efficiency of the system and how may it be improved?
When designing an energy harvester, the main concern is to seek the maximum energy output, corre-

sponding to a significant energy loss for the fluid-solid system, which is likely to modify its dynamics. Most
existing research on the linear stability or the non-linear dynamics of the fluid-solid system is dedicated to
purely non-dissipative configurations or weakly damped systems (e.g. to account for energy losses due to
friction). In these cases, damping is either absent or a small parameter. Here, it is necessary to understand
what happens when the extracted energy is not small. In model experiments or numerical studies, a related
issue is therefore to include this effect in the fluid-solid dynamics. Because energy harvesting effectively
amounts to a loss of energy from the solid, the crudest but most natural model is that of pure damping
(Peng & Zhu, 2009; Tang & Païdoussis, 2009; Zhu & Peng, 2009). The advantage of this model is to propose
a simple way to quantify how much energy can be harvested (or dissipated) in a particular fluid-solid system,
while capturing the main physical process: the loss of energy by the solid structure.

Using this representation, it is then easier to grasp why it is essential to take into account the harvesting
process in any model. In the small-damping limit, the fluid-solid dynamics is similar to the non-dissipative
case, but the harvested (dissipated) energy is small. To achieve higher efficiency, damping should be increased
and its effect will then impact the dynamics of the system. Intuitively, when damping is too large, the
vibration amplitude is reduced and the system’s efficiency is penalized: the fraction of the solid energy that
is extracted is still high but the available solid energy is very limited. There exists therefore an optimal
range of damping and to understand or capture the dynamics in that regime, the effect of damping on the
fluid-solid system must be well-understood.

Damping and energy harvesting may influence the system in many ways other than just through its
vibration amplitude. Damping may also modify the range of instability leading to energy harvesting: for
large damping amplitudes, it is expected that the system will restabilize since the energy cost of motion is
too high compared to the energy available through the instability. However, damping may also destabilize
the system (Paidoussis, 2004; Doaré & Michelin, 2011), thereby increasing the operating range of the device.
Also, when multiple vibration modes are possible, varying the damping intensity may lead to mode switches
that will change the flapping shape of the structure, and its frequency and amplitude, thereby impacting the
energy harvesting efficiency.

The linear framework is therefore essential to characterize when the fluid-solid system can harvest energy.
This framework is however limited in its inability to characterize the long term behavior of the system and
in particular the amplitude, shape and frequency of limit-cycle oscillations that develop when the growth of
the instability saturates. It is therefore inefficient in determining the performance of the system and to be
able to assess how much energy can be harvested, we will need to turn to a non-linear approach that is able
to predict the saturation of the vibration and the limit-cycle dynamics.

How much energy can be harvested with such a system is clearly linked to its size, and more than the
dimensional value of the harvested power, it is important to rely on non-dimensional analysis to establish
scaling laws for the harvested power in terms of the system’s size and operating conditions. One way to
do this is through the non-dimensional harvested power (see for example Singh et al., 2012a,b; Akcabay &
Young, 2012):

P =
�P�

ρfU3
∞L2

(2.1)
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where P(t) is the instantaneous power extraction, U∞ the incoming flow velocity and L a typical dimension
of the structure (e.g. the diameter of the cable, the length of the flag). Another possible measure of the
system’s performance is the fraction of the kinetic energy flux that is actually harvested:

η =
�P�

1
2ρfU

3
∞S

(2.2)

with S the typical cross-section occupied by the device in the flow. The main advantage of this formulation
rather than the non-dimensionalization Eq. (2.1) is its similarity to the benchmark efficiency definition of
a classical wind-turbine (a scaling of the harvested power by the kinetic energy flux through the turbine
disk), thereby enabling comparisons between the performance of different devices. In particular, one may be
interested in exploring the existence of an equivalent to the Betz limit for horizontal-axis turbines. Scaling
the energy production by the cross-section occupied by the device in the flow is also relevant when trying
to estimate the efficiency of multiple devices in parallel, although, as will be discussed later, this completely
overlooks any hydrodynamic interactions between the neighboring devices. The main caveat of this formu-
lation is however that it relies on a clear definition of S which is not always achievable or that may be
disputable as it may involve the flapping amplitude of the device, itself a result of the problem.

Other formulations have also been proposed in the literature, including a scaling of the harvested energy
by the peak kinetic energy of the solid (Dunnmon et al., 2011) or the mean energy of the solid over a
period (Doaré & Michelin, 2011; Akcabay & Young, 2012). Such formulations which amount to a conversion
efficiency may be useful in a linear setting (Doaré & Michelin, 2011), as it does not depend on the flapping
amplitude of the solid. But this choice of normalization is ill-suited when looking for the limit-cycle efficiency
as the reference power scale does not correspond to an input power in permanent regime.

These considerations illustrate the difficulty of defining the harvesting efficiency in a clear and unique
fashion. It also emphasizes how the numeric value of the efficiency is fundamentally linked to its definition
and this number only has a meaning in a particular context and definition. In the following, the chosen
definition differs slightly from one problem to the other, but will be clearly stated to avoid any confusion.

The rest of the chapter is organized as follows: Section 2.2 focuses on the Vortex-Induced Vibrations of
rigid cylinders and tensioned cables and corresponds to the PhD of Clément Grouthier. Sections 2.3 and 2.4
focus on the flapping instability of flexible plates and cylinders in axial flows and their application to energy
harvesting. Section 2.3 focuses more specifically on the fundamentals of the flag instability and the impact
of damping on the nonlinear flapping, while Section 2.4 presents a full fluid-solid-electric model for which
the electric power production is represented using piezoelectric patches positioned on the flag. Finally, the
conclusions of this chapter as well as some perspectives and the presentation of ongoing work will be detailed
in Section 2.5.

2.2 Vortex-Induced Vibrations and energy harvesting

2.2.1 Vortex-Induced Vibrations of rigid cylinders and cables

Vortex-Induced Vibrations (VIV) are a canonical example of fluid-solid couplings that has applications
in a large variety of fundamental and applied problems. They may be responsible for the vibrations of
heat-exchanger tubes in a nuclear reactor or the vibrations of anchor cables or risers in offshore oil rigs.
Physically, VIV are intimately linked to the instability of the wake behind a bluff body. Above a critical
Reynolds number (Re ≈ 47 for a fixed cylinder), the separated flow becomes globally unstable, leading to an
unsteady and periodic vortex shedding behind the structure, the so-called Von-Karman vortex street, at a
fixed frequency, the Strouhal frequency:

Ωf = 2πST
U

D
(2.3)
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with U and D the flow velocity and structure’s diameter, respectively, and ST the Strouhal number (Blevins,
1990). Such a flow results in unsteady and periodic flow forces on the obstacle, leading to its vibration.
When the flow velocity, or Re, is further increased, the flow may become turbulent and the organized vortex
street pattern be lost; the unsteadiness of the flow and fluid forces however remain, and are characterized
by a dominant frequency that still follows the same Strouhal law, Eq. (2.3). The Strouhal number itself is a
function of Re (Williamson & Brown, 1998). In the limit of high-Re, this dependence is rather weak, which
justifies the general approach of considering it a constant ST ≈ 0.2.

The free or imposed vibration of an obstacle is also going to influence the vortex shedding mechanisms
(see for example Bearman, 1984; Williamson & Roshko, 1988), and in particular, it may lead to a deviation
of the shedding frequency from the Strouhal law when the forcing frequency is close to the natural frequency
of the wake. This phenomenon, known as lock-in, is one of the most distinguishing features of the free
vibrations of a bluff body under the influence of its oscillating wake: when the natural vibration frequency
of the body and the natural frequency of the wake are far apart, shedding and vibrations occur at the same
Strouhal frequency and the amplitudes of vibrations are only limited (the solid is forced at a frequency far
from resonance). However, when those frequencies are close enough, the two-way coupling between vortex
shedding and solid vibrations leads to a lock-in of the shedding frequency on the natural frequency of the
body, leading to a significant increase of vibration amplitude, typically of the order of the diameter of the
structure (Williamson & Govardhan, 2004).

When the bluff body is free to move in both the streamwise and cross-flow directions, vibrations can
occur in both directions, and the streamwise forcing and motion then have a frequency of twice that of their
cross-flow counterparts. In general, however, the amplitude of the cross-flow vibrations is dominant and in
the following we will focus for simplicity only on cross-flow vibrations, keeping in mind that vibrations can
and may also occur in the direction of the stream with smaller amplitudes.

In the presentation above, VIV were linked to the instability of the wake forcing the motion of the
cylinder. An alternate point of view is also possible, in which VIV are considered as the result of a fluid-solid
instability (Cossu & Morino, 2000; de Langre, 2006). In particular, the critical Re leading to an unsteady
wake is reduced for a free cylinder in comparison with the classical fixed obstacle configuration (Cossu &
Morino, 2000; Meliga & Chomaz, 2011). Following de Langre (2006), vortex-induced vibrations and lock-in
can be interpreted as a coupled-mode flutter instability, where the linear coupling of a wake mode to a
structure mode leads to the instability.

2.2.2 Modeling the non-linear coupled dynamics: the wake-oscillator model

Although weakly nonlinear analytical studies of the flow around the free moving cylinder have been
proposed near the critical Re using asymptotic expansion (Meliga & Chomaz, 2011; Meliga et al., 2011),
such a regime is only valid in a narrow window at flow velocities that are far beyond the Reynolds number
corresponding to practical situations which ranges from 104 to 106 from underwater cables to spars placed
in typical oceanic currents. Most phenomenological properties of VIV have therefore been obtained exper-
imentally or numerically (see Williamson & Govardhan, 2004, and references therein). Direct numerical
simulations of the VIV phenomena are possible but computationally expensive, particularly in 3D settings
(e.g. Newman & Karniadakis, 1997; Bourguet et al., 2011).

For a rigid 2D cylinder in cross-flow motion, the dynamics can be represented by a simple forced oscillator

Mÿ + rẏ + hy = FL(y(t), t) (2.4)

where M is the mass of the cylinder, h the spring stiffness, r the damping intensity, and FL the fluctuating
lift. The different models for the fluctuating lift can be decomposed with an increasing level of complexity
and physical completeness, into (i) forced system models, (ii) fluidelastic system models and (iii) coupled
models (Paidoussis et al., 2010). Type (i) includes a fluid forcing that does not depend on the solid motion
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while types (ii) and (iii) introduce a coupling between the solid motion and the fluid forcing. In type (ii),
this dependence is explicit (the fluid force is a direct function of the solid velocity and acceleration) while
in type (iii), the solid motion acts as a forcing on the intrinsic dynamics of the wake and flow forces. A
popular model of this type is the wake-oscillator approach: this idea, introduced more than 50 years ago,
describes the unsteady intrinsic dynamics of the wake using an oscillator equation for the lift coefficient
forced by the cylinder motion (Birkhoff & Zarentello, 1957; Bishop & Hassan, 1964; Hartlen & Curie, 1970).
The advantage of this formulation is that most of the free parameters determining the oscillator’s dynamics
can be determined experimentally for a fixed cylinder and then applied to VIV by coupling this oscillator
(typically a van der Pol or Rayleigh equation) to the solid’s dynamics (see Parkinson, 1989, and references
therein).

More recently, Facchinetti et al. (2004a) analyzed and determined the most appropriate form for the
forcing of the cylinder motion on the wake-oscillator’s dynamics and concluded that an inertia force coupling
allowed the best reproduction of classical features of lock-in:

q̈ + �Ωf (q
2 − 1)q̇ + Ω2

f = Ω2
fAÿ (2.5)

with q = 2CL/CL0 the reduced-lift coefficient (with CL0 the lift coefficient observed on a fixed rigid cylinder),
and A and � two non-dimensional parameters that were fitted to match experimental observations. In this
model, the fluid force FL in Eq. (2.4) is decomposed into an added mass force, a stall force, and a lift force,
the unsteady wake forcing being related only to the latter:

FL(t) = −Mf ÿ − γρΩfD
2Lẏ +

1

2
ρU2DLCL(t) (2.6)

with Mf = πρD2L/4 and γ the added mass and stall coefficient respectively, and L the length of the cylinder.
The obvious advantage of this model resides in its simplicity while still retaining the main features of the
unsteady wake and the coupled vibrations. It was later used to study vortex waves along cables (Facchinetti
et al., 2004b; Mathelin & de Langre, 2005; Violette et al., 2010) and compared to direct numerical simulations
and experiments (Violette et al., 2007).

In the following, this model will be successively used to study the VIV of a rigid cylinder and of a
tensioned cable from which energy is extracted through a damping system.

2.2.3 Energy harvesting by a rigid cylinder

The motion of the solid body resulting from VIV is significant, particularly at lock-in where it reaches
the order of a diameter. Producing an electric current with a generator forced by this motion is at the core
of the VIVACE design, initally proposed by Bernitsas et al. (2008), which has received growing attention in
recent years (see also the work of Yoshitake et al., 2004; Barrero-Gil et al., 2012).

A simple damping model is used to represent the effect of energy harvesting on the system’s dynamics
and to quantify how much energy can be extracted from the VIV of a rigid cylinder (Figure 2.1a). In the
following, we neglect any internal damping of the structure other than the energy harvesting process so that
the total harvested power can be defined from Eq. (2.4) as

�
rẏ2

�
, and in non-dimensional form

η =

�
rẏ2

�

1
2ρU

3DL
. (2.7)

In the following, we will refer to this quantity as the system’s efficiency to follow the terminology in
Bernitsas et al. (2008), although strictly speaking, the effective cross-section used is that of the fixed cylinder
rather than that occupied by the moving system (see the discussion in Section 2.1.2). Figure 2.2 shows
the evolution of this efficiency, in permanent regime, with the frequency ratio δ = Ωs/Ωf and damping
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Figure 2.1: (a) Vortex-Induced vibrations of a rigid cylinder in a cross-flow harvesting energy through
a displacement-based damping system. (b) Vortex-Induced Vibrations of a long tensioned cable with
periodically-distributed energy harvesters.

coefficienty ξ = r/Ωf (M +Mf ), with Ωf the Strouhal frequency and Ωs the fundamental frequency of the
immersed cylinder (linked to its stiffness). A clear optimal configuration is identified corresponding to a peak
efficiency of 0.23 which is close to the efficiency reported by Bernitsas et al. (2008) on the VIVACE system.

For a fixed stiffness δ, the variations of η with damping follow the qualitative trend outlined in Sec-
tion 2.1.2: at low damping values, the harvested energy is low as only a small fraction of the solid’s mechan-
ical energy is actually extracted, while the harvested energy is also limited at very large damping, because
of the resulting reduction of the vibration amplitude by the damping effect. For each value of δ, there is
therefore an optimal damping ξopt for which the harvested energy is maximum.

For a fixed damping intensity, there also exists an optimal stiffness δ ≈ 1 which corresponds to a lock-in
of the wake and solid natural frequencies. The optimal value is in fact δ = 0.89 which emphasizes once again
that high amplitude oscillations can be reached over a range of velocity (or equivalently a range of stiffness)
values around the perfect tuning of the two systems.

2.2.4 Periodic energy harvesting on a long cable

A rigid VIV system however presents some important limitations, the main one being that it is only
applicable to rather short systems. Due to the weak density of energy in geophysical flows, it might be
interesting to design a long system that is necessarily going to have some flexibility. While it is less critical
for a rigid system since all points along the structure have the same displacement, the question of the
positioning of the generator becomes essential in a long flexible structure. The underlying question is of
course that of the transport of energy along the cable toward the generator where it can be converted.

The dynamics of a cable in VIV differ from that of a rigid cylinder mostly in the existence of a large
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Figure 2.2: Energy harvested by a rigid cylinder in VIV (see Figure 2.1, left) as a function of the non-
dimensional damping ξ and stiffness δ.

number of fundamental vibration modes for the structures, which may lock in to the shedding frequency over
different ranges of velocity. Essentially, above a certain flow velocity the system is always at lock-in.

To get some physical insight on that problem, we present here some results on a model system: an
infinite tensioned cable with periodically distributed energy harvesters (represented here as linear dashpots,
dissipating the energy associated with the translation of particular points along the cable, Figure 2.1b). The
rigid body dynamics, Eq. (2.4), is now replaced by the following cable equation

mÿ + γρΩfD
2ẏ − (Θy�)� =

1

2
ρU2D2CL(t), (2.8)

where primes denote differentiation along the vertical axis coordinate z. We neglect here any bending rigidity
within the structure. The cable’s tension drives the motion of each dashpot (located at zn = nL), leading to
the following boundary condition:

Θ[y�(z+n )− y�(z−n )] = −rẏ(zn). (2.9)

Two non-dimensional parameters characterize the system, namely the reduced damping ξ = r/Ωfm, with
m the total lineic mass (solid and fluid added mass), and the reduced spacing l = LΩf

�
m/Θ. The latter

essentially compares the generators’ spacing to the typical wavelength of mechanical waves on the cable with
frequency Ωf .

The evolution of the efficiency η with ξ and l is shown in Figure 2.3. An optimal harvesting efficiency
can again be identified around η ≈ 0.19 which is of the same order, albeit slightly reduced, than the optimal
efficiency of the rigid system. Its variations are however much more complex because of the existence of
multiple modes for the cable dynamics. The presence of different lobes are indeed associated with different
dominant linear modes. The left side of the diagram (low damping) is characterized by a low harvesting
efficiency and corresponds to dominant even modes, leading to a weak forcing on the generator. On the
right (high damping), regions of low efficiency associated with even modes alternate with efficient regimes
associated with odd vibrations modes, corresponding to a strong forcing on the generator. Finally, the lower
part of the diagram, where the optimal configuration lies, corresponds to a wavelength of the deformation
greater than L: the deformation of the cable is weak and resembles that of a rigid cylinder.
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Figure 2.3: (Left) Energy harvested by a tensioned cable in VIV with periodically-distributed energy har-
vesters (see Figure 2.1, right), as a function of the non-dimensional damping ξ and wavelength l/π. Three
regions of the parameter space can be identified depending on the cable dynamics (see text). (Right) Orien-
tation of the tension forces exerted by the cable on the harvesting generator in odd and even modes of the
cable.

From these observations, we conclude that (i) the flexible case presents a similar optimal efficiency to the
rigid cylinder and (ii) that its efficiency is however much more sensitive to the intensity of damping and to
the system’s stiffness (here represented by l): this sensitivity illustrates the important impact of the energy
harvesting system on the fluid-solid system’s dynamics, here by selecting the vibration mode. Although
optimal, the lowest order mode is not the only one producing energy, and in fact similar efficiency can be
achieved (albeit in a narrow region) by the next odd mode. For higher-order odd modes however, Figure 2.3
illustrates that large spacing between the generators penalizes the efficiency of the system: only a bounded
effective length of cable contributes to the energy harvested at the generators, the rest of the energy being
dissipated by the fluid damping during its transport.

The present system has a fixed tension. An alternative would be to consider a drag-induced tension
for which Θ is determined by the flow velocity (see Grouthier et al., 2012). This could be achieved either
through the deformation (extension) of the mean cable position in the streamwise direction due to the flow
or through the drag exerted on a solid structure attached to the cable. This new approach does not mod-
ify the optimal efficiency of the system, however it strongly reduces its sensitivity to the flow velocity, in
comparison with the fixed-tension cable or even the rigid cylinder (Figure 2.4). This passive control strat-
egy for the system’s tension is a first step in optimizing the robustness of the device to varying flow conditions.

The results presented above confirm the possibility to harvest energy from VIV of either rigid structures
or long flexible cables. The latter configuration may be of particular interest for offshore applications (lo-
calization of the generator on a long system). These results however emphasize the existence of a maximum
distance over which the energy can not be transported by the cable anymore which introduces a fundamental
limit on a single-point harvesting configuration. To extend and confront these results to experiments, the last
year of the PhD of Clément Grouthier is currently dedicated to experiments on hanging chains and tensioned
strings with localized damping to represent the effect of the harvesting mechanism.
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Figure 2.4: Comparison of the evolution of the energy harvesting efficiency with the flow velocity U for a
rigid cylinder (dashed red), and cables with periodic harvesting and fixed tension (black) or drag-induced
tension (blue). For the first two configurations, the rigidity and damping parameters are chosen so that the
maximum efficiency is reached for the same velocity Ū = 1.5m.s−1. In the last case, the tension is induced
by a drag on an effective surface A designed such that the tension in the system is equal to that of the fixed
tension problem at Ū .

2.3 The energy harvesting flag

This section and the following are dedicated to a fundamentally different type of fluid-solid instability,
namely the flutter instability of a long flexible slender body in a steady axial flow. The theoretical un-
derstanding and numerical modeling of this instability in two-dimensional flow represent a significant part
of my doctoral work (Michelin, 2009). Dedicated to the development of reduced-order inviscid models for
fluid-solid interactions of flapping and falling bodies (Michelin & Llewellyn Smith, 2009c), it focused on
several applications of the interaction of flapping flexible sheets with an incoming axial flow including the
flapping flag instability itself (Michelin et al., 2008; Michelin & Llewellyn Smith, 2009a, 2010) and flapping
wing propulsion (Michelin & Llewellyn Smith, 2009b). Building on this experience, the research I have de-
veloped since arriving at LadHyX is dedicated to understanding the nonlinear processes and applications to
the energy harvesting problem.

2.3.1 The flapping flag instability

The flapping of a flag in the wind, the flutter of paper sheets in high speed offset printers and the vibration
of the soft palate responsible for snoring are all linked to the same fluid-solid instability, namely the flutter
of a flexible slender body in an axial flow above a critical flow velocity. As illustrated above, this classical
“flapping flag instability” finds applications in a wide variety of fundamental systems but also in important
engineering (Watanabe et al., 2002a,b) and biomedical applications (Huang, 1995; Balint & Lucey, 2005).
The fundamental interest has been extended outside the classical fluid-solid communities by the work of
Zhang et al. (2000) who performed two-dimensional experiments using a flapping filament in a soap film.
Since then, many experimental studies (Lemaitre et al., 2005; Shelley et al., 2005; Jia et al., 2007; Eloy et al.,
2008) have been performed to characterize the flapping dynamics in both the two-dimensional limit (a flag
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with infinite span) or the slender body limit (long ribbons), and the reader is referred to Shelley & Zhang
(2011) for a complete review of that problem.

The origin of the instability lies in the coupling of a plate’s inertia to the destabilizing flow forces associated
with the system’s curvature and the stabilizing effect of the solid’s bending rigidity. A critical flow velocity is
generally identified above which the straight equilibrium position becomes unstable and flapping can develop
in the form of traveling waves along the structure. When the flow velocity is increased further, non-periodic
and chaotic flapping have been reported by some experimental (Abderrahmane et al., 2012) and numerical
studies (Connell & Yue, 2007; Michelin et al., 2008). Linear stability analysis is a powerful tool that has
been used extensively in this problem from the early work of Kornecki et al. (1976) to study the effect of
confinement (Guo & Païdoussis, 2000; Doaré et al., 2011), aspect ratio (Eloy et al., 2007), or hydrodynamic
interactions (Michelin & Llewellyn Smith, 2009a).

Nonlinear numerical simulations are difficult, given the large number of degrees of freedom for the motion
of the flag and the strong coupling to the surrounding flow. One of the most complete two-dimensional studies
can be found in the work of Connell & Yue (2007) which uses coupled fluid and solid solvers. Immersed
boundary methods also provide a possible alternative (Zhu & Peskin, 2002; Zhu, 2007; Tian et al., 2011), and
with the development of computational capacity, three dimensional direct numerical simulations have been
undertaken (Huang & Sung, 2010). Although, so far, the complexity of the flag deformation and vortex wake
structures obtained in such computations make it difficult to analyze the fundamental effects of the spanwise
deformation. Significant results were however obtained using simplified simulations based on potential flows,
and a brief overview of such techniques will be given in Section 2.3.3.

Despite the large number of studies of this topic in the last decade, several important questions remain
unanswered even in the two-dimensional problem, among which are the supercritical or subcritical nature
of the transition and the behavior at high velocity. The former is intimately linked to the existence of
a hysteresis cycle when varying the flow velocity around the instability threshold, which was reported in
numerical (Connell & Yue, 2007; Alben & Shelley, 2008; Michelin et al., 2008) and experimental studies
(Zhang et al., 2000; Shelley et al., 2005; Eloy et al., 2008). The recent work of Eloy et al. (2012) suggested
that, experimentally, the subcritical nature of the transition could be due to or at least reinforced by the
(small) initial spanwise bending that rigidifies and therefore stabilizes the sheet. Their weakly non-linear
analyses also suggested that the nature of the transition may also be linked to the aspect ratio of the flag.
The non-linear behavior of the flag, and in particular the possible transition at higher velocities to chaotic
regimes, also remains to be fully characterized, despite the recent work by Abderrahmane et al. (2012).

Three non-dimensional parameters characterize the flag system:

M∗ =
ρLH

ρs
, U∗ = U∞L

�
ρs
B

and H∗ =
H

L
. (2.10)

In the previous equation, H and L are the width and length of the plate, ρs and B its inertia per unit
length and its bending rigidity, and ρ and U∞ denote the incoming flow density and velocity. M∗ is the
fluid-to-solid inertia ratio, H∗ the aspect ratio of the structure and U∗ is the ratio of the flow velocity to the
phase speed of elastic waves on the structure. H∗ � 1 (resp. H∗ � 1) corresponds to the slender body (resp.
two-dimensional) limit. Although we refer here to a flag, it is understood that the present results may also
be applied to other cross-sections, in particular in the slender body limit to a slender cylinder of arbitrary
cross-section. Of greatest interest to most studies of the instability itself is the critical velocity U∗

c (M
∗, H∗),

which is defined as the smallest reduced velocity above which at least one mode of the structure becomes
unstable (see for example Figure 2.11 in Section 2.4).
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Figure 2.5: (Left) Flutter dynamics of a flag in an axial flow. The deformation of the flag along its span is
neglected so that a two-dimensional kinematic description can be retained (right).

2.3.2 An energy harvesting flag?

As for VIV, the spontaneous and self-sustained flapping of a solid body in a steady flow is particularly
interesting from an energy harvesting point of view. The energy extraction can be achieved following two
different routes: (i) localized energy harvesting at the upstream attachment pole if the flag is free to rotate
and (ii) distributed energy harvesting on the surface of the flag using, for example, piezoelectric materials,
converting the flag’s bending motion into electric charge transfers (see Section 2.4). The research work I
have been carrying out at LadHyX in the last three years on this problem has been entirely dedicated to the
latter option. However, the question of the relative efficiency of both strategies remains open, and will be
part of my future research on this topic.

Two different representations of the deformation-based energy harvesting will be considered: pure damp-
ing (in this section) and an explicit description of the energy transfers between the fluid-solid system and
an electric output through a piezoelectric element (Section 2.4). In all cases, the configuration considered is
represented in Figure 2.5: a rectangular flag of span H and length L is placed in a horizontal flow U∞.

To be able to determine the energy harvesting efficiency of the structure, the linear framework is insuffi-
cient as it does not provide any information on the saturated dynamics, in particular, in terms of the flapping
amplitude A . To obtain such information, the approach followed here is to use numerical simulations for
the flapping flag dynamics using a simplified model for the fluid forces. The next section proposes a brief
overview of two such models.

2.3.3 Modeling the fluid-solid problem

The nonlinear flapping dynamics of a thin flag in an axial flow is a complex fluid-solid interaction problem,
and its direct numerical simulation is particularly expensive. Reduced-order representation of the flow forces
therefore represent a promising tool to perform simplified simulations that still grasp the main physical
ingredients of the problem while reducing the computational cost and complexity significantly for systematic
and efficient energy harvesting performance assessment as well as optimization. Two examples of such
reduced-order models are detailed below: (i) a two-dimensional inviscid flow representation and (ii) the
Large Amplitude Elongated Body Theory. These two models only differ via their treatment of the flow
forces, and they share the same formalism for the solid dynamics.

In both cases, a pure streamwise deformation of the flag is considered (twist and spanwise bending are
neglected), and the flag is inextensible so that the geometry of the structure can be alternatively described
by x(s, t), its position, or by θ(s, t), its local orientation with respect to the flow (Figure 2.5b). Assuming an
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Euler–Bernoulli model for the flag, its equation of motion can be written in non-dimensional form:

∂2x

∂t2
=

∂

∂s

�
Tτ − 1

U∗2
∂2θ

∂s2
n

�
+M∗f ,

∂x

∂s
= τ . (2.11)

In the previous equation, T is the (unknown and non-uniform) flag tension, (τ ,n) is the local curvilinear
orthonormal basis and f is the fluid force.

An inviscid method for the two-dimensional limit (H∗ � 1).

In the two-dimensional flow limit, a reduced-order model for f can be obtained noting that the flow is
inviscid everywhere but within thin boundary layers on the surface of the flag, and that the wake of the flag is
characterized by the separation of these boundary layers into free shear layers that roll up into wake vortices.
A particular approach, at the center of my PhD work, is to consider that the flow is inviscid everywhere
but for discrete singularities in the form of point (or line) vortices of position x̃n and intensity Γn(t). The
last shed vortex has a time-varying intensity to account for the continuous shedding of vorticity into the free
flow from the trailing edge and to guarantee the regularity of the flow at the flag’s trailing edge (unsteady
Kutta condition). Older vortices have a time-independent intensity, neglecting the diffusion of vorticity on
the typical flapping time-scale of the flag. The equation of motion for the vortices must be modified from
the classical Kirchhoff’s law to guarantee the conservation of momentum in the fluid, leading to the modified
equation of motion, known as the Brown–Michael equation

dx̃n

dt
+

(x̃n − xe)

Γn

dΓn

dt
= ũn, (2.12)

where xe(t) = x(s = 1) is the position of the trailing (shedding) edge of the flag, and ũn is the local flow
velocity at the vortex position once the self-induced singularity has been removed). A shedding criterion
must be chosen to determine when to release a new vortex and it was chosen to do so when the intensity Γn

of the last vortex reaches a maximum in magnitude (thereby ensuring that a vortex can not unroll and that
the fluid force is continuous). The inviscid fluid flow is completely determined by the position and velocity
of the flag, and the position and intensity of the vortex singularities, and can then be used to compute the
pressure forces applied to the flag. One then obtains an explicit formulation of the fluid-solid problem as a
set of ODEs for the fluid coupled to the solid dynamics (Michelin & Llewellyn Smith, 2009c, 2010). In the
case of a flexible flag, the inviscid flow around the deformable structure is computed by representing the solid
as a bound vortex sheet whose intensity is such that the slip boundary condition is satisfied on either side
(Michelin et al., 2008; Michelin & Llewellyn Smith, 2009b). An alternative approach to this discretization of
the wake consists in representing the wake as a continuous vortex sheet distribution (see Alben, 2009, for a
complete presentation and references). Numerically, this formulation is a bit more complex as regularization
and tapering must be used to ensure stability and convergence of the method (Alben, 2010).

The Large Amplitude Elongated Body Theory (H∗ � 1)

In the opposite limit, the flow is not two-dimensional anymore as fluid can pass around the flag on its
side and a different approach must be followed. When the typical wavelength of the flag is much larger than
its typical spanwise dimension, the inviscid flow forces can be computed asymptotically in terms of the local
velocity of the flag relative to the flow:

freact. = − ∂

∂t
(maunn) +

∂

∂s

�
maunuτn− 1

2
mau

2
nτ

�
= −

�
∂

∂t
(maun) +

∂

∂s
(maunuτ )−

1

2
mau

2
n
∂θ

∂s

�
n,

(2.13)
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with u = uττ + unn = ∂x/∂t − ex. This reactive force is purely normal (it only includes inviscid pressure
forces) and can be understood as follows. In the slender body limit, the flow is dominated by the normal
displacement of the flag’s cross section and an added fluid momentum maunn can be associated with each
cross-section, with ma = πH∗/4 in non-dimensional form. The first and second terms in Eq. (2.13) correspond
to a balance of fluid and solid momenta and the last term is associated with the pressure forces. This reactive
force was first introduced by Lighthill (1971) to study the fluid forces on swimming fish and its expression
as an asymptotic expansion of the flow forces was recently validated by Candelier et al. (2011). It is valid
for large displacements of the structure provided that the local curvature radius is large compared to the
spanwise dimension, and Candelier et al. (2011) validated the predictions of this model with full RANS
simulations in a similar problem.

This theory by definition neglects any flow separation on the sides of the flag and the associated dissipative
effects. Although these effects are not critical when the kinematics of the body are imposed (as for the fish
problem), this simplification becomes problematic when looking at freely flapping bodies, as it would lead
to an important over-estimation of the flapping amplitude (see for example Singh et al., 2012b). To correct
this, a resistive force is empirically added as a form drag solely on the transverse motion of the flag following
Taylor (1952) and Eloy et al. (2012):

fresist. = −1

2
cd|un|unn (2.14)

with cd, the dimensionless drag coefficient of the cross-section. The combination of Eqs. (2.13)–(2.14) pro-
vides a completely local description of the flow forces. Although strictly speaking limited to the limit H∗ � 1,
Eloy et al. (2012) showed that its predictions for H∗ = 0.1–0.5 remained consistent with experimental obser-
vations of a freely-flapping flag.

In the following, such simplified methods are applied to study the energy harvesting potential of a
flapping flag. Because of its simpler framework, only results obtained with the slender body assumption will
be presented, keeping in mind that many conclusions remain valid at least qualitatively.

2.3.4 Destabilization by damping

Energy harvesting essentially amounts to extracting energy from a mechanical system to transfer it to an
electrical loop. From the mechanical system’s point of view, energy is lost and that is the main motivation
for representing energy harvesting as an additional damping. Whether this is done directly through an added
structural damping or through the complete description of a piezoelectric system, it is essential to assess the
effect of damping on the fluid-solid system in terms of stability and nonlinear behavior. The former approach,
which is the focus of the present chapter, simply considers an added deformation-based structural damping
as a representation for energy harvesting. In the next section, we are interested in the effect of the spatial
distribution of this damping or energy harvesting so in general, we consider a Kelvin-Voigt type model with
non-uniform intensity distribution, such that the equation of motion Eq. (2.11) becomes:

∂2x

∂t2
=

∂

∂s

�
Tτ − 1

U∗2
∂

∂s

�
∂θ

∂s
+ ξ(s)

∂2θ

∂s∂t

�
n

�
+M∗f ,

∂x

∂s
= τ , (2.15)

and the non-dimensional instantaneous harvested power is

P =
�P�

ρfU3
∞LH

=
1

M∗U∗2

� 1

0
ξ(s)

��
∂2θ

∂s∂t

�2
�
ds. (2.16)

Our physical intuition is that damping extracting energy from the system will tend to reduce any flapping
amplitude or re-stabilize the state of rest of the fluid-solid system. This would correspond to an increase
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Figure 2.6: Evolution of the critical velocity above which flapping develops as a function of damping intensity
ξ0 for a uniform distribution of deformation-based damping (Kelvin-Voigt), and mass ratios M∗ = 2.5
(dotted), M∗ = 5.1 (dash-dotted), M∗ = 8.5 (dashed), M∗ = 12.7 (solid) and M∗ = 20 (thick solid). Black
squares corresponds to the critical flow velocity as computed using non-linear simulations.

of the critical velocity, and is indeed observed in the case of heavy flags (low M∗, Figure 2.6). However,
a somewhat counter-intuitive destabilization by damping phenomenon is observed for larger M∗ (or lighter
flags) corresponding to a lower critical velocity U∗

c (Figure 2.6): in that case, the extraction of energy actually
promotes the instability and increases the range of operability of the system.

This observation, although counter-intuitive, is a classical feature of such fluttering systems and has
been developed at length by Paidoussis (1998, 2004) and more recently in the work of Doaré (2010). In a
local stability analysis, it is associated with the presence of negative energy neutral waves (see Section 2.4
for more details). The possibility for destabilization stems from the fluid-solid system not being closed nor
conservative but instead receiving an unconstrained amount of energy through the incoming flow. Classical
stabilization arguments generally find their roots in conservative systems.

2.3.5 Optimal damping distribution

The deformation of the flag during its flapping motion, even in the periodic regime, is strongly non-
uniform, with no curvature at the free end and no displacement at the leading edge. In the approach
considered here, curvature changes result in energy extraction and in an attempt to harvest as much energy
as possible, it seems reasonable to seek an optimal distribution that might focus on particular regions of
the flag, for example in the regions of higher curvatures. On the other hand, the instability itself is directly
linked to the presence of curvature along the flag, and the addition of too much damping in these regions
may reduce this destabilization and penalize the efficiency of the system. This trade-off and the search for
an optimal distribution of damping maximizing the extracted energy has been one of the main axes of my
research in the last three years, in particular during the postdoctoral work of K. Singh at LadHyX under the
supervision of E. de Langre and myself (Singh et al., 2012a,b).
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Figure 2.7: (Left) Reduced-order model of the energy harvesting flag: two rigid cylinders articulated at O and
P where all the deformation occurs. Stiffness and damping are modeled at both articulations as rotational
springs and dashpots. Damping is measured by the intensities c1 (in O) and c2 (in P ) of the two dashpots.
(Right) Evolution of the harvested power with the damping intensities.

A test problem: the bi-articulated system

To try to obtain some physical insight on that particular problem, a reduced-order system was first
considered in the form of two articulated cylinders (note that the formulation could easily be generalized to
two articulated rigid plates): bending rigidity and energy extraction are represented as singular distributions
in the form of torsional springs and dashpots (Figure 2.7). The advantage of this formulation is that it retains
the flutter-type dynamics of the continuously-deformable flag (two degrees of freedom are necessary to develop
curvature) while restricting the space of possible damping distribution to two parameters. Intuition, which
hints that harvesting energy at both locations would enable a greater output than a single damper, is once
again misleading: indeed, it appears that the largest dissipated power is obtained when damping is exclusively
placed at the fixed upstream edge (Figure 2.7). Adding damping at the moving articulation would provide
more energy from this second damper but this would be counter-balanced and exceeded by a loss of energy
from the first damper associated with a resulting reduced flapping amplitude. This illustrates the double
role played by curvature in both the instability and the energy harvesting process. This also emphasizes the
critical effect of damping on the system’s dynamics.

Continuous system and optimal damping distribution

Moving on to the general system, we consider a slender body with a continuous deformation-based
damping distribution as proposed in Eq. (2.15). We first focus on the simplest non-uniform case, namely a
linear distribution of damping

ξ(s) = ξ0

�
1 + ξ1

�
s− 1

2

��
. (2.17)

In the equation above, ξ0 is the total amount of damping in the system while 0 ≤ |ξ1| ≤ 2 is a measure of
its non-uniformity: ξ1 = 0 corresponds to a uniform distribution and ξ1 = ±2 corresponds to a vanishing
damping at one end, with ξ1 ≤ 0 (resp. ξ1 ≥ 0) referring to decreasing (resp. increasing) damping in the
streamwise direction. Figure 2.8(a) shows that regardless of the total damping intensity, the optimal config-
uration is always obtained when ξ1 = 2 (which corresponds to no damping at the fixed end and maximum
damping near the free end), and is associated to a 50% increase of the harvested power in comparison with
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Figure 2.8: (a) Harvested power for a linear distribution of damping as a function of the total damping ξ0
and slope of the damping distribution ξ1. (b) Harvested power as a function of the total damping for the case
of increasing (ξ1 = 2, solid), constant (ξ1 = 0, dotted) and decreasing (ξ1 = −2, dashed) damping intensity.
For both (a) and (b), the harvested power is normalized by the maximum power obtained using uniform
damping. (c) Evolution of the r.m.s. of the normalized curvature change of the solid body (see Singh et al.,
2012a, for more details). All results were obtained for H∗ = 0.1, M∗ = 12.7 and U∗ = 13.

the uniform case (Figure 2.8b). From Eq. (2.16), the non-dimensional harvested power P is intimately linked
to the distribution of curvature characterized by K(s) =

�
(∂2θ/∂s∂t)2

�
. Figure 2.8(c) shows that in the

optimal configuration (ξ1 = 2), an increase in the curvature change ||K||1 is observed. Regardless of ξ1, we
also recover the rigidifying effect of a large damping on the structure: it prevents the deformation of the flag,
thereby reducing drastically the harvested power and efficiency (Figure 2.8b).

Such lineic distribution is however not particularly adapted to a precise targeting of particular regions,
for example the upstream part of the flag as suggested by the bi-articulated model. The analysis is then
extended to a focused (Gaussian) distribution of damping

ξ(s) = ξ̃0e
−α(s−s0)2 , (2.18)

where s0 is the distribution’s center, 1/
√
α is a measure of its peak width, and ξ̃0 is defined such that the

total damping in the system is equal to ξ0. Large (resp. small) α therefore correspond to focused (resp.
distributed) damping functions. It is observed that the intensity of the total damping significantly modifies
the optimal distribution: for small damping, the distribution is a narrow peak centered on the region of
maximum curvature (Figure 2.9). When damping is increased, the optimal distribution spreads over an
increasing area of the flag and converges toward an optimal function that is close to the estimate obtained
with the linear distribution. This can be understood as follows: for small ξ0, the effect of the energy loss on
the system is negligible, and the dynamics are not modified in comparison to the undamped case. The optimal
distribution therefore consists in putting all of the damping in the region of maximal curvature change. With
a larger damping intensity, the system reacts to the local energy extraction of a focused distribution by
“avoiding” any curvature in that region leading to a de facto rigidification of the damped section. Therefore,
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Figure 2.9: Evolution of the optimal distribution of damping for a Gaussian (peaked) damping function and
increasing total damping ξ0: ξ0 = 0.004 (solid), ξ0 = 0.025 (dashed), ξ0 = 0.25 (dash-dotted) and ξ0 = 0.47
(dotted). The optimal linear distribution is also shown for reference (thick solid). For all cases, the damping
intensity was normalized by its maximum value.

for significant damping intensities, it is necessary to spread the energy extraction throughout the structure
to prevent this avoidance mechanism.

From an energy harvesting point of view, the optimal distribution obtained for fundamentally different
families of function ξ(s) (linear and Gaussian) provide similar results, which suggests that this optimum,
obtained on a reduced functional space, may be close to the global optimum, although a full optimization
remains to be done. Also it is interesting to compare the apparently contradictary conclusions of the bi-
articulated system and the continuous flag. In the former, optimal energy harvesting was achieved with a
concentration of damping at the fixed leading edge, while the latter suggests placing more damping toward the
downstream end. These two results are however not incompatible as both systems are in fact fundamentally
different: in the bi-articulated system, the moving articulation is extremely sensitive to damping as it is the
only moving point of curvature of the system and is therefore completely responsible for the existence of the
instability. In the continuous system, it is not the case due to the larger number of degrees of freedom of the
deformation.

Finally, we observe here an optimal non-dimensional harvested power of P ≈ 0.0063 which corresponds
to an energy harvesting efficiency of 2.1% for this particular choice of (M∗, U∗, H∗). This value is significant
albeit still quite low. This, and comparison with results obtained in the next section with different values of
these parameters, suggests that beyond the optimization of the positioning of the harvesters, an optimization
of the operating conditions (in particular the stiffness of the structure related to the operating flow velocity
or the structure’s aspect ratio) will be a critical step to increase the system’s performance.

2.4 The piezoelectric flag: a coupled fluid-solid-electric problem

The simplicity of the model used to represent the energy harvesting mechanism in the previous section
(a Kelvin–Voigt damping) allows for fast computations of the fluid-solid coupled dynamics and optimization
of the spatial distribution of damping on the structure. However, this model only gives a partial description
of the dynamical transfer of energy between the fluid-solid system and the output of the energy harvesting
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Figure 2.10: (a) Flutter of a flag in an axial flow. The flag is covered with piezoelectric patches on both
sides (red). Periodic bending of the flag induces compression and stretching of the piezoelectric elements (b)
resulting in a charge transfer at their electrodes that can be used to power an output circuit (c). (d) Electric
equivalent of the piezoelectric patch pair characterized by a current generator and an internal capacitance.

device. In this section, we propose an explicit formulation and representation of the mechanism responsible
for the energy conversion and present some results obtained for the simplest output circuit: a pure resistor.

2.4.1 A fully-coupled model

Whether made out of crystals, polymers, ceramics or composite materials, piezoelectric solids all share
the ability to convert mechanical energy into electric energy (and vice-versa). This property stems from the
arrangement of ions in their atomic structure, which leads to a modification of their polarization when they
are strained. In the case of a thin piezoelectric element, this leads effectively to a net charge transfer to its
electrodes that act as equipotentials on either side of the layer. The inverse effect, i.e. the mechanical response
to an electric forcing, is due to the response of the polarization to the electric field resulting from a voltage
applied at the electrodes. This electro-mechanical coupling and its preferential directions are determined
during the fabrication process of the material.

The piezoelectric flag consists of piezoelectric thin patches attached to the flag’s surface. The deformation
of the flag during its flapping motion results in a stretching or compression of these elements located away
from the center line of the flag (Figure 2.10). Here, the polarity of the material in the direction normal to
the flag is coupled to the mechanical strain and stress in the tangential direction (3–1 coupling). Considering
only pairs of piezoelectric patches, shunted through the flag, positioned symmetrically with respect to the
flag’s center line and of reversed polarity (so that the charge transfer induced by a stretching of the upper
patch is equal to the charge transfer resulting from the compression of the lower patch), the macroscopic
electric state of the patch-assembly is characterized by the charge transfer Q(t) and voltage V (t) between
the electrodes. The direct and reverse piezoelectric effects can then be described as

Q = CV + χ(θ(s+)− θ(s−)), M = B
∂θ

∂s
− χV (t)1[s−,s+](s). (2.19)
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In the previous equation, s− and s+ refer to the upstream and downstream curvilinear position of the patch
pair, 1A is the characteristic funtion of the interval A, and M is the total internal torque in the flag,
including both the elastic torque and the effect of the piezoelectric patches. Finally, C and χ are the patches’
capacitance and coupling coefficient, which depend on the material’s properties, in particular its permittivity.
Both electrodes are connected to an output circuit, and in the following we focus exclusively on a resistive
circuit of conductance G so that Ohm’s law provides an additional relationship between V and Q:

GV + Q̇ = 0. (2.20)

In the following, we consider the limit where the flag is completely covered by piezoelectric patches of
streamwise dimension much smaller than the typical wavelength so that a continuum description can be
used for the electric state of the piezoelectric patches (Doaré & Michelin, 2011). Defining q, v, c and g as
the charge, voltage, capacitance and conductance per unit length in the streamwise direction, the full non-
dimensional equations for the fluid-solid-electric system can be obtained from Eq. (2.11), (2.19) and (2.20)
as (Michelin & Doaré, 2012)
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β
∂q

∂t
+ v = 0. (2.23)

In addition to Eq. (2.10), two non-dimensional parameters are identified:

α =
χ√
Bc

β =
c U∞
gL

, (2.24)

which characterize the electric coupling and the tuning of the output circuit to the characteristic flapping fre-
quency, respectively. Together with appropriate clamped-free boundary conditions, these equations coupled
to the flow model (e.g. the LAEBT force approximation presented in Section 2.3.3) form a closed and well-
posed system for the mechanical and electrical state of the system. The harvested power is that dissipated
in the resistive elements and is computed as

P =
�P�

ρfU3
∞LH

=
1

βM∗

�� 1

0
v2ds

�
. (2.25)

The advantage of this model resides in its simplicity while still providing an explicit description of the energy
transfer mechanism between the solid and electric systems. It can of course be modified to account for more
complex output circuits. In the following, we focus on the effect of the coupling α and the tuning of the
output circuit to the fluid-solid dynamics characterized by β.

2.4.2 Linear stability analysis

We first study the linear stability of the system in order to determine the operability conditions (i.e.
where instabilities can develop). Focusing on small displacements of the flag, the system Eqs. (2.21)–(2.23)
can be rewritten in terms of the vertical displacement y(s, t) and charge transfer q(s, t) as:

(1 +maM
∗)
∂2y

∂t2
+ 2maM

∗ ∂2y

∂t∂s
+maM

∗∂
2y

∂s2
+

1 + α2

U∗2
∂4y

∂s4
− α

U∗
∂2q

∂s2
= 0, (2.26)

β
∂q

∂t
+ q − α

U∗
∂2y

∂s2
= 0. (2.27)
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Figure 2.11: Critical flow velocity above which flapping develops, as obtained from a global stability analysis
with (left) β = 1 and varying α, and (right) α = 0.5 and varying β.

Classically, two different points of view can be adopted to analyze the stability of the system described
by Eqs. (2.26)–(2.27): (i) a mode or global approach and (ii) a wave or local approach. The former focuses on
a finite system with clamped-free boundary conditions, and considers solutions of the form e−iωt[Y (s), V (s)].
The latter effectively focuses on an infinitely long system and considers solutions in the form of progressive
waves ei(ks−ωt)[V̄ , Ȳ ]. In a recent article (Doaré & Michelin, 2011), we proposed an in-depth analysis of the
stability of the piezoelectric flag using both frameworks.

Global stability

In the case of a finite flag, Eqs. (2.26)–(2.27) are analyzed together with clamped-free boundary conditions.
The critical velocity threshold U∗

c is defined as the maximum velocity above which at least one mode is
unstable (i.e. Im(ω) > 0); its evolution with M∗ is shown for different values of α and β on Figure 2.11. In
comparison with the non-piezoelectric flag (α = 0), the effect of the piezoelectric coupling can be characterized
as (i) a stabilization of the system for heavy flags (small M∗) and (ii) a destabilization of the system for
lighter flags (large M∗). This is consistent with the results of Section 2.3 on the effect of damping on the
system’s stability. This suggests that the destabilizing effect at large M∗ is a general mechanism linked to
the addition of damping to the system and not to the form of damping considered. Some elements regarding
the generality of this destabilization mechanism are given below using the local stability framework.

Beyond the effect of the piezoelectric coupling, the stability of the system is also influenced by the
characteristic time-scale of the electric system (equivalent here to an RC loop forced by the piezoelectric
generator): for small β, the resistor effectively shunts the piezoelectric’s electrodes (v = 0) and the behavior
of the non-piezoelectric flag is recovered, while for large β, the resistor prevents any charge transfer (q = 0)
and the piezoelectric patches simply contribute as an additional rigidity to the solid dynamics (Doaré &
Michelin, 2011). In between these two regimes, a maximum destabilization of the system is observed for
large M∗. The properties of the output circuit (here completely characterized by β) influence the efficiency
of the energy transfer to the dissipative circuit and therefore will impact the effective damping properties of
the electrical loop.
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Figure 2.12: (Top-left) Growth rate of the three waves corresponding to a wave-number k for α = 0 (no
coupling). (Top-right) Growth rate of the three waves corresponding to a wave number k for α = 0.5 and
β̃ = 10. (Bottom) Energy of the neutral waves in the uncoupled case α = 0 as defined in Doaré & Michelin
(2011). The grey continuous line shows the distinction between Positive Energy Waves (above) and Negative
Energy Waves (below). In all cases, ma = 1 and Ũ∗ = 0.05.

Local stability

Some insight on the destabilization by damping is gained from the local stability analysis, which focuses
on the local behavior of an effectively infinitely long system. The non-dimensionalization of the system needs
to be modified (the flag length is now irrelevant): ρs/ρH is chosen as a reference length scale (this particular
choice effectively sets M∗ = 1) and (U∗,β) are redefined accordingly as (Ũ∗, β̃). For real wavenumbers k,
unstable waves correspond to Im(ωi) > 0 (temporal approach). Figure 2.12 shows the wave’s growth rate for
non-piezoelectric (α = 0) and piezoelectric flags (α = 0.5). In addition to the long waves (small k) that are
always unstable, the piezoelectric coupling destabilizes an additional range of neutral waves.

This is an example of destabilization by damping of so called Negative Energy Waves (Benjamin, 1963;
Cairns, 1979). Within this framework, originally presented by Cairns (1979) for inviscid parallel flow in-
stabilities, the energy of a neutral wave is defined as the work necessary to create the wave from a state
of rest, and can be directly obtained from the dispersion relation D(ω, k) of the non-dissipative system as
E = ω/4(∂D/∂ω)A2, with A the amplitude of the wave. Figure 2.12 shows that the neutral waves destabi-
lized by the introduction of the piezoelectric coupling indeed correspond to those with negative energy. In
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contrast with classical Positive Energy Waves that are stabilized by damping (e.g. surface gravity waves or
elastic waves on a flexible sheet), the formation of Negative Energy Waves releases energy, and their sensi-
tivity to damping is reversed. This peculiar type of waves is associated with the presence of an open flow
which basically acts as an unlimited energy reservoir in this problem.

This confirms that the destabilization by damping observed in the piezoelectric coupling of a resistive
element to the fluid-solid system or in the addition of a Kelvin-Voigt damping (Section 2.3) is a general
mechanism that is intrinsically linked to the dynamics of the neutral waves in the non-dissipative flag. From
an energy harvesting point of view, this destabilization by damping represents an increase of the operability
range, as self-sustained oscillations of the system (and energy conversion) develop for lower velocities. It
also illustrates one of the feedback mechanisms of the energy extraction on the dynamics of the harvesting
system.

2.4.3 Non-linear dynamics and efficiency

The energy harvesting performance is characterized here by the efficiency of the piezoelectric system,
namely the fraction of the flow kinetic energy (measured through the cross section occupied by the flapping
flag) actually transferred to the useful load in the output circuit (here, the resistive element). This model
is obviously oversimplified as it neglects any energy loss in the output circuit (i.e. all dissipated energy is
considered “useful”), but it is nevertheless interesting as it extends the analysis of the previous section by
providing a first measurement of the system’s efficiency as a quantitative measure of how much energy can be
dissipated in this system. Practically, the efficiency is computed as η = P/A where P is defined in Eq. (2.25)
and A is the non-dimensional mean flapping amplitude (Figure 2.5).

Non-linear dynamics and mode switching

The flapping amplitude increases continuously with U∗ above the instability threshold (Figure 2.13),
confirming the supercritical nature of the transition associated with the slender body approach and demon-
strated by Eloy et al. (2012). This results in a continuous increase of the efficiency for fixed β, at least
initially. When the flow velocity is further increased, sudden drops in the efficiency are observed and can be
associated to mode switching events affecting in particular the flapping frequency of the system (Michelin &
Doaré, 2012). This mode switch phenomenon is particularly present for large M∗, and significantly impacts
the system’s efficiency and its robustness, as peak efficiency is achieved just before mode switching occurs.

The effect of the output circuit

Figure 2.13 also emphasizes the effect of the output circuit on the harvesting performance: the efficiency
becomes infinitesimal for small and large β. This result is not surprising since the electric system considered
here is equivalent to an RC loop forced by the piezoelectric current generator (Figure 2.10): when βω � 1
(resp. βω � 1), the resistor effectively behaves as a short-circuit (resp. open loop) and the voltage (resp.
current) in the resistor vanishes, preventing any energy harvesting.

The key and non-trivial element here is that the characteristics of the forcing, namely the flapping
frequency and amplitude of the fluid-solid system (and therefore of the piezoelectric generator), are not
imposed a priori but result instead from the nonlinear dynamics of the fluid-solid-electric system. Figure 2.14
confirms that maximum efficiency is obtained when the flapping frequency is close to the characteristic
frequency of the output circuit (ω ≈ 1/β), but it also shows that the flapping frequency and amplitude are
significantly modified by β.

This feedback of the electric output on the fluid-solid dynamics can be seen as a source of complexity in
trying to understand or model the nonlinear coupled dynamics of the fluid-solid-electric system. But it also
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Figure 2.13: Evolution of the harvesting efficiency η (top) and flapping amplitude A (bottom) with the
tuning parameter β and the non-dimensional velocity U∗ for M∗ = 1 (left) and M∗ = 10 (right). The dashed
line indicates the critical velocity below which the system is stable and no energy can be harvested.

represents an opportunity to passively or actively control the vibration of the system through the output
circuit (e.g. to increase the system’s efficiency or its robustness to fluctuations in the flow velocity).

Flag inertia and peak efficiency

Figure 2.13 also shows the importance of the flag’s inertia in achieving high efficiencies: while peak ef-
ficiencies of a few percent are typically achieved for lighter flags (M∗ = 10), heavier flags (M∗ = 1) only
lead to peak efficiencies equal to at most 0.5%. This is confirmed in Fig. 2.15 where the maximum efficiency
(obtained for the optimal tuning ratio) is represented as a function of M∗ and U∗. Significant harvesting
efficiency is achieved (≈ 12% in the parameter range considered) for lighter flags, and this can be related to
the peak conversion efficiency observed in our linear study (Doaré & Michelin, 2011): solid energy is trans-
ferred to the electric circuit in a greater proportion in the regions that have been destabilized by damping.
In the present design, such high efficiency values are however associated with a greater sensitivity to the flow
velocity (in particular through the mode switching event mentioned earlier).

This simplified model represents an original and preliminary attempt at representing the coupled dynamics
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Figure 2.14: (Top) Flapping frequency (solid) and output circuit characteristic frequency (1/β, dashed) as a
function of the tuning parameter β. (Bottom) Evolution of the harvested energy (solid), harvesting efficiency
η and flapping amplitude A with the tuning parameter β. Results are shown for M∗ = 1 (left) and M∗ = 10
(right) as representative cases of heavy and light flags, respectively.

of the fluid, solid and electric systems, including the feedback effect of the energy harvester on the fluid-solid
system dynamics. The importance of this feedback effect is obviously linked to and scales quadratically
with the coupling coefficient α. This non-dimensional parameter depends on the geometry of the system (in
particular the relative stiffnesses of the piezoelectric and non-piezoelectric layers), but it is also intrinsically
limited by the material properties (in particular the permittivity and polarizability of the material). PZT
materials available off the shelf today typically correspond to α ≈ 0.3. The results presented here therefore
correspond to an upper bound of what may be achieved today with available materials, and illustrate the
particular importance of materials research in designing piezoelectric elements of greater α.

Nonetheless, the efficiencies obtained for such energy harvesting flags (both in Sections 2.3 and 2.4),
although lower than what may be obtained by turbine technology, are significant. The complex dynamics
of the flag system, and its coupling to a more advanced and carefully-designed output circuit, are promising
elements for its optimization.
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2.5 Ongoing work and perspectives

Understanding the nonlinear dynamics of classical fluid-solid systems coupled to dissipative elements has
been and will remain at the center of my research in the coming years. It represents a significant development
and scientific investment of LadHyX in the field of fluid-structure interactions and goes beyond the two main
geometries that I have chosen to present here. In particular, the development of an experimental activity in
that domain together with Pascal Hémon and Xavier Amandolese represents an important opportunity for
developing this research topic in the coming years and encouraging collaborations within LadHyX and with
other research teams.

My interest in the nonlinear dynamics of flexible solids in steady flows goes however beyond applications
to energy harvesting, and in the coming years, I will dedicate a significant effort to extend this activity to
biolocomotion at high Re, in particular for fish swimming. As emphasized in the introduction of this chapter,
the locomotion and energy harvesting problems follow fundamentally opposite routes in terms of fluid-solid
energy exchanges, for example. They do, however, share several important questions and challenges in par-
ticular regarding the understanding and modeling of hydrodynamic interactions. Hydrodynamic interactions
for swimming fish is the focus of a future collaboration with PMMH (ESPCI, Paris) and IRPHE (Marseille)
that has been formalized in the ANR project “NAGE” that was submitted in 2013.

Nevertheless, my activity in high-Re fluid-solid interactions will be predominantly focused on energy
harvesting problems, in particular on the piezoelectric flag system during the ANR project “FLUTTENER".
This Young Investigator grant (2013–2016) will enable me to develop a pluridisciplinary program in collab-
oration with Olivier Doaré (ENSTA ParisTech) and Dejan Vasic (ENS Cachan) focusing on the fluid-solid
dynamics as well as the optimization of the output circuit using state-of-the-art power electronics systems.

Below are presented some important questions that I would like to address in the coming years on these
topics:

− What is the role of the output circuit in optimizing the energy harvesting performance?

The results of Section 2.4 focused exclusively on the simplest possible output circuit. They showed: (i)
that the effect of a realistic representation of the energy harvesting system is not strictly equivalent to
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structural damping and (ii) that the output circuit properties can significantly influence the fluid-solid
dynamics and hence the fluid-solid-electric system efficiency. The first step will be to consider electric
systems with intrinsic dynamics, starting with inductive circuits, which will provide the output loop
with a fundamental frequency and resonant properties. This is the current focus of the PhD work of
Yifan Xia, and preliminary results suggest that richer dynamics (including lock-in between the fluid-
solid and electric frequencies) may be encountered leading to significant increases in the harvesting
efficiency.
Optimization of the energy harvesting performance of an output circuit for prescribed mechanical
forcing is a classical problem of power electronics for which performant tools have been developed, using
for example active switching techniques (Guyomard et al., 2005) that enable a drastic increase in the
performance of the device in comparison with a purely passive resistor-type circuit. A main challenge
of the FLUTTENER project will be to apply such state-of-the-art techniques to the piezoelectric flag
system, assessing in particular the feedback effect of such active circuits on the fluid-solid dynamics.

− The role of hydrodynamic interactions between flapping solids

Flapping flags in tandem or in side-by-side positions do not flap independently but instead tend
to synchronize either in-phase or out-of-phase (Zhang et al., 2000; Zhu & Peskin, 2003; Michelin &
Llewellyn Smith, 2009a; Schouveiler & Eloy, 2009). Beyond the simple synchronization, the flapping
properties may also be impacted in particular the flapping amplitude (Michelin, 2009) and this may
result in important dynamical effects (e.g. drag reduction, Ristroph & Zhang, 2008). In biological
systems, hydrodynamic interactions are thought to offer some energetic advantage to fish swimming in
schools.
These are illustrations of the effect of hydrodynamic interactions on the dynamics of neighboring freely
or actively flapping solids. In the energy harvesting problem, a critical question is to understand the
impact on the harvesting performance: is there any destructive interaction penalizing the efficiency of
a farm of energy harvesters as for wind-turbines? Or is it possible to identify constructive interactions
that may lead to an increase in the total harvested energy? In the swimming problem, I am interested
in the impact on the energetic cost of swimming near a free or rigid surface, or in the vicinity of other
individuals.
For both problems, understanding the coupling of the solid dynamics through the fluid motion will be
essential. This research axis will combine experimental work on vibrating tubes (postdoctoral work of
Gordon Taub to be started in Spring 2013) and theoretical/numerical analysis. In the flag problem, a
generalization of Lighthill’s theory to non-uniform incoming flow will be used.

− Non-linear dynamics modeling

In the energy harvesting flag problem, we so far focused on regions of the parameter space where
the long-term flapping motion of the flag is strongly periodic. Several experimental and numerical
studies have however shown that as the flow velocity is increased further, complex non-periodic or even
chaotic regimes may develop (Michelin et al., 2008; Abderrahmane et al., 2012). Understanding these
transitions and, in particular, being able to predict their occurence is essential for the robustness of the
energy harvesting flag. For the flag problem, recent results suggest that such transitions may be linked
to the nonlinear coupling of two or more unstable modes. During the NAGE project, I will investigate
such transitions and mode-coupling effects with Christophe Eloy (IRPHE), using nonlinear simulations
and weakly non-linear asymptotic analysis.
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Conclusions

In the coming years, I will continue developing the two main research topics presented in this manuscript
following various fundamental questions that I have detailed in the previous chapters. Among these, the role
of hydrodynamic interactions in the collective dynamics of multiple swimming or energy harvesting systems
will have a particularly important role, which I would like to emphasize in these concluding remarks.

In most of the problems that I have presented in this document, the dynamics of a single isolated system
in an unbounded uniform flow were considered: the nutrient concentration around a single swimming cell,
the solute distribution around an isolated phoretic microswimmer, the flapping dynamics and harvesting
efficiency of a single energy harvesting flag or vibrating cable placed in an unbounded uniform flow... For
simplicity, this approach purposely overlooked the influence of a confined environment or of neighboring
systems in order to focus on the mechanisms of the single-system dynamics.

The main challenges associated with the problems presented here, are intimately linked to the dynamics of
a single system (swimmer or energy harvester) in its environment, in particular to the presence of a boundary
(rigid wall or free surface) or of other similar systems. Indeed, swimming micro-organisms are most often
encountered in suspensions and stacking multiple energy harvesting devices in close proximity is a possible
response to their limited individual efficiency. The ultimate goal is to gain some insight on the dynamics and
efficiency of a large assembly of such individual systems (e.g. school of fish, energy harvesters farms). The
formalism and tools that can be used to treat the interaction of two individuals are likely to differ funda-
mentally and practically from those that can realistically be implemented to study the collective dynamics
of a large (and possibly dense) collection of such systems. However, the study of the two-body dynamics is
an important step in order to identify fundamental interaction mechanisms on which reduced-order model
can be built to describe a larger assembly.

In the isolated geometry considered in Chapter 1, the micro-swimmer or the phoretic particle has no
preferential direction of motion. These dynamics will be modified passively or actively by the presence of
a chemical solute gradient or of a non-uniform far-field flow, both of which are either externally-imposed
or result from the presence of a second individual. Micro-organisms have the ability to respond actively or
passively to a large variety of external forcing and gradients (e.g. gravity, temperature, shear, concentration
of a chemical tracer). This response may profoundly alter their collective behavior when each organism is
able to modify the environment of its neighbors (see for example Saintillan & Shelley, 2008; Ezhilan et al.,
2012). In the case of autophoretic particles, the purely passive coupling between the spontaneous motion of
the particle and the chemical properties of its environment (e.g. local gradient of solute concentration, other
chemically-active particles) should be characterized. This study should take three main steps: (i) the coupling
of a single particle to a far-field gradient, (ii) the coupling of two particles and (iii) the collective dynamics of
a suspension. Each stage will benefit from the results of the previous one in terms of modeling the interac-
tion using a model that is physically accurate while still remaining amenable to simple numerical simulations.

Similarly, understanding the hydrodynamic interactions of multiple energy harvesters (e.g. vibrating
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cylinders in cross flows, flapping piezoelectric flags) requires different stages: (i) considering the impact of a
non-uniform flow on the vibration properties, (ii) explicitly studying the coupled motion of two systems and
(iii) characterizing the general properties of a large assembly of harvesters. Because of the complexity of the
high-Re flows around vibrating structures, using the results of stages (i) and (ii) to construct a simplified
model for stage (iii) may not be the most appropriate route. A different approach to step (iii) is instead
to consider directly the dynamics of a large and non regular assembly of vibrating structures to try to gain
some insight on the link between the arrangements of the structures and their vibration properties. This
will be the essence of the experimental work of Gordon Taub during his postdoc starting in May 2013. In
parallel, a detailed and deterministic analysis of the behavior of a small number of structures (typically two)
will provide some important insight on the type of couplings that may develop. Furthermore, in the case
of piezoelectric flags for which the harvesting system is explicitly described, it will be possible to evaluate
the impact of electrodynamic interactions when the different vibrating structures are coupled through their
harvesting circuit.

62



Appendix A

Bibliography

Abderrahmane, H. A., Paidoussis, M. P., Fayed, M. & Ng, H. D. 2012 Nonlinear dynamics of silk
and Mylar flags flapping in axial flows. J. Wind Eng. 107–108, 225–236.

Akcabay, D. T. & Young, Y. L. 2012 Hydroelastic response and energy harvesting potential of flexible
piezoelectric beams in viscous flow. Phys. Fluids 24, 054106.

Alben, S. 2009 Simulating the dynamics of flexible bodies and vortex sheets. J. Comp. Phys. 228, 2587–
2603.

Alben, S. 2010 Regularizing a vortex sheet near a separation point. J. Comp. Phys. 229, 5280–5298.

Alben, S. & Shelley, M. J. 2008 Flapping states of a flag in an inviscid fluid: bistability and the transition
to chaos. Phys. Rev. Lett. 100, 074301.

Allen, J. J. & Smits, A. J. 2001 Energy harvesting eel. J. Fluids Struct. 15, 629–640.

Anderson, J. L. 1989 Colloid transport by interfacial forces. Ann. Rev. Fluid Mech. 21, 61–99.

Balint, T. S. & Lucey, A. D. 2005 Instability of a cantilevered flexible plate in viscous channel flow. J.
Fluids Struct. 20, 893–912.

Barrero-Gil, Antonio, Pindado, Santiago & Avila, Sergio 2012 Extracting energy from vortex-
induced vibrations: A parametric study. Applied Mathematical Modelling 36 (7), 3153 – 3160.

Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545–570.

Bearman, P. W. 1984 Vortex shedding from oscillating bluff bodies. Ann. Rev. Fluid Mech. 16, 195–222.

Benjamin, T. B. 1963 The threefold classification of unstable disturbances in flexible surfaces bounding
inviscid flows. Journal of Fluid Mechanics 16 (3), 436–450.

Berg, H. C. 2004 E. coli in motion. New York: Springer.

Bernitsas, M. M., Raghavan, K., Ben-Simon, Y. & Garcia, E. M. H. 2008 VIVACE (Vortex Induced
Vibration Aquatic Clean Energy: a new concept in generation of clean and renewable energy from fluid
flow. J. Offshore Mech. Arct. Eng. 130, 041101.

Birkhoff, G. & Zarentello, E. H. 1957 Jets, Wakes and Cavities. New York: Academic Press.

63



Bishop, R. E. D. & Hassan, A. Y. 1964 The lift and drag forces on a circular cylinder oscillating in a
flowing fluid. Proc. R. Soc. London A 277, 51–75.

Blake, J. R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46, 199–208.

Blake, J. R. & Chwang, A. T. 1974 Fundamental singularities of viscous flow. Part 1. the image system
in the vicinity of a stationary no-slip boundary. J. Eng. Math. 8, 23–29.

Blake, J. R. & Sleigh, M. A. 1974 Mechanics of ciliary locomotion. Biol. Rev. 49, 85–125.

Blevins, R. 1990 Flow-induced vibration, 2nd edn. New York: Van Nostrand Reinhold.

Bourguet, R., Karniadakis, G. E. & Triantafyllou, M. S. 2011 Vortex-induced vibrations of a long
flexible cylinder in shear flow. J. Fluid Mech. 677, 342–382.

Brady, J. F 2010 Particle motion driven by solute gradients with application to autonomous motion:
continuum and colloidal perspectives. J. Fluid Mech. 667, 216–259.

Brennen, C. & Winnet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Ann. Rev. Fluid
Mech. 9, 339–398.

Cairns, R. A. 1979 The role of negative energy waves in some instabilities of parallel flows. Journal of Fluid
Mechanics 92, 1–14.

Candelier, F., Boyer, F. & Leroyer, A. 2011 Three-dimensional extension of Lighthill’s large-amplitude
elongated-body theory of fish locomotion. J. Fluid Mech. 674, 196–226.

Chwang, A.T. & Wu, T. 1975 Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method
for Stokes flows. Journal of Fluid Mechanics 67 (04), 787–815.

Connell, B. S. H. & Yue, D. K. P. 2007 Flapping dynamics of a flag in uniform stream. J. Fluid Mech.
581, 33–67.

Coq, N., Bricard, A., Delapierre, F.-D., Malaquin, L., du Roure, O., Fermigier, M. & Bar-
tolo, D. 2011 Collective beating of artificial microcilia. Phys. Rev. Lett. 107, 014501.

Córdova-Figueroa, U. M. & Brady, J. F. 2008 Osmotic Propulsion: The Osmotic Motor. Phys. Rev.
Lett. 100 (15), 158303.

Cossu, C. & Morino, L. 2000 On the instability of a spring-mounted circular cylinder in a viscous flow at
low Reynolds numbers. J. Fluids Struct. 14, 183–196.

Crowdy, D., Lee, S., Samson, O., Lauga, E. & Hosoi, A. E. 2011 A two-dimensional model of
low-Reynolds number swimming beneath a free surface. J. Fluid Mech. 681, 24–47.

Doaré, O. 2010 Dissipation effect on local and global stability of fluid-conveying pipes. J. Sound Vib. 329,
72–83.

Doaré, O. & Michelin, S. 2011 Piezoelectric coupling in energy-harvesting fluttering flexible plates: linear
stability analysis and conversion efficiency. J. Fluids Struct. 27, 1357–1375.

Doaré, O., Sauzade, M. & Eloy, C. 2011 Flutter of an elastic plate in a channel flow: confinement and
finite-size effects. J. Fluids Struct. 27, 76–88.

64



Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A. & Bibette, J. 2005 Micro-
scopic artificial swimmers. Nature 437, 862–865.

Dunnmon, J. A., Stanton, S. C., Mann, B. P. & Dowell, E. H. 2011 Power extraction from aeroelastic
limit cycle oscillations. J. Fluids Struct. 27, 1182–1198.

Ebbens, S. J & Howse, J. R 2010 In pursuit of propulsion at the nanoscale. Soft Matter 6 (4), 726.

Eloy, C., Kofman, N. & Schouveiler, L. 2012 The origin of hysteresis in the flag instability. J. Fluid
Mech. 691, 583–593.

Eloy, C., Lagrange, R., Souilliez, C. & Schouveiler, L. 2008 Aeroelastic instability of a flexible
plate in a uniform flow. J. Fluid Mech. 611, 97–106.

Eloy, C. & Lauga, E. 2012 Kinematics of the most efficient cilium. Phys. Rev. Lett. 109, 038101.

Eloy, C., Souilliez, C. & Schouveiler, L. 2007 Flutter of a rectangular plate. J. Fluids Struct. 23,
904–919.

Evans, A. A., Ishikawa, T., Yamaguchi, T. & Lauga, E. 2011 Orientational order in concentrated
suspensions of spherical microswimmers. Phys. Fluids 23, 111702.

Ezhilan, B., Pahlavan, A. Alizadeh & Saintillan, D. 2012 Chaotic dynamics and oxygen transport
in thin films of aerotactic bacteria. Phys. Fluids 24, 091701.

Facchinetti, M. L., de Langre, E. & Biolley, F. 2004a Coupling of structure and wake oscillators in
vortex-induced vibrations. J. Fluids Struct. 19, 123–140.

Facchinetti, M. L., de Langre, E. & Biolley, F. 2004b Vortex-induced travelling waves along a cable.
Eur. J. Mech. B/Fluids 23, 199–208.

Gao, W., Sattayasamitsathit, S., Manesh, K. M., Weihs, D. & Wang, J. 2010 Magnetically powered
flexible metal nanowire motors. J. Am. Chem. Soc. 132, 14403.

Ghosh, A. & Fischer, P. 2009 Controlled propulsion of artificial magnetic nanostructured propellers.
Nano Lett. 9, 2243–2245.

Giacomello, A. & Porfiri, M. 2011 Underwater energy harvesting from a heavy flag hosting ionic
polymer metal composites. J. Appl. Phys. 109, 084903.

Golestanian, R., Liverpool, T. B. & Ajdari, A. 2005 Propulsion of a molecular machine by asymmetric
distribution of reaction products. Phys. Rev. Lett. 94 (22), 220801.

Golestanian, R, Liverpool, T B & Ajdari, A 2007 Designing phoretic micro- and nano-swimmers.
New J. Phys. 9, 126.

Gray, J. & Hancock, G. J. 1955 The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32, 802–814.

Grouthier, C., Michelin, S. & de Langre, E. 2012 Optimal energy harvesting by vortex-induced
vibrations in cables. In Proceedings of the 10th International Conference on Flow-Induced Vibrations (and
Flow-Induced Noise) FIV 2012 . Dublin, Ireland.

Gueron, S. & Levit-Gurevich, K. 1999 Energetic considerations of ciliary beating and the advantage of
metachronal coordination. Proc. Natl. Ac. Sci. 96, 12240–5.

65



Gueron, S., Levit-Gurevich, K., Liron, N. & Blum, J. J. 1997 Cilia internal mechanism and
metachronal coordination as a result of hydrodynamic coupling. Proc. Natl. Ac. Sci 94, 6001–6006.

Gueron, S. & Liron, N. 1992 Ciliary motion modeling and dynamic multicilia interactions. Biophys. J.
63, 1045–1058.

Gueron, S. & Liron, N. 1993 Simulations of three-dimensional ciliary beats and cilia interactions. Biophys.
J. 65, 499–507.

Guirao, B. & Joanny, J.-F. 2007 Spontaneous creation of macroscopic flow and metachronal waves in an
array of cilia. Biophys. J. 92, 1900–1917.

Guo, C. Q. & Païdoussis, M. P. 2000 Stability of rectangular plates with free side-edges in two-dimensional
inviscid channel flow. J. Appl. Mech. 67, 171–176.

Guyomard, D., Badel, A., Lefeuvre, E. & Richard, C. 2005 Towards energy harvesting using active
materials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 52, 584–594.

Halbert, S. A., Tam, P. Y. & Blandau, R. J. 1976 Egg transport in the rabbit oviduct: the roles of
cilia and muscle. Science 191, 1052–1053.

Hancock, G. J. 1953 The self-propulsion of microscopic organisms through liquids. Proc. R. Soc. Lond. A
217, 96–121.

Hartlen, R. T. & Curie, I. G. 1970 Lift-oscillator model of vortex-induced vibration. J. Eng. Mech.
EM5, 577–591.

Howse, J. R., Jones, R. A. L., Ryan, A. J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007
Self-motile colloidal particles: From directed propulsion to random walk. Phys. Rev. Lett. 99 (4), 048102.

Huang, L. 1995 Flutter of cantilevered plates in axial flow. J. Fluids Struct. 9, 127–147.

Huang, W.-X. & Sung, H. J. 2010 Three-dimensional simulation of a flapping flag in uniform flow. J.
Fluid Mech. 653, 301–336.

Hussong, J., Breugem, W.-P. & Westerweel, J. 2011 A continuum model for flow induced by
metachronal coordination between beating cilia. J. Fluid Mech. 684, 137–162.

Ishikawa, T. & Pedley, T. J. 2007 Diffusion of swimming model micro-organisms in a semi-dilute sus-
pension. J. Fluid Mech. 588, 437–462.

Ishikawa, T., Simmonds, M. P. & Pedley, T. J. 2006 Hydrodynamic interaction of two swimming model
micro-organisms. J. Fluid Mech. 568, 119–160.

Ishikawa, T., Simmonds, M. P. & Pedley, T. J. 2007 The rheology of a semi-dilute suspension of
swimming model micro-organisms. J. Fluid Mech. 588, 399–435.

Jia, L.-B., Li, F., Yin, X.-Z. & Yin, X.-Y. 2007 Coupling modes between two flapping filaments. J. Fluid
Mech. 581, 199–220.

Jülicher, F & Prost, J 2009 Generic theory of colloidal transport. Eur. Phys. J. E 29 (1), 27–36.

Kanevsky, A., Shelley, M. J. & Tornberg, A.-K. 2010 Modeling simple locomotors in Stokes flow. J.
Comp. Phys. 229, 958–977.

66



Kanso, E. & Marsden, J. E. 2005 Optimal motion of an articulated body in a perfect fluid. In Proc.
CDC , , vol. 44, pp. 2511–2516.

Kanso, E., Marsden, J. E., Rowley, C. W. & Melli-Huber, J. 2005 Locomotion of articulated bodies
in a perfect fluid. J. Nonlin. Science 15, 255–289.

Kline, T. R., Paxton, W. F., Mallouk, T. E. & Sen, A. 2005 Catalytic nanomotors: Remote-controlled
autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 44, 744–746.

Kornecki, A., Dowell, E. H. & O’Brien, J. 1976 On the aeroelastic instability of two-dimensional
panels in uniform incompressible flow. J. Sound Vib. 47, 163–178.

de Langre, E. 2006 Frequency lock-in is caused by coupled-mode flutter. J. Fluids Struct. 22, 783–791.

Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming micro-organisms. Rep. Prog. Phys.
72, 096601.

Lemaitre, C., Hémon, P. & de Langre, E. 2005 Instability of a long ribbon hanging in axial air flow.
J. Fluids Struct. 20, 913–925.

Lenz, P. & Ryskin, A. 2006 Collective effects in ciliary arrays. Phys. Biol. 3, 285–294.

Leshansky, A. M., Kenneth, O., Gat, O. & Avron, J. E. 2007 A frictionless microswimmer. New J.
Phys. 9, 145.

Lighthill, M.J. 1971 Large-amplitude elongated-body theory of fish locomotion. Proc. Roy. Soc. B 179,
125–138.

Lighthill, M. J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at
very small Reynolds numbers. Comm. Pure App. Math. 5, 109–118.

Lin, Z., Thiffeault, J.-L. & Childress, S. 2011 Stirring by squirmers. J. Fluid Mech. 669, 167–177.

Magar, V., Goto, T. & Pedley, T. J. 2003 Nutrient uptake by a self-propelled steady squirmer. Q. J.
Appl. Maths 56, 65–91.

Magar, V. & Pedley, T. J. 2005 Average nutrient uptake by a self-propelled unsteady squirmer. J. Fluid
Mech. 539, 93–112.

Mathelin, L. & de Langre, E. 2005 Vortex-induced vibrations and waves under shear flow with a wake
oscillator model. Eur. J. Mech. B 24, 478–490.

Meliga, P. & Chomaz, J. M. 2011 An asymptotic expansion of the vortex-induced vibrations of a circular
cylinder. J. Fluid Mech. 671, 137–167.

Meliga, P., Chomaz, J. M. & Gallaire, F. 2011 Extracting energy from a flow: An asymptotic approach
using vortex-induced vibrations and feedback control. J. Fluids Struct. 27, 861–874.

Michelin, S. 2009 Falling, flapping, flying, swimming...: high-Re fluid-solid interactions with vortex shed-
ding. PhD thesis, Univeristy of California, San Diego.

Michelin, S. & Doaré, O. 2012 Energy harvesting efficiency of piezoelectric flags in axial flows. J. Fluid
Mech. 714, 489–504.

67



Michelin, S. & Lauga, E. 2010a Efficiency optimization and symmetry-breaking in an envelope model
for ciliary locomotion. Phys. Fluids 22, 111901.

Michelin, S. & Lauga, E. 2010b The long-time dynamics of two hydrodynamically-coupled swimming
cells. Bull. Math. Biol. 72, 973–1005.

Michelin, S. & Lauga, E. 2011 Optimal feeding is optimal swimming for all Péclet numbers. Phys. Fluids
23 (10), 101901.

Michelin, S. & Lauga, E. 2013 Unsteady feeding and optimal strokes of model ciliates. J. Fluid Mech.
715, 1–31.

Michelin, S., Lauga, E. & Bartolo, D. 2013 Spontaneous autophoretic motion of isotropic particles.
(under review) preprint http://arxiv.org/abs/1211.6935.

Michelin, S. & Llewellyn Smith, S. G. 2009a Linear stability analysis of coupled parallel flexible plates
in an axial flow. J. Fluids Struct. 25, 1136–1157.

Michelin, S. & Llewellyn Smith, S. G. 2009b Resonance and propulsion performance of a heaving
flexible wing. Phys. Fluids 21, 071902.

Michelin, S. & Llewellyn Smith, S. G. 2009c An unsteady point vortex method for coupled fluid-solid
problems. Theor. Comp. Fluid Dyn. 23, 127–153.

Michelin, S. & Llewellyn Smith, S. G. 2010 Falling cards and flapping flags: understanding fluid-solid
interactions using an unsteady point vortex model. Theor. Comp. Fluid Dyn. 24, 195–200.

Michelin, S., Llewellyn Smith, S. G. & Glover, B. J. 2008 Vortex shedding model of a flapping flag.
J. Fluid Mech. 617, 1–10.

Newman, D. J. & Karniadakis, G. E. 1997 A direct numerical simulation study of flow past a freely
vibrating cable. J. Fluid Mech. 344, 95–136.

Niedermayer, T., Eckhardt, B. & Lenz, P. 2008 Synchronization, phase locking and metachronal wave
formation in ciliary chains. Chaos 18, 037128.

Osterman, N. & Vilfan, A. 2011 Finding the ciliary beating pattern with optimal efficiency. Proc. Natl.
Ac. Sci. USA 108, 15727–15732.

Paidoussis, M. P. 1998 Fluid-Structure Interactions, Slender Structures and Axial Flows, , vol. 1. Academic
Press, London.

Paidoussis, M. P. 2004 Fluid-Structure Interactions, Slender Structures and Axial Flows, , vol. 2. Academic
Press, London.

Paidoussis, M. P., Price, S. J. & de Langre, E. 2010 Fluid-Structure Interactions. Cambridge Univer-
sity Press.

Pak, O. S., Gao, W., Wang, J. & Lauga, E. 2011 High-speed propulsion of flexible nanowire motors:
Theory and experiments. Soft Matter 7, 8169–8181.

Parkinson, G. 1989 Phenomena and modeling of flow-induced vibrations of bluff bodies. Prog. Aerospace
Sci. 26, 169–224.

68



Paxton, W F, Kistler, K C, Olmeda, C C, Sen, A, Angelo, S K St, Cao, Y, Mallouk, T E,
Lammert, P E & Crespi, V H 2004 Catalytic nanomotors: Autonomous movement of striped nanorods.
J. Am. Chem. Soc. 126 (41), 13424–13431.

Pedley, T. J. & Kessler, J. O. 1992 Hydrodynamic phenomena in suspensions of swimming microor-
ganisms. Ann. Rev. Fluid Mech. 24, 313–358.

Peng, Z. & Zhu, Q. 2009 Energy harvesting through flow-induced oscillations of a foil. Phys. Fluids 21,
123602.

Popescu, M. N., Dietrich, S., Tasinkevych, M. & Ralston, J. 2010 Phoretic motion of spheroidal
particles due to self-generated solute gradients. Eur. Phys. J. E 31, 351–367.

Pozrikidis, C. 1997 Introduction to Theoretical and Computational Fluid Dynamics . Oxford: Oxford Univ.
Press.

Purcell, E. M. 1977 Life at low-Reynolds number. Am. J. Phys. 45, 3–11.

Ristroph, L. & Zhang, J. 2008 Anomalous hydrodynamic drafting of interacting flapping flags. Phys.
Rev. Lett. 101, 194502.

Ruckenstein, E. 1981 Can phoretic motions be treated as interfacial tension gradient driven phenomena?
J. Colloid Interface Sci. 83, 77–81.

Sabass, B. & Seifert, U. 2012a Dynamics and efficiency of a self-propelled, diffusiophoretic swimmer. J.
Chem. Phys. 136, 064508.

Sabass, B. & Seifert, U. 2012b Nonlinear, electrocatalytic swimming in the presence of salt. J. Chem.
Phys. 136 (21), 214507.

Saintillan, D. & Shelley, M. J. 2008 Instabilities and pattern formation in active particle suspensions:
kinetic theory and continuum simulations. Phys. Rev. Lett. 100, 178103.

Schouveiler, L. & Eloy, C. 2009 Coupled flutter of parallel plates. Phys. Fluids 21, 081703.

Sharifi-Mood, N., Koplik, J. & Maldarelli, C. 2013 Diffusiophoretic self-propulsion of colloids driven
by a surface reaction: the sub-micron particle regime for exponential and van der Waals interactions. Phys.
Fluids 25, 012001.

Shelley, M., Vandenberghe, N. & Zhang, J. 2005 Heavy flags undergo spontaneous oscillations in
flowing water. Phys. Rev. Lett. 94, 094302.

Shelley, M. J. & Zhang, J. 2011 Flapping and bending bodies interacting with fluid flows. Ann. Rev.
Fluid Mech. 43, 449–465.

Singh, K., Michelin, S. & de Langre, E. 2012a The effect of non-uniform damping on flutter in axial
flow and energy harvesting strategies. Proc. R. Soc. A 468, 3620–3635.

Singh, K., Michelin, S. & de Langre, E. 2012b Energy harvesting from axial fluid-elastic instabilities
of a cylinder. J. Fluids Struct. 30, 159–172.

Sleigh, M. A., Blake, J. R. & Liron, N. 1988 The propulsion of mucus by cilia. Am. Rev. Resp. Dis.
137, 726–741.

69



Spagnolie, S. E. & Lauga, E. 2010a Jet propulsion without inertia. Phys. Fluids 22, 081902.

Spagnolie, S. E. & Lauga, E. 2010b The optimal elastic flagellum. Phys. Fluids 22, 031901.

Spagnolie, S. E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near a boundary: predictions and
accuracy of far-field approximations. J. Fluid Mech. 700, 105–147.

Stone, H. A. & Samuel, A. D. T. 1996 Propulsion of microorganisms by surface distorsions. Phys. Rev.
Lett. 77, 4102.

Tam, D. & Hosoi, A. E. 2007 Optimal stroke patterns for purcell’s three-link swimmer. Phys. Rev. Lett.
98 (6), 068105.

Tam, D. & Hosoi, A. E. 2011a Optimal feeding and swimming gaits of biflagellated organisms. Proceedings
of the National Academy of Sciences 108 (3), 1001.

Tam, D. & Hosoi, A. E. 2011b Optimal kinematics and morphologies for spermatozoa. Phys. Rev. E 83,
045303.

Tang, L. & Païdoussis, M. P. 2009 The coupled dynamics of two cantilevered flexible plates in axial flow.
J. Sound Vib. 323, 214–231.

Taylor, G.I. 1952 Analysis of the swimming of long and narrow animals. Proc. Roy. Soc Lon. A 214,
158–183.

Techet, A. H., Allen, J. J. & Smits, A. J. 2002 Piezoelectric eels for energy harvesting in the ocean.
In Proceedings of the Twelfth International Offshore and Polar Engineering Conference, pp. 713–718.
Kitakyushu, Japan.

Thutupalli, S., Seemann, R. & Herminghaus, S. 2011 Swarming behavior of simple model squirmers.
New J. Phys. 13, 073021.

Tian, F.-B., Luo, H., Zhu, L., Liao, J. & Lu, X.-Y. 2011 An efficient immersed boundary-lattice
boltzmann method for the hydrodynamic interactions of elastic filaments. J. Comp. Phys. 230, 7266–7283.

Tierno, P., Guell, O., Sagues, F., Golestanian, R. & Pagonabarraga, I. 2010 Controlled propul-
sion in viscous fluids of magnetically actuated colloidal doublets. Phys. Rev. E 81, 011402.

Vilfan, A. 2012 Optimal shapes of surface slip driven self-propelled microswimmers. Phys. Rev. Lett. 109,
128105.

Vilfan, A. & Julicher, F. 2006 Hydrodynamic flow patterns and synchronization of beating cilia. Phys.
Rev. Lett. 96, 058102.

Violette, R., de Langre, E. & Sydlowski, J. 2007 Computation of vortex-induced vibrations of long
structures using a wake oscillator model: Comparison with DNS and experiments. Comp. Struct. 85,
1134–1141.

Violette, R., de Langre, E. & Sydlowski, J. 2010 A linear approach to vortex-induced vibrations and
waves. J. Fluids Struct. 26, 442–466.

Watanabe, Y., Isogai, K., Suzuki, S. & Sugihara, M. 2002a A theoretical study of paper flutter. J.
Fluids Struct. 16, 543–560.

70



Watanabe, Y., Suzuki, S., Sugihara, M. & Sueoka, Y. 2002b An experimental study of paper flutter.
J. Fluids Struct. 16, 529–542.

Westwood, A. 2004 Ocean power wave and tidal energy review. Refocus 5, 50–55.

Williamson, C. H. K. & Brown, G. L. 1998 A series in 1/Re1/2 to represent the Strouhal-Reynolds
relationship of the cylinder wake. J. Fluids Struct. 12, 1073–1085.

Williamson, C. H. K. & Govardhan, R. 2004 Vortex-induced vibrations. Ann. Rev. Fluid Mech. 36,
413–455.

Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J.
Fluids Struct. 2, 355–381.

Yoshinaga, N., Nagai, K. H., Sumino, Y. & Kitahata, H. 2012 Drift instability in the motion of a
fluid droplet with a chemically reactive surface driven by marangoni flow. Phys. Rev. E 86, 016108.

Yoshitake, Y., Sueoka, A., Yamasaki, M., Sugimura, Y. & Ohishi, T. 2004 Quenching of vortex-
induced vibrations of towering structure and generation of electricity using hula-hoops. Journal of Sound
and Vibration 272 (1–2), 21 – 38.

Zhang, J., Childress, S., Libchaber, A. & Shelley, M. 2000 Flexible filaments in a flowing soap film
as a model for one-dimensional flags in a two-dimensional wind. Nature 408, 835–839.

Zhao, G. & Pumera, M. 2012 Macroscopic self-propelled objects. Chem. Asian J. 7 (9), 1994–2002.

Zhu, L. 2007 Viscous flow past a flexible fibre tethered at its center point: vortex shedding. J. Fluid Mech.
587, 217–234.

Zhu, L. & Peskin, C. 2002 Simulation of flapping flexible filament in a flowing soap film by the immersed
boundary method. J. Comput. Phys. 179, 452–468.

Zhu, L. & Peskin, C. 2003 Interaction of two flapping filaments in a flowing soap film. Phys. Fluids 15,
1954–1960.

Zhu, Q. 2012 Energy harvesting by a purely passive flapping foil in shear flows. J. Fluids Struct. 34, 157–169.

Zhu, Q. & Peng, Z. 2009 Mode coupling and flow energy harvesting by a flapping foil. Phys. Fluids 21,
033601.

71



72



Sébastien Michelin
Assistant Professor
Ingénieur en Chef des Mines

LadHyX – Ecole polytechnique
91128 Palaiseau, France
T (+33) 1 69 33 52 73

sebastien.michelin@ladhyx.polytechnique.frÍ http://www.off-ladhyx.polytechnique.fr/people/michelin/

Research interests and projects
− High-Re fluid-solid interactions, stability analysis and nonlinear dynamics.
− Energy harvesting from fluid-solid instabilities.
− Biological locomotion.
− Optimization problems in fluid-solid interactions.
− Low-Re swimming and hydrodynamical interactions between swimming micro-organisms.
− Advection-diffusion in low-Re flows.
− Complex analysis, conformal mapping and potential flows.
− Vortex dynamics and stability analysis.

Education
2009 PhD in Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA,

Falling, flapping, flying, swimming... : high-Re fluid-solid interactions with vortex shedding
PhD advisor : Pr. Stefan G. Llewellyn Smith.

2007 M.S. in Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA.
2005 Ingénieur du Corps des Mines, Ecole des Mines de Paris, Paris, France.
2002 Diplôme d’Ingénieur, Ecole polytechnique, Palaiseau, France.

Academic Employment
2010–present Assistant Professor, LadHyX, Département de Mécanique – Ecole polytechnique,

Palaiseau, France.
2009 Post-doctoral Researcher, Mechanical and Aerospace Engineering – University of Cali-

fornia, San Diego, La Jolla, CA, USA.
2005–2009 Graduate Student Researcher, Mechanical and Aerospace Engineering – University of

California, San Diego, La Jolla, CA, USA.
2003–2004 Visiting Scientist, Scripps Institution of Oceanography, La Jolla, CA, USA.

2002 Research Intern, Département d’Aérodynamique Fondamentale et Expérimentale –
ONERA, Meudon, France.

Teaching Experience
2013–present MEC432 – Fluid Mechanics, Petites Classes, Ecole polytechnique, France.
2011–present MEC581 – Projects in Mechanics, Ecole polytechnique, France.
2010–present MEC431 – Continuum Mechanics I, Petites Classes, Ecole polytechnique, France.

2011–2012 MEC561 – Fluid-Structure Interactions, Petites Classes, Ecole polytechnique, France.
2012 MS206 – Fluid-Structure Interactions, Petites Classes, substitution, ENSTA ParisTech,

France.
2009 MAE107 – Computational Methods in Engineering, Instructor, UCSD, CA, USA.
2006 MAE210A – Graduate Level Fluid Mechanics, Teaching Assistant, UCSD, CA, USA.

Grants
2011–2014 Marie-Curie International Reintegration Grant, PI : S. Michelin, 75,000e.
2012–2013 LASIPS Grant, PI : O. Doaré, 57,000e.
2013–2016 ANR Young Investigator Grant (ANR JCJC), PI : S. Michelin, 228,000e.

Awards and Honors
2009 Summer Graduate Student Teaching Fellowship

mailto:sebastien.michelin@ladhyx.polytechnique.fr
http://http://www.off-ladhyx.polytechnique.fr/people/michelin/


2009 MAE Dissertation Fellowship
2008 MAE Outstanding Graduate Student Award

2005–2007 Jacobs School of Engineering Graduate Fellowship
2002–2005 Corps des Mines Fellowship

2002 Prix L. E. Rivot – French Academy of Sciences

Refereed Publications
19. S. Michelin, E. Lauga and D. Bartolo, 2013 : Spontaneous autophoretic motion of isotropic particles

(under review)
18. X. Amandolese, S. Michelin and M. Choquel, 2013 : Low speed flutter and limit-cycle oscillations of a

two-degree-of-freedom flat plate in a wind tunnel (under review)
17. C. Grouthier, S. Michelin, Y. Modarres-Sadeghi and E. de Langre : Self-similar vortex-induced vibrations

of a hanging string, J. Fluid Mech., (in press)
16. S. Michelin and E. Lauga, 2013 : Unsteady feeding and optimal strokes of model ciliates, J. Fluid

Mech., 715, 1–31
15. S. Michelin and O. Doaré, 2013 : Energy harvesting efficiency of piezoelectric flags in axial flows, J.

Fluid Mech., 714, 489–504
14. K. Singh, S. Michelin and E. de Langre, 2012 : Effect of damping on flutter in axial flow and

energy-harvesting strategies, Proc. Roy. Soc. A, 468, 3620–3635
13. K. Singh, S. Michelin and E. de Langre, 2012 : Energy harvesting from fluid-elastic instabilities of a

cylinder, J. Fluids Struct., 30, 159–172
12. S. Michelin and E. Lauga, 2011 : Optimal feeding is optimal swimming for all Péclet numbers, Phys.

Fluids, 23 (10), 101901
11. D. Lopez, S. Michelin and E. de Langre, 2011 : Flow-induced pruning of branched systems and brittle

reconfiguration, J. Theor. Biol., 284, 117–124
10. O. Doaré and S. Michelin, 2011 : Piezoelectric energy harvesting from flutter instability : local/global

linear stability and efficiency, J. Fluids Struct., 27, 1357–1375
9. S. Michelin and E. Lauga, 2010 : Efficiency optimization and symmetry-breaking in a model of ciliary

locomotion, Phys. Fluids, 22 (11), 111901
8. S. Michelin and E. Lauga, 2010 : The long-time dynamics of two-hydrodynamically coupled swimming

cells, Bull. Math. Biol., 72, 973–1005
7. S. Michelin and S. G. Llewellyn Smith, 2010 : Falling cards and flapping flags : understanding fluid-solid

interactions using an unsteady point vortex model, Theor. Comp. Fluid Dyn., 24, 195–200
6. S. Michelin and S. G. Llewellyn Smith, 2009 : Linear stability analysis of coupled parallel flexible plates

in an axial flow, J. Fluids Struct., 25, 1136–1157
5. S. Michelin and S. G. Llewellyn Smith, 2009 : Resonance and propulsion performance of a heaving

flexible wing, Phys. Fluids, 21 (7), 071902
4. S. Michelin and S. G. Llewellyn Smith, 2009 : An unsteady point vortex method for coupled fluid-solid

problems, Theor. Comp. Fluid Dyn., 23, 127–153
3. S. Michelin, S. G. Llewellyn Smith and B. J. Glover, 2008 : Vortex shedding model of a flapping flag,

J. Fluid Mech., 617, 1–10
2. S. G. Llewellyn Smith, S. Michelin and D. G. Crowdy, 2008 : The dipolar field of rotating bodies in

two dimensions J. Fluid Mech., 607, 109–118
1. D. Sipp, D. Fabre, S. Michelin and L. Jacquin, 2005 : Stability of a vortex with a heavy core, J. Fluid

Mech., 526, 67–76

Conference proceedings
− K. Singh, S. Michelin and E. de Langre : Energy harvesting from axial flow-induced instabilities in

slender structures. Proceedings of the 10th International Conference on Flow-Induced Vibrations (and
Flow-Induced Noise) – FIV 2012, Dublin, Ireland, July 2012

− C. Grouthier, S. Michelin and E. de Langre : Optimal energy harvesting by Vortex-Induced Vibrations in
Cables. Proceedings of the 10th International Conference on Flow-Induced Vibrations (and Flow-Induced
Noise) – FIV 2012, Dublin, Ireland, July 2012



− S. Michelin and O. Doaré : Flow energy harvesting from piezoelectric flags. Proceedings of the
10th International Conference on Flow-Induced Vibrations (and Flow-Induced Noise) – FIV 2012, Dublin,
Ireland, July 2012

− X. Amandolèse, S. Michelin and M. Choquel : Low-speed flutter and limit-cycle oscillations of a
flat plate section in a wind tunnel. Proceedings of the 10th International Conference on Flow-Induced
Vibrations (and Flow-Induced Noise) – FIV 2012, Dublin, Ireland, July 2012

− S. Michelin, K. Singh and E. de Langre : Flow energy harvesting by fluttering slender bodies in axial
currents. Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic
Engineering OMAE2011, Rotterdam, The Netherlands, June 2011

Other conference presentations
− S. Michelin, D. Bartolo & E. Lauga : Advective effects on the propulsion of phoretic micro-swimmers.

65th Annual Meeting of the American Physical Society – Division of Fluid Dynamics, San Diego, CA,
November 2012

− S. Michelin, K. Singh and E. de Langre : Energy harvesting using flapping flags in axial flows. Fluid &
Elasticity 2012, La Jolla, CA, November 2012

− S. Michelin and E. Lauga : Swimming and feeding : optimal strokes of model ciliates. Biological Flow :
A Conference to Celebrate the 70th birtday of T. J. Pedley, Cambridge, UK, April 2012

− S. Michelin and E. Lauga : Optimal feeding vs. optimal swimming of model ciliates. 64th Annual
Meeting of the American Physical Society – Division of Fluid Dynamics, Baltimore, MD, November 2011

− S. Michelin and E. Lauga : Optimal swimming of model ciliates. 63rd Annual Meeting of the American
Physical Society – Division of Fluid Dynamics, Long Beach, CA, November 2010

− S. Michelin and E. Lauga : Propulsion ciliée à bas Reynolds : Efficacité, optimisation et brisure de
symétrie. Self-propelled motions in fluids : Modeling, Analysis and Control, Nancy, France, October 2010

− S. Michelin and E. Lauga : Efficiency optimization and symmetry-breaking in an envelope model
of ciliary locomotion. Individual and Collective Fluid Mechanics of Swimming Microorganisms, Glasgow,
Scotland, July 2010

− S. Michelin and S.G. Llewellyn Smith : Thrust production and vortex wake generated by flapping
flexible wings. BBVIV 6, Capri, Italy, June 2010

− S. Michelin and S.G. Llewellyn Smith : Flapping of flexible sheets in high-Re flows and applications to
locomotion. Fluid & Elasticity 2009, Carry-le-Rouet, France, June 2009.

− S. Michelin and S.G. Llewellyn Smith : Propulsive performance of a heaving flexible membrane. 3rd

Southern California Symposium on Flow Physics, La Jolla, CA, April 2009.
− S. Michelin and S.G. Llewellyn Smith : A vortex shedding model of a flapping membrane. 61st Annual

Meeting of the American Physical Society – Division of Fluid Dynamics, San Antonio, TX, November
2008.

− S. Michelin and S.G. Llewellyn Smith : Falling, flapping, flying, swimming,... : understanding fluid-solid
interactions using an unsteady point vortex model. IUTAM Symposium : 150 years of vortex dynamics,
Copenhagen, Denmark, October 2008

− S. Michelin and S.G. Llewellyn Smith : High-Re flows past flexible flapping profiles. 2nd Southern
California Symposium on Flow Physics, Santa Monica, CA, April 2008.

− S. Michelin and S.G. Llewellyn Smith : Flying, swimming, falling,... : fluid-solid interactions with vortex
shedding. 60th Annual Meeting of the American Physical Society – Division of Fluid Dynamics, Salt
Lake City, UT, November 2007.

− S. Michelin and S.G. Llewellyn Smith : Application of point vortices model to Maxwell’s problem.
Third European SCAT Workshop and Summerschool, “Vortices and Vortex Sheets : theorics, numerics
and applications”., Porquerolles, France, June 2007.

− S. Michelin and S.G. Llewellyn Smith : Application of a vortex shedding model to Maxwell’s problem.
Southern California Symposium on Flow Physics, Pasadena, CA, April 2007.

− S. Michelin, and S.G. Llewellyn Smith : Vortex Shedding and Maxwell’s problem. 59th Annual Meeting
of the American Physical Society – Division of Fluid Dynamics, Tampa, FL, November 2006.

Seminars
2013 PCT Gulliver, ESPCI, Paris, France
2012 Institut Jean le Rond d’Alembert, UPMC, Paris, France

FLOW Center, KTH, Stockholm, Sweden
2011 PMMH, ESPCI, Paris, France
2010 LIMSI, Orsay, France



2008 LadHyX, Ecole polytechnique, Palaiseau, France
IMFT, Toulouse, France
IRPHE, Marseille, France
PMMH, ESPCI, Paris, France

2007 DAFE, ONERA, Meudon, France
Scripps Institution of Oceanography, La Jolla, CA, USA

2005 DAFE, ONERA Meudon, France
2004 Scripps Institution of Oceanography, La Jolla, CA, USA

Students and postdocs
Postdocs

Kiran Singh Postdoc, LadHyX (2010–2012)
Gordon Taub Postdoc, LadHyX (2013–2014)

PhD students
Diego Lopez co-advised with E. de Langre, LadHyX (2009–2012)

Title : Modeling reconfiguration strategies in plants submitted to flow
Clément Grouthier co-advised with E. de Langre, LadHyX (2010–present)
Yifan Xia LadHyX (2012–present)

Masters students
Witold Krasny EPFL, LadHyX (2011–2012)
Yifan Xia Ecole Centrale de Lyon, LadHyX (2012)

Undergraduate interns/projects
Maxime Choquel co-advised with X. Amandolèse, LadHyX (2010–2011)
Pierre Pinta co-advised with C. Baroud, LadHyX (2010–2011)
Juan Ruiz Ruiz co-advised with C. Clanet, LadHyX (2012–2013)

Service
Administration

Deputy director of LadHyX (2013 – present)

Reviewer
Journal of Fluid Mechanics, Journal of Fluids and Structures, Physics of Fluids, Theoretical
and Computational Fluid Dynamics, Engineering Structures, Experimental Mechanics,
International Journal of Non-Linear Mechanics, Journal of the Royal Society – Interface,
Archive of Applied Mechanics, Applied Mathematical Modelling, Proceedings of the Royal
Society A, Transport in Porous Media.

Israel Science Foundation, Agence Nationale pour la Recherche, Fonds de la Recherche
Scientifique – FNRS

Memberships

American Physical Society


