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a b s t r a c t

Whereas most plants are flexible structures that undergo large deformations under flow, another
process can occur when the plant is broken by heavy fluid-loading. We investigate here the mechanism
of such possible breakage, focusing on the flow-induced pruning that can be observed in plants or
aquatic vegetation when parts of the structure break under flow. By computation on an actual tree
geometry, a 20-yr-old walnut tree (Juglans Regia L.) and comparison with simple models, we analyze
the influence of geometrical and physical parameters on the occurrence of branch breakage and on the
successive breaking events occurring in a tree-like structure when the flow velocity is increased. We
show that both the branching pattern and the slenderness exponent, defining the branch taper, play a
major role in the breakage scenario. We identify a criterion for branch breakage to occur before
breakage of the trunk. In that case, we show that the successive breakage of peripheral branches allows
the plant to sustain higher flow forces. This mechanism is, therefore, similar to elastic reconfiguration,
and can be seen as a second strategy to overcome critical events, possibly a widespread solution in
plants and benthic organisms.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Most living systems are surrounded by a fluid, be it air or water.
When this fluid flows, it generates mechanical forces, that may have
major consequences on growth as well as on reproduction or
survival (Moulia et al., 2006; Koehl et al., 2008; de Langre, 2008).
Typical cases are trees subjected to wind or corals subjected to
water currents. In terms of flow-induced deformations, two typical
behaviors can be pointed out. In the most common one, the solid
undergoes large elastic deformations, for instance in crops or aquatic
vegetation. In the second type, the system breaks before any
significant deformation can occur; this will be referred to as brittle
behavior in the following. The former has been abundantly studied,
a key result being that of load reduction by elastic reconfiguration
(Vogel, 1989; Gosselin et al., 2010). The latter has already been
described in trees or corals (Koehl, 1984; Niklas and Spatz, 1999),
but to the best of our knowledge the effect of branching has never
been studied theoretically. Therefore, we shall focus hereafter on
brittle branched slender systems, which are ubiquitous in nature:
trees (McMahon, 1975), bushes, algae (Koehl, 1984), corals (Madin,
2005) and corallines (Martone and Denny, 2008), to list a few. In the
following we refer mainly to trees under wind loading, with the
understanding that these results are also applicable to a large
variety of other biological systems under fluid-loading.

For a brittle branched system attached to a support, breakage
under flow may occur in three distinct types: (i) base breakage,
Fig. 1a, when the attachment to the ground is broken, as in
uprooting, (ii) trunk breakage, Fig. 1b, when the main element is
broken, and (iii) branch breakage, Fig. 1c, when an upper element
breaks, as in flow-induced pruning.

In fact, the distinction between trunk and branch breakage has
a biological relevance, since breakage of the trunk is likely to be
fatal, while re-growth is often possible after branch breakage.
Moreover, branch breakage does reduce loads on the trunk and
the attachment, as in elastic reconfiguration, thereby delaying
their breakage (Koehl, 1984; Niklas and Spatz, 2000). Finally,
branch breakage can also be part of the asexual reproduction
process by propagation. This is observed in terrestrial plants such
as willows and poplars (Beismann et al., 2000), and in stony corals
such as Acropora Cervicornis or Acropora Palmata (Tunnicliffe,
1981; Highsmith, 1982).

Breakage is the consequence of an unacceptable stress level; it is,
therefore, directly related to the stress state in the structure (Niklas
and Spatz, 2000; Gardiner and Quine, 2000). In particular, the issue
of whether the stress level is uniform or not in the tree is crucial, as
breakage is expected to occur at the point of maximal stress. For
instance, Niklas and Spatz (2000) showed that in a cherry tree the
stress level varies by one to two orders of magnitude within the tree
and has a local maximum in the branches. On the other hand, Bejan
et al. (2008) showed that the flow-induced stress is uniform for a
tapered trunk when the taper is linear. In fact the stem taper is an
important parameter regarding the stress distribution; see the
discussion in Larjavaara (2010).
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Several questions remain, however, regarding the flow-induced
breakage of tree-like structures: (i) what are the effects of the
geometrical and physical parameters on the occurrence of branch
breakage? (ii) How do the breaking events occur successively as the
flow is increased? (iii) Assuming that branch breakage is favorable in
biological terms, is it compatible with other constraints on the
geometry? The aim of this paper is to address these questions, using
simple numerical and analytical models for the mechanical behavior
of slender and brittle structures. The modeling assumptions and
framework used throughout the paper are first presented in Section
2. In Section 3, we compute the stress distribution and successive
breaking events in a complex tree, using the geometry of an actual
walnut tree. Using an idealized branched system, we derive condi-
tions for branch breakage in Section 4. These are further analyzed for
a tapered beam, here referred to as the slender cone model, in
Section 5. The corresponding three geometries are sketched in Fig. 2.
Finally a general discussion and conclusion are given in Section 6.

2. Mechanical model and parameters

Throughout the paper, we consider a cross-flow over the entire
structure, uniform, as the dependence of the stress on the wind

velocity profile was shown to be small (Niklas and Spatz, 2000).
Also, only static loads are taken into account, and the correspond-
ing fluid force magnitude f per unit length reads

f ¼ 1
2rCDDU

2, ð1Þ

where U is the free stream velocity, r its density, D the local
branch diameter and CD the drag coefficient (de Langre, 2008;
Madin and Connolly, 2006). The direction is assumed to be that of
the flow velocity. The fluid load is here computed on a leafless
branch, and the influence of leaves will be discussed in Section 6.

This load is applied on the whole branched system, which is
held by a perfect clamping at the base. Because of the high
slenderness of the system, we use a standard linear beam theory
to derive the stress state, essentially the bending moment M. The
maximum stress in the cross-section resulting from this bending
moment is the skin stress, defined as S¼ 32M=pD3 (Niklas, 1992;
Gere and Timoshenko, 1990).

The brittle behavior is introduced as follows: (i) the deforma-
tions are assumed to be negligible, so the stress state is computed
on the initial configuration, without elastic reconfiguration, (ii)
when increasing the flow velocity U, breakage occurs when and
where the local skin stress S reaches a critical value, Sc. Then, the
broken branch is removed, and this results in a new flow-induced

Fig. 1. Schematic view of breakage process in a branched brittle system under flow. (a) Base breakage, (b) Trunk breakage, (c) Branch breakage.

Fig. 2. Geometries of the models used in the paper: (a) Section 3: Walnut tree, as in Sinoquet et al. (1997); (b) Section 4: Idealized branched system, as in Rodriguez et al.
(2008); (c) Section 5: Tapered beam, as in McMahon (1975) and Bejan et al. (2008).
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stress state. Flow velocity may then be further increased until a
new breaking event occurs.

Throughout the paper, the relevant dimensionless number to
scale the fluid-loading rCDU2 with respect to the critical stress Sc

is the Cauchy number, defined as

CY ¼
rCDU2

Sc
G, ð2Þ

where G is a geometrical factor introduced for comparison
purpose and defined such that S¼Sc at the base of the intact
structure when CY¼1. Note that this Cauchy number is similar in
principle but differs from that used in the analysis of flow-
induced elastic deformation, namely CY ¼ rCDU2=E (de Langre,
2008; Gosselin et al., 2010); the critical stress Sc simply replaces
here the Young modulus E.

The non-dimensional stress is defined as s¼S=Sc and the non-
dimensional bending moment as m¼M=Mc , with Mc ¼ScpD3

B=32,
DB being the base diameter (Niklas, 1992). This latter scaling is
chosen so that failure occurs at the base of the trunk when m¼1.
The non-dimensional vertical coordinate z is defined using H, the
height of the structure, as a reference length scale.

3. Flow-induced pruning of a walnut tree

The geometry of the branched system is expected to have a
large influence on the stress state and thus on the location and
timing of breaking events. We, therefore, first apply the procedure
described above using the digitized geometry of an actual 20-yr-
old walnut tree (Juglans Regia L.) described in Sinoquet et al.
(1997) (Fig. 2a). This tree is 7.9 m high, 18 cm in diameter at
breast height (dbh), and has a sympodial branching pattern
(Barthelemy and Caraglio, 2007) and about eight orders of branch-
ing. The stress state under flow is computed using a standard finite
element software (CASTEM v. 3 M, Verpeaux et al., 1988), and is
presented in Fig. 3b for four different branching paths.

We observe that the stress level is not uniform but shows a
maximum located in the branches, which is consistent with the
results of Niklas and Spatz (2000) which are sketched in Fig. 3a.
Note that since s varies linearly with the fluid-loading CY, one needs
only to focus on the critical situation where s¼ 1 is first reached in
the structure. In this tree, the criterion for breakage is satisfied first

in a branch and not in the trunk. This corresponds to the mechan-
ism of branch breakage, as defined in Section 1. If the fluid-loading
is further increased after removal of the broken parts, successive
breaking events are observed, in a flow-induced pruning sequence:
Fig. 4a shows three states of the tree at increasing Cauchy number
with branches progressively removed as they break off.

During the sequence of breakage, the bending moment at the
base of the tree, mb, evolves significantly with the Cauchy
number, Fig. 4b. Up to the first breakage, the moment is propor-
tional to the fluid-loading CY (zone I in Fig. 4b). Then, in a small
range of load increase (zone II), all large branches are broken at an
intermediate level, resulting in a significant decrease of the
bending moment. Breakage then continues but to a much smaller
extent (zone III), while the moment increases almost linearly up
to the value mb ¼ 1 when the trunk breaks. Note that the benefit
of this sequence of breaking events is that the critical value of the
base moment mb ¼ 1 is reached only at CY C10 instead of CY¼1 if
there was no branch breakage. This corresponds to more than a
factor of 3 on the acceptable fluid velocity. For instance, for a
critical stress Sc ¼ 40 MPa, which is the order of magnitude of
maximum acceptable bending stresses measured in trees
(Beismann et al., 2000; Lundström et al., 2008), the maximum
sustainable fluid velocity before trunk breakage is increased from
UC30 m s$1 without branch breakage to UC100 m s$1 with
branch breakage.

To summarize, this set of computations clearly shows that
branch breakage can occur prior to trunk breakage, and that the
sequence of flow-induced pruning results in a significant reduc-
tion in the load applied on the base of the tree, or equivalently, an
increase in the sustainable fluid velocity. To further analyze this
process, we turn to a simple model in the next section.

4. The ideal tree model

4.1. Infinite branched tree

To establish the relation between the parameters of the system
and the flow-induced pruning process, we simplify the problem
to its essential elements: the branched geometry and the slender-
ness of branches; we disregard here the effect of branch orienta-
tion relative to the flow. Similarly to Rodriguez et al. (2008),

Fig. 3. Non-dimensional stress profile s in a tree under cross-flow. (a) Schematic view of the stress profiles given by Niklas and Spatz (2000) for cherry trees, showing a
local maximum near the top. (b) Computed stress profiles along four branching paths, A (%), B (&), C (n) and D (J) in the digitized tree geometry shown in (c).
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we consider first an infinitely iterated sympodial tree made of
cylindrical branches (Fig. 5). Two parameters only are needed to
describe this ideal tree: (i) the branching ratio l, giving the
reduction of diameter through branching, and (ii) the slenderness
exponent b, giving the relationship between length and diameter
in branch segments of the tree, so that

l¼
Dkþ1

Dk

! "2

,
Dkþ1

Dk
¼

Lkþ1

Lk

! "b
, ð3Þ

where Dk and Lk are the diameter and length of a branch segment
of order k, see Fig. 5a (Rodriguez et al., 2008). Typical values of
these parameters are lo1 and 1obo2. Note that the number of
branches emerging from a branching point is typically equal to
1=l (Lindenmayer and Prusinkiewicz, 1996).

We use now a scaling argument similar to that of Rodriguez
et al. (2008) for the dynamics of trees. On the ideal infinitely
branched system of Fig. 5a, we can compare the stress level in
branch k¼1 (the trunk) and in branch k¼2. The sub-tree labeled
II in Fig. 5a is identical to the full tree, I, but for a change in length
and diameter scales. All diameters (resp. lengths) in II are reduced
by a factor l1=2 (resp. l1=2b). Let S1 be the maximum skin stress in
the trunk (k¼1) under a given fluid-loading U, and S2 the
maximum skin stress in the branch k¼2. The relations between
the flow velocity and S1 or S2 are identical, but for the change of
diameter and length scales. The dependence of the stress on

diameter and length is the following: (i) S varies as M=D3, where
M is the bending moment, (ii) M varies as fL2, where f is the norm
of the local fluid force, Eq. (1), (iii) f varies as rU2D. Hence S varies
as rU2ðL=DÞ2. We, therefore, may state that

S2

S1
¼

L2
D2

! "2 D1

L1

! "2

¼ lð1$bÞ=b: ð4Þ

Since lo1, the condition for the stress to be higher in branches
than in the trunk becomes

b41: ð5Þ

Here the only parameter controlling the possibility of branch
breakage is the slenderness exponent, a classical parameter in the
allometry of trees. As b is typically greater than 1 for trees, branch
breakage is expected to occur. This simplistic approach now
deserves to be improved, as the assumption of an infinite number
of branching levels is very strong, and may not be compatible
with the constraint that the tree area has to be finite.

4.2. Finite branched tree

Let us consider now the same idealized tree, but with a finite
number of branching iterations (Fig. 5b). This structure has N
levels, which are labeled in this section from the top to the
bottom. Note that n¼N$kþ1, where k is the label of the previous
section from the base of the tree. The trunk corresponds now to
the last level, N. At each level n, we define the branch diameter Dn

and length Ln, which can be expressed as a function of the trunk
diameter and length DN and LN as

Dn ¼ lðN$nÞ=2DN , Ln ¼ lðN$nÞ=2bLN : ð6Þ

By a simple integration of the fluid force on the branches, the
moment at the base of a branch of order n may be derived, as
well as the corresponding skin stress, which is obtained in
non-dimensional form as

sn ¼ CYlNð1$bÞ=bðAlnðb$1Þ=bþBln=2þClnðb$1Þ=2bÞ, ð7Þ

where the Cauchy number CY is defined as

CY ¼
8
p

LN
DN

! "2
" #

rCDU2

Sc
, ð8Þ

and A, B and C are functions of b and l only. The detailed
derivation of Eq. (7) as well as the expression of A, B and C can
be found in Appendix A.

A systematic numerical exploration of the ðl,b) parameter
space shows that when bo1 the stress always increases from top
to bottom. Conversely, for b41, the stress reaches a maximum at
branch level nc and then decreases from top to bottom, provided
that N4nc , where nc depends on l and b. This dependence is

Fig. 4. Computed sequence of branch breakage in the walnut tree: (a) A: initial
tree for CY r0:67; B: after breakage in large branches, CY ¼ 1:7; C: just before
trunk breakage, CY ¼ 10:7. (b) Corresponding evolution of the bending moment at
the base of the tree mb, in three distinct ranges. The dashed line shows the
moment that would exist without breakage. The dotted line shows the critical
value mb that causes trunk breakage.

Fig. 5. Idealized branched system. (a) Infinite iterated tree. The sub-tree II is
equivalent to the whole tree I but for a change of scales. (b) Finite iterated tree and
corresponding notations.
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given in Fig. 6. This analysis with a finite tree model gives a
criterion consistent with that of the infinite tree model, namely
b41. Moreover, the other parameter, l, is found to affect only the
location of possible breakage. This suggests that branching is not
a key factor in the occurrence of branch or trunk breakage. In the
next section we explore a simpler model of the slenderness effect.

5. The slender cone model

5.1. Flow-induced stress

The simplest model that allows one to take into account a
relation between diameters and lengths through a slenderness
exponent is a cone. This formulation is related to MacMahon and
Kronauer’s equivalent geometry of a tree, a tapered beam with a
rectangular cross-section of dimensions varying as power laws of
height (McMahon, 1975; McMahon and Kronauer, 1976).

The geometry considered here is a slender cone with a circular
cross-section, Fig. 7a, and we follow the same mechanical
approach as for the previous geometries. Let H be the cone height,
dH ¼DH=H the dimensionless diameter at the base and z the
vertical coordinate which is orientated downwards in this section.
The cone dimensionless diameter is given by

dðzÞ ¼ dHz
b: ð9Þ

Using the same formulation as in the previous section, the
stress state along the cone is obtained as

sðzÞ ¼ CYz
2ð1$bÞ, ð10Þ

where the Cauchy number is defined here as

CY ¼
16

ð1þbÞð2þbÞpd2H

" #
rCDU2

Sc
: ð11Þ

From Eq. (10), we readily observe that: (i) for b¼ 1, the constant
stress case of Bejan et al. (2008) is found; (ii) for bo1 the stress
increases with z and is, therefore, maximum at the base, Fig. 7a;
(iii) for b41 the stress decreases with z, and the maximum,
discussed further, is not at the base, Fig. 7b and c. These results
are consistent with the condition for branch breakage in the
previous section.

To avoid the singular case of infinite stress at z¼0 for b41, we
use a cone truncated at z¼ z0, Fig. 7c. The truncation z0 corre-
sponds to the first breakage occurring as soon as Ua0, and its
value is chosen arbitrarily. The corresponding stress state is then

sðzÞ
CY

¼ z2ð1$bÞ$ð2þbÞz1þb
0 z1$3bþð1þbÞz2þb

0 z$3b, ð12Þ

which reduces to Eq. (10) when z0 ¼ 0. The detailed derivation of
this equation is given in Appendix B. For b41, the stress shows a
maximum before decreasing downwards, as illustrated in Fig. 7c.
The limit case z0 ¼ 0 is in fact equivalent, in the ideal tree model
of Section 4, to the limit as N goes towards infinity, which would
lead to a vanishing diameter at the tip. There is, therefore, an
analogy between the cone truncation and the ideal tree with a
finite number of branching levels.

5.2. Sequence of breaking events

Considering now the generic case of the truncated cone,
Fig. 7c, we analyze the sequence of breaking events resulting
from an increasing fluid-loading CY. The stress s increases linearly
with CY up to the point where its maximum value reaches the
limit of breakage, s¼ 1. This defines the first breaking event at
CY ¼ C1

Y occurring at z¼ z1. It results in a new truncated cone, and
the process is repeated as CY is further increased. Eventually,
when the cone becomes truncated close to the base, the max-
imum stress may be reached at the base itself, resulting finally in
base breakage.

This sequence of breaking events may be analyzed in terms of
the maximum fluid-loading Cmax

Y that the cone can support before
breaking at the base. As illustrated in Fig. 8, this is strongly
dependent on b. When bo1, the first breaking event is at the
base so that Cmax

Y ¼ 1. Conversely when b41, breaking occurs
progressively as CY is increased, and the base breakage is delayed,
Cmax
Y 41. The precise value of CY where the base breaks depends

on the initial truncation z0, but is always higher than a lower
bound that can be computed from Eq. (12), which is shown in

Fig. 6. Location of the maximum of stress under cross-flow in an idealized tree
model, as a function of the slenderness exponent b and the branching parameter l.
The location is given in the form of the number of branching levels counted from
the top of the tree, Fig. 5b. For br1, the breakage is directly at the base of trunk.

Fig. 7. The slender cone model: geometry and stress profile under uniform cross-
flow. (a) cone with bo1 (here 0.75), showing a maximum of stress at the base;
(b) cone with b41 (here 2), showing a maximum at the top; (c) cone truncated
arbitrarily at z0¼0.3 showing a local maximum.
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Fig. 8. We observe a significant increase of the ability of the
system to sustain fluid-loading when b41.

In terms of base moment, the sequence of breaking events can
be easily computed, Fig. 9. For bo1 the base moment increases
linearly with CY until base breakage occurs, mb ¼ 1 for CY¼1. For
b41 the sequence of breaking events results in sudden drops in
base moment followed by linear increase up to the next breaking,
as illustrated in Fig. 9. Since the sequence of breaking events is a
discrete process that depends on the initial truncation z0, there
exists, for a given Cauchy number CY, a wide range of acceptable
cone heights and thereby a wide range of corresponding base
moments. In practice, for all possible values of z0, the evolution of
mb remains bounded between its values for the shortest and
highest cone that can exist at each Cauchy number. This is
represented by the shaded region in Fig. 9.

These results show that the simple cone model contains the
key elements to understand the effect of geometry on (i) the
stress profile, (ii) the sequence of breaking events and (iii) the
consequences on the evolution of base load when the fluid
velocity is increased. Here again, the essential criterion concerns
the slenderness exponent b.

6. Discussion and conclusions

Starting from the case of a full walnut tree geometry, we have
used models of increasing simplicity. This allowed us to point out

the role of various parameters on the process of breakage under
fluid-loading. The first issue that had to be addressed was that of
the flow-induced stress distribution. As noted by other authors,
the stress is not necessarily maximum at the base (Niklas and
Spatz, 2000; Bejan et al., 2008). In fact in the walnut tree of
Section 3, the stress has a local maximum at about mid height.
Using the ideal tree model in Section 4, we have shown that
the existence of this maximum is related to the value of the
slenderness exponent, b, being larger than one: in fact this
allometry parameter is about 1.37 for this particular walnut tree
(Rodriguez et al., 2008). Following Bejan et al. (2008), we recover
the critical value of b¼ 1 in the simplest model, that of a cone in
Section 5.

Actually, some refinement is needed here to understand the
precise location of the maximum of stress. We have shown in
Section 4 that the location of this maximum was also dependent
on the branching parameter l, in the form of the parameter nc,
which is the number of branching levels from the top to this
maximum point. For our walnut tree, where lC0:25, we obtain
nc¼6 using Fig. 6. This is smaller than the total number of
branching levels in the walnut tree which is about 8 (Sinoquet
et al., 1997). A local maximum of stress is, therefore, expected in
the branches, and is actually observed in Fig. 3.

The second issue was that of the sequence of breaking events
occurring when the fluid-loading CY is increased. Using a brittle
fracture model for the walnut tree in Section 3, we have shown
that most large branches broke in a short range of flow velocity,
and that breakage of the trunk occurred much later. The large size
of broken branches can be explained by the value of nc¼6 found
above. All large branches do not break exactly at the same value
of the Cauchy number. This is due among other reasons to some
variability in the allometry parameters l and b within the tree.
Once all large branches are broken, the remaining tree shape, C in
Fig. 4a, does not have enough branching levels to have a local
maximum, and the next breaking event occurs at the base of the
trunk. Note that the process of branch breakage in the walnut tree
allowed the tree to have a much larger acceptable Cauchy number
before breakage of the trunk. This can also be analyzed using the
cone model as in Section 5, where the critical Cauchy number for
base breakage is clearly dependent on b (Fig. 8).

The third issue was that of the evolution of the load at the
base of the tree. For the walnut tree, Fig. 4b, the sequence of
successive breakage of the large branches results in a significant
decrease of the drag-induced moment at the base. This can be
understood using the cone model, where the sequence of break-
ing events and corresponding drops of base moment can be
tracked, Fig. 9. We may, therefore, state that the essential
characteristics of branch breakage and corresponding load evolu-
tion in the walnut tree can be understood using our simple ideal
tree model and cone model.

The analytical results of Sections 4 and 5 were obtained
considering that all parameters have self-similar variations.
However, this was not the case for the walnut tree computations
of Section 3, which suggests that the behaviors pointed out
in this study can be generalized to structures that do not
necessarily have self-similar variations of their parameters. More-
over, the ideal tree and cone models can be easily extended to
incorporate other features of the problem, such as a dependence
of all parameters with z: the flow velocity U, the material
properties through the critical parameter Sc , and even the drag
coefficient CD, which allows one to take easily into account the
additional drag of leaves. Preliminary results, not shown here
for the sake of brevity, showed that the criterion for branch
breakage takes the same form, but involves both b and the
corresponding parameter related to the additional z-dependence.
Taking into account a significant elastic deformation before load

Fig. 8. Maximum fluid load that the cone can support as a function of the slenderness
exponent. Note that for b41 the curve is the lower bound of all possible evolutions.

Fig. 9. Moment at the base of the cone as the fluid-loading is increased. (- -) direct
base breakage occurring when bo1; (—) progressive breaking for b41 (here
b¼ 2). The shaded region shows all possible values depending on the initial
truncation z0. The cone state is shown for three values of CY.
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fracture, or incorporating dynamical effects, would be much more
complex.

Considering the simplicity of the criterion that we have found
for branch breakage, we can test whether it is generally satisfied.
McMahon and Kronauer (1976) have noted that b is usually larger
than 1 and typically around 1.5, while l is typically close to 0.25.
This leads to a maximum stress located at a branching level nc¼5
counting from top down. This is clearly in the branches as trees
generally have more than five orders of branching. We may,
therefore, state that branch breakage can be expected in most
sympodial trees. This is illustrated in Table 1, where the values of
parameters are given for several trees.

Clearly the possibility of branch breakage is favorable in terms
of survival of an individual tree in the face of extreme fluid-
loading. It may also be favorable in terms of tree development by
removing the less vigorous branches. The question then arises as
to whether this implies new constraints on the geometry of the
tree. It appears from our results that the constraint b41 is not
incompatible with other constraints such as the optimal resis-
tance to buckling under gravity, which requires b¼ 3=2
(McMahon, 1975). The same result was obtained considering
the wind effect on trees but for an overcrowded tree canopy
(Larjavaara, 2010). Similarly b41 is compatible with a constraint
for optimal dissipation (Rodriguez et al., 2008; Theckes et al.,
accepted), that modal frequencies have a ratio of less than two,
requiring that b41 for l¼ 0:25.

The particular case of branched corals (Madin, 2005;
Tunnicliffe, 1981; Highsmith, 1982) is somewhat different. The
segments are similar in length and diameter, so that lC1 and
bC1 in our variables, but with a number of branches emerging
from one branching not equal to 1=l. An analysis similar to that of
Section 4 shows that breakage is expected at the bottom. This is
the case in most isolated corals.

More generally we may place these results in the overall
context of reconfiguration, as introduced by Vogel (1989). This
originally referred to the reduction of loading made possible by
elastic deformation. For a plant, it is a crucial mechanism to
survive heavy fluid-loading. But all plant tissues are not very
elastic and all plants are not very flexible. Our results on the role
of branch breakage in reducing loading show that, in parallel with
elastic reconfiguration, there exists a mechanism of brittle recon-
figuration. There are, therefore, two distinct strategies to over-
come critical events. The first is evidently reversible in the short
term by elasticity. The second is also reversible by re-growth, but
only in the long term. Thus flow-induced pruning is possibly a
widespread mechanism in plants or benthic organisms that
support heavy loading by the surrounding fluid environment.
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Appendix A. Stress derivation in finite branched tree model

In order to compute the stress along the finite ideal tree, we
introduce fn the fluid force per unit length at level n,
fn ¼ ð1=2ÞrCDU2Dn, with the same notations as Eq. (1). At each
level n, we consider two force components: (i) the shear force tn
in the flow direction and (ii) the bending moment Mn in the
direction normal to the flow. Due to the free condition at the top,
t0 ¼ 0 and M0 ¼ 0, and for nZ1

tn ¼ fnLnþptn$1, ðA:1Þ

Mn ¼ 1
2 fnL

2
nþpðMn$1þLntn$1Þ, ðA:2Þ

where p is the number of branches emerging from one at a
branching point ðp¼ 1=lÞ. The non-dimensional stress sn at level
n reads

sn ¼
32Mn

pScD3
n

: ðA:3Þ

By integration of Eqs. (A.1) and (A.2), the stress at each level can
be obtained,

sn ¼ CYlNð1$bÞ=bðAlnðb$1Þ=bþBln=2þClnðb$1Þ=2bÞ, ðA:4Þ

with

CY ¼
8
p

LN
DN

! "2
" #

rCDU2

Sc
, ðA:5Þ

and

A¼
lð1$bÞ=2bþ1

ðlð1$bÞ=2b$1Þðlð2$bÞ=2b$1Þ
, ðA:6Þ

B¼
l1=2bþ1

ðlð2$bÞ=2b$1Þðl1=2b$1Þ
, ðA:7Þ

Table 1
Predicted breakage type using the results of Section 4. Branch breakage is predicted when ncrN.

Ref. Tree Slenderness
exponent b

Branching
parameter l

Total orders of
branching N

Predicted branch
breakage level nc

Predicted
breakage type

Sinoquet et al. (1997),
Rodriguez et al. (2008)

Walnut Tree 1.37 0.25 48 6 Branch
Juglans Regia L.

McMahon and Kronauer (1976) Red Oak 1.51 0.41 46 7 Branch or
Quercus Rubra Trunk

– White Oak 1 1.41 0.28 46 6 Branch
Quercus Alba

– White Oak 2 1.66 0.29 46 5 Branch
Quercus Alba

– Poplar Tree 1.5 0.29 46 5 Branch
Populus Tremoloides (estimated)

– Pin Cherry 1.5 0.24 44 5 Branch or
Prunus Pensylvanica Trunk

– White Pine 1.37 0.24 45 5 Branch
Pinus Strobus
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C ¼
$2

ðlð1$bÞ=2b$1Þðl1=2b$1Þ
' ðA:8Þ

Appendix B. Stress derivation in the slender cone model

The stress state for the slender cone model is obtained by
direct integration of the fluid force defined in Eq. (1), using Eq. (9)
for the diameter. The shear force and resulting bending moment
read

tðzÞ ¼
Z z

z0

f ðz0Þ dz0, MðzÞ ¼
Z z

z0

tðz0Þ dz0, ðB:1Þ

with z0Z0. The local non-dimensional skin stress reads

sðzÞ ¼ 32MðzÞ
pScdðzÞ3

: ðB:2Þ

The integration of these equations give Eqs. (10) and (12)
depending on z0.
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