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The effect of non-uniform damping on flutter
in axial flow and energy-harvesting strategies
BY KIRAN SINGH*, SÉBASTIEN MICHELIN AND EMMANUEL DE LANGRE

LadHyX – Department of Mechanics, École Polytechnique,
91128 Palaiseau, France

The problem of energy harvesting from flutter instabilities in flexible slender structures in
axial flows is considered. In a recent study, we used a reduced-order theoretical model of
such a system to demonstrate the feasibility for harvesting energy from these structures.
Following this preliminary study, we now consider a continuous fluid-structure system.
Energy harvesting is modelled as strain-based damping, and the slender structure under
investigation lies in a moderate fluid loading range, for which the flexible structure
may be destabilized by damping. The key goal of this work is to analyse the effect
of damping distribution and intensity on the amount of energy harvested by the system.
The numerical results indeed suggest that non-uniform damping distributions may
significantly improve the power-harvesting capacity of the system. For low-damping
levels, clustered dampers at the position of peak curvature are shown to be optimal.
Conversely for higher damping, harvesters distributed over the whole structure are
more effective.

Keywords: energy harvesting; fluid–structure interactions; flutter instability;
slender body theory

1. Introduction

Increasing energy demands motivate the interest in energy-harvesting concepts,
where the idea is to harness the energy of naturally occurring phenomena. At
the scale of kilowatts, concepts include energy harvesting from tidal currents
(Westwood 2004) and ocean waves (Falcao 2010). At the lower end of the power
spectrum, concepts based on photo/thermovoltaics and magneto/piezoelectrics
show the scope for powering sensors and mobile electronic devices (Anton &
Sodano 2007); these include energy scavenging from ambient vibrations in
structures such as buildings and bridges as well as oscillatory motion of wheels in
automobiles or turbines in engines (Paradiso & Starner 2005; Khaligh et al. 2010).
Energy harvesting from fluid–structure interactions (FSIs) includes concepts such
as vortex-induced vibrations (VIVs) of bluff bodies in cross-flow (Bernitsas et al.
2008; Grouthier et al. 2012), resonant vibrations induced in aerofoils mounted
on elastic supports (Peng & Zhu 2009; Erturk et al. 2010), flutter of flexible
plates (Tang et al. 2009; Doaré & Michelin 2011; Bryant & Garcia 2011) and
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combinations thereof, as for the coupled VIV–flutter energy harvester examined
by Li et al. (2011). In this work, we focus on energy-harvesting from flutter
instabilities of slender structures in an axial flow.
The classical description of flutter instabilities is self-sustained oscillations that

arise owing to the unstable coupling of fluid dynamic pressure and structural
bending modes, whereas for undamped structures the critical speed at flutter
onset depends on fluid as well as structural properties (Païdoussis 2004). Flutter
instabilities are observed in a diversity of configurations, which may be broadly
classified as internal or external flows (Païdoussis 1998, 2004). Internal flow
instabilities are observed in flexible pipes and channels, and are invariably
motivated by biological phenomena such as flow-induced oscillations in airways
and veins (Larose & Grotberg 1997; Carpenter & Pedley 2003). The pipe-
conveying fluid is a canonical problem that yields deep insights into FSI;
in particular, Doaré & de Langre (2006) examined the relationship between
local and global instabilities and showed that locally stable configurations may
become unstable owing to wave reflections at finite boundaries; this destabilizing
mechanism was recently predicted for compliant channels as well (Stewart et al.
2009). External-flow-based instabilities include flapping flags (Alben & Shelley
2008; Eloy et al. 2008; Michelin et al. 2008) and panels (Crighton & Oswell 1991)
in a steady flow. For all aspect ratios, the plate can become unstable owing to fluid
loading, defined as the ratio of fluid and structure inertia, and may be represented
as a non-dimensional length (Howell et al. 2009) or mass ratio (Eloy et al. 2007).
Païdoussis et al. (2002) and more recently de Langre et al. (2007) examined
the occurrence of instabilities in slender structures. They used experimental and
theoretical techniques to examine the role of inviscid and viscous drag on static
and dynamic instabilities that arise in flexible cylinders in axial flow. For a recent
review on the flutter dynamics of flexible bodies in external flow, the reader is
referred to Shelley & Zhang (2011) and references therein.
In this work, we analyse the scope for harvesting energy in slender elastic

cantilevered structures that flutter in a steady flow. From the point of view of
the fluid–solid system, energy harvesters are essentially an energy sink; therefore,
for the theoretical approach adopted here, they are modelled as internal damping
in the structure. As a first step, we examined the feasibility of this concept using
a nonlinear model of a reduced-order system, consisting of a slender cylinder pair
connected by discrete springs and dampers (Singh et al. 2012). It was shown that
the optimal configuration for this two-degree-of-freedom system is one with energy
harvesters positioned away from the instability source; such a configuration
maintains self-sustained flapping in the presence of structural damping.
In this work, we generalize this approach for a continuous system, and

seek to maximize energy harvesting through carefully tailored distributions
of structural damping. Conventionally, structural instabilities are stabilized
by damping (Larose & Grotberg 1997; Gad-el Hak 2003). However, damping
may be destabilizing under moderate to heavy fluid loading conditions, as
observed in infinite plates (Peake 2001), flags (Doaré & Michelin 2011) and
fluid-conveying pipes (Doaré 2010). Singh et al. (2012) show that energy-
harvesting requires the presence of two traditionally competitive elements:
flutter oscillations and damping. A configuration for which flutter is destabilized
by damping is especially interesting from an energy-harvesting perspective.
This idea has been exploited for piezoelectric-based energy harvesting from
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Figure 1. Slender cantilevered structure placed in a steady axial flow of velocity U∞ex and fixed
in O. The instantaneous deformation of the inextensible beam is measured by the tangent angle
q(s, t) with respect to ex of the local tangent t.

flapping flags: Doaré & Michelin (2011) used linear theory to show the gain in
conversion efficiency for flags with high fluid loading destabilized by piezoelectric-
based damping. In this work, we explore this idea using a general model for
structural damping (equivalently energy harvesting) and a nonlinear model of
the fluid structure interaction of a slender structure in a mean flow.
It is worth noting that existing insights on damping are generally based on the

assumption of a constant distribution of damping in the structure (Tang et al.
2009), while little is known about how non-uniform damping distributions affect
the dynamics. In this work, we seek clarity on the role of damping distribution on
the flutter response of slender structures. The specific motivation is to identify
physical mechanisms that maximize this dissipated (i.e. harvested) power.
This study is organized as follows: in §2, the model used for the dynamics of

slender structures with non-uniform damping in an axial flow is presented. In §3,
the case of uniform damping is considered as a reference configuration, and the
role of fluid loading on destabilization by damping is discussed. Computations
are then performed for a neutrally buoyant slender cylinder with moderate fluid
loading, and the role of damping on the harvested power and flutter response
is examined. Section 4 investigates non-uniform damping distributions and
seeks optimals on two different families of damping functions, either distributed
over the whole structure or focused on a particular region. In §5, the impact
of damping distribution on the flutter dynamics is investigated further to
understand the fundamental difference between optimal configurations at low
and intermediate damping.

2. Fluid–solid model

We consider a cantilevered (clamped-free, fixed at O) slender structure of length
L with crosswise dimension D, density rs, stiffness B and non-uniform structural
damping B∗(s). The slender solid is immersed in a stream of fluid of density r
moving at mean speed U∞, and the solid motion is confined to the (ex , ey) plane
(figure 1). The equations of motion are non-dimensionalized by the characteristic
system scales: r,L,U∞.

(a)Nonlinear beam model

The flexible structure is modelled as an inextensible Euler–Bernoulli beam,
where r(s) is the position vector in the fixed coordinate system (ex , ey) and s is

Proc. R. Soc. A (2012)
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the curvilinear coordinate. At each point along the beam, the orientation q(s, t)
is defined as the angle of the tangent vector t(s) with the horizontal; n(s) is the
local normal. The nonlinear equation of motion for the beam subjected to a fluid
force, f, is

1
M ∗

v2r
vt2

= v

vs

{
nt − 1

M ∗U ∗2

[
v2q

vs2
+ v

vs

(
x(s)

v2q

vsvt

)]
n
}

+ f, (2.1)

where the internal tension, n(s, t), is essentially a Lagrange multiplier to satisfy
the inextensibility condition vr/vs = t, and x(s)=U∞B∗(s)/(BL) is the non-
dimensional damping distribution. A Kelvin–Voigt damping model is considered
here, generalizing previous contributions (Païdoussis 2004; Tang et al. 2009;
Doaré 2010; Eloy et al. 2012) to non-uniform damping distributions.
The clamped-free boundary conditions must also be satisfied, namely at the

fixed end (s = 0)
q = 0 and r= 0, (2.2)

and at the free end (s = 1)

vq

vs
+ x

v2q

vsvt
= 0, v2q

vs2
+ v

vs

(
x

v2q

vsvt

)
= 0 and n = 0. (2.3)

Consistently with prior work (Eloy et al. 2007; Michelin et al. 2008), the
non-dimensional mass ratio (M ∗) and flow speed (U ∗) are defined as

M ∗ = rDL
rsA

and U ∗ =U∞L
(

rsA
B

)1/2
, (2.4)

with A the cross-sectional area of the structure.

(b)Fluid dynamic model

In the limit of slender structures (D$ L), and for purely potential flow
upstream of the structure’s trailing edge, Lighthill’s large amplitude elongated-
body theory (Lighthill 1971) provides a leading-order expression for the ‘reactive’
force f i applied by the flow on the flapping body, associated with the local
transverse motion of each cross section

f i = −ma
M ∗

(
v(unn)

vt
− v(unutn)

vs
+ 1
2

v(u2nt)
vs

)
, (2.5)

where utt + unn= vr/vt − ex is the solid’s local velocity relative to the incoming
flow, and ma =Ma/rsA, where Ma is the dimensional added mass per unit
length of the cross section. Candelier et al. (2011) showed that Lighthill’s theory
compares well with Reynolds-averaged Navier–Stokes simulations to compute the
forces on a swimming fish during transient manoeuvres. This reactive force does
not include any flow separation associated with the transverse motion of each
cross section, and, as emphasized in Candelier et al. (2011), for freely flapping
bodies, an additional contribution for the fluid force must be included to account
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for such dissipative effects. Here, an empirical ‘resistive’ force model is therefore
added following Taylor (1952) and Eloy et al. (2012):

f v = −1/2CDun |un |n, (2.6)

where CD is the empirical drag coefficient, and CD = 1 is used in the following
for circular cross sections (Singh et al. 2012, for a discussion of the impact of
this coefficient on the flapping dynamics). Boyer et al. (2008) tuned the drag
coefficients to show a good agreement with direct numerical simulations.
Thus, the fluid force, f, in equation (2.1) is modelled as the sum of the reactive

(f i) and resistive (f v) components. In the remainder of the study, we assume
a neutrally buoyant circular cylinder; therefore r = rs and A= pD2/4. Unless
otherwise stated, we assume D/L= 0.1.
Note that the fluid force description is purely local here, and does not explicitly

account for wake effects. When the slender body assumption is not verified, and in
particular, in the case of two-dimensional plates, an explicit description becomes
necessary (Alben & Shelley 2008; Michelin et al. 2008; Singh & Pedley 2012).

(c)Energy harvester model

As noted earlier, energy harvesting is represented as a strain-based damping
x(s). We focus here on the mean non-dimensional harvested power:

P = P

rDLU 3∞
= 1
M ∗U ∗2

∫ 1

0
x(s)〈k̇2〉 ds, (2.7)

where P is the mean dimensional harvested power, k̇ is the time derivative of
the local curvature k and 〈·〉 is the time average taken over a period T of the
limit-cycle oscillation. P can also be understood as the efficiency of the system.
As discussed in §1, the presence of structural damping can affect the flutter

response. The intensity and distribution of damping are characterized by

x0 =
∫ 1

0
x(s) ds and x̃(s)= x(s)

x0
. (2.8)

Equation (2.8) allows us to independently evaluate the impact on the system
response of (i) the amount of damping x0 and (ii) its spatial distribution.

(d)Numerical solution

Equation (2.1) is solved numerically together with boundary conditions (2.2)–
(2.3) using an iterative second-order implicit time-stepping scheme (Alben 2009),
and spatial derivatives are computed using Chebyshev collocation (Boyd 2001).
Conservation of energy is ensured by verifying that Ė =Wf −Q, where

E = 1
2

∫ 1

0

( |ṙ|2
M ∗ + k2

M ∗U ∗2

)
ds (2.9)

and

Q = 1
M ∗U ∗2

∫ 1

0
x(s)k̇2 ds and Wf =

∫ 1

0
f · ṙ ds, (2.10)

Proc. R. Soc. A (2012)

 on October 4, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Energy harvesting from flutter 3625

1.0

0.5

0
9 13

U*

qmax

ymax

19

(a) (b)

Figure 2. (a) Maximum deflection ymax (solid curve) and orientation qmax (dashed curve) at the
free end as a function of the non-dimensional flow velocity U ∗ for M ∗ = 12.7. (b) Snapshots of the
beam response for U ∗ = 10, 13 and 19 (from top to bottom).

are respectively the mechanical energy of the system, the dissipated power and
the rate of work of the fluid forces, and is classically obtained by projecting the
equation of motion (2.1) on the solid velocity ṙ and by integrating over the entire
beam. Also note from (2.7), P = 〈Q〉. In the numerical implementation, the beam
and the flow are initially at rest; the flow speed is ramped up to its steady-state
value, and a small perturbation is applied to the vertical flow.

(e)Nonlinear response of an undamped beam

Prior to analysing the energy-harvesting properties of the system, we first
examine the undamped flutter response of the structure. In figure 2, we plot the
system response for increasing non-dimensional flow speed, for a circular cylinder
(M ∗ ≈ 12.7). The critical flow speed at which flutter ensues is verified from linear
stability analysis and is confirmed with Païdoussis et al. (2002). Consistent with
flutter in plates (Eloy et al. 2012), we note that this instability is a supercritical
Hopf bifurcation with flow speed. The jumps in the bifurcation curve correspond
to the mode switching reported in Semler et al. (2002); this may also be discerned
from the snapshots of the beam at three different flow speeds. For the energy-
harvesting computations performed in the rest of the study, we set the flow speed
at U ∗ = 13, corresponding to well-developed oscillations and moderate deflections
for the undamped configuration.

3. Uniform damping

Here, a uniform damping distribution x(s)= x0 is considered. The dependence
of critical flutter speed on the damping intensity x0 is first analysed for varying
values of fluid loading M ∗. On the basis of these results, a moderate fluid loading
is selected to study the power-harvesting capacity of the configuration.

Proc. R. Soc. A (2012)
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Figure 3. Variation of the critical flutter speed, Ucf with damping x0 for M ∗ = 2.5 (dotted curve),
5.1 (dash-dotted curve), 8.5 (dashed curve), 12.7 (solid curve) and 20 (thick solid curve) obtained
from linear stability analysis for uniform damping. Results of nonlinear computations forM ∗ = 12.7
are also presented (squares).

(a)Destabilization by damping: impact on critical flutter speed

As noted in §1, damping can destabilize flexible structures at sufficiently high
fluid loading. Doaré (2010) shows that destabilization of long pipes with a high
mass ratio is associated with a drop in the critical flutter speed. On the basis of
this work, we analyse the linear stability of the system and in figure 3 compare the
variation of the critical flutter speed, Ucf , with damping, x0, at different values of
fluid loading, M ∗. For lightly loaded structures (M ∗ < 5.5), Ucf monotonically
increases with damping; at higher values (M ∗ ≥ 8.5), and Ucf decreases with
damping until a specific value (xm) above which Ucf increases rapidly; note that
xm increases with M ∗.
For the remainder of the energy-harvesting analysis, we settle on a value of

M ∗ = 12.7 (corresponding to D/L= 0.1): this choice allows us to analyse the scope
for harvesting energy from a system at moderate fluid loading with destabilization
by damping.

(b)Harvesting power with constant damping

Figure 4a presents the evolution of harvested power, P, with damping for
10−3 < x0 < 10. Equation (2.7) becomes

P = 1
M ∗U ∗2 x0 ‖ K ‖1, (3.1)

where K(s)= 〈k̇2〉 and ‖ K ‖1=
∫1
0 K ds is the L1-norm of K(s). The evolution of

the flutter response with damping is examined by plotting the re-scaled curvature
term, K̄ = K/ ‖ K0 ‖∞ (where K0(s) is the value of K for x0 = 0) for increasing x0
(figure 4b). At small x0, the response is virtually no different from the undamped
case, but for x0 > 0.1 a perceptible change is observed. First, the curvature is
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Figure 4. (a) Evolution of the harvested power P (solid curve) and curvature norm ‖ K̄ ‖1 (dashed
curve) with the uniform damping intensity x0. (b) Distribution of curvature change K̄(s) along the
beam for x0 = 0, 0.022, 0.22 and 0.47 (from left to right and top to bottom). (M ∗ = 12.7, U ∗ = 13).

redistributed along the entire beam, and as the damping is increased further,
the response of the beam is damped out globally. This can also be seen from
the variation of ‖ K ‖1 with x0 in figure 4a. Notably from (3.1), it is ‖ K ‖1 that
directly impacts the harvested power.
As a result, for small damping, the change in system response is virtually

imperceptible from the undamped case, and power simply scales linearly with
x0. However, damping has a strong effect on the flutter response at larger x0:
it reduces the amplitude of curvature change significantly and causes a sharp
reduction in P. The strategy to optimally harvest power is to find the upper
bound on x0 below which ‖ K ‖1 can be maintained close to (or ideally enhanced
above) its undamped value.

4. Non-uniform damping

The results for constant damping suggest that as long as ‖ K ‖1 is maintained at
undamped levels, the harvested power increases linearly with x0. Figure 4b clearly
shows that K(s) varies significantly along the length of the beam. Concentrating
harvesters around the zone of peak curvature could therefore enhance the
harvested power. This idea is tested in this section on a reduced functional
space for the damping distribution x(s). The two families of damping functions
examined in §4a and §4b may be classified as dispersed and focused distributions
respectively. Optimization of the harvested power is performed within each family,
in anticipation of insights into the global optimal.

(a)Dispersed harvester distribution

In this section, we are interested in simple non-homogeneous distributions of
damping of the form:

x(s)= x0(1+ x1(s − 1
2)), (4.1)
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Figure 5. Linear distribution (4.1): (a) re-scaled power contours P/Pmaxh for varying x0 and x1.
(b) Re-scaled harvested power P/Pmaxh and (c) ‖ K̄ ‖1 as a function of the damping intensity x0 for
linearly decreasing (x1 = −2, dashed curve), constant (x1 = 0, dotted curve) and linearly increasing
(x1 = 2, solid curve) damping distributions (M ∗ = 12.7, U ∗ = 13).

which are characterized by the total damping, 10−3 < x0 < 10, and slope, −2≤
x1 ≤ 2. This function family corresponds to a dispersed distribution, where
the damping is significant over the entire length of the structure. Figure 5a
shows the variation of re-scaled power, P̄ = P/Pmaxh with (x0, x1), where Pmaxh
is the maximum-harvested power for constant damping (§3). Figure 5 shows
that for all x0, the optimal distribution corresponds to x1 = 2, when damping
is distributed increasingly from fixed to free end, and that this linear distribution
of damping leads to an increase of the maximum harvested power by 50 per
cent compared with the uniform distribution (x1 = 0). Through non-uniform but
simple distributions of damping on the structure, it is indeed possible to enhance
the flutter response above that of the undamped configuration (figure 5c).

(b)Focused harvester distribution

The results from the reduced-order analysis (Singh et al. 2012) suggest that
the optimal distribution ought to be localized at specific points on the beam. The
chief drawback of the two parameter functions examined in §4a is the inability
to consider localized distributions of damping in specific regions. To consider
such peaked distributions, we now turn to the following three-parameter family
of Gaussian damping distribution:

x(s)= x0
xg

‖ xg ‖1
and xg = e−a(s−so)2 , (4.2)

where x0 is the total damping in the system, so is the centre of the distribution
and 1/a is a measure of its spread in s. For increasing a, energy harvesters are
increasingly concentrated around so.
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Figure 6. Gaussian distribution (4.2): maps of re-scaled power P/Pmaxh for varying a and so at
(a) x0 = 0.01 and (b) x0 = 0.47. (M ∗ = 12.7, U ∗ = 13).
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Figure 7. Gaussian function optimal configuration: (a) spread parameter, a, (open circles) and
centre location, so, (filled boxes) corresponding to the optimal Gaussian distribution for a
given x0. (b) Re-scaled damping distribution at discrete x0 = 0.004, 0.025, 0.25, 0.47 (solid, dashed,
dashed-dot and dotted curves, respectively, indicated on (a) with vertical lines of corresponding
description); superimposed is the linear optimal distribution (x1 = 2; thick solid curve).
(M ∗ = 12.7, U ∗ = 13).

Figure 6 presents the re-scaled power P/Pmaxh in the (a, so)-space for small
(x0 = 0.01) and moderate damping (x0 = 0.47). For small damping, one sees that
power is optimally harvested for dampers focused at so = 0.8, the position of the
maximum of K0 along the beam (figure 4b). This is quite distinct from the high
damping optimal that corresponds to a dispersed distribution (a = 2.7, so = 1).
Of particular note is that for all x0, a uniform distribution (a = 0) is preferred
over a concentration of harvesters at so < 0.5.
We next examine a wider range of damping, 10−3 < x0 < 50, and plot the

optimal values of (a, so), in figure 7a. For moderate to large damping, x0 > 0.3,
a dispersed distribution with peak at so = 1 is optimal. Conversely for x0 <
0.02, harvesters concentrated at so ≈ 0.8 (position of peak K) is the optimal
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Figure 8. Optimal power values corresponding to Gaussian optimal configuration in figure 7
(squares) compared with the optimal power obtained for linear distribution (x1 = 2; thick curve)
and constant distribution (x1 = 0; dotted curve).

configuration. Note that for these computations we set 0< a < 500, and at these
values of x0 the upper bound is reached; more detailed insights and computations
on the small damping regime are presented in §5. Figure 7b shows the evolution
with x0 of the optimal normalized distribution and illustrates the transition from
focused to dispersed profiles when the total damping is increased.
It is possible to determine the optimal harvested power for each value of x0; in

figure 8, these optimals are compared with the results for uniform and linear
distributions. Strikingly, the peak power values are coincident for linear and
Gaussian distributions, which is consistent with the similarity in distributions
(figure 7b). Because of the fundamentally different structures of the distribution
used, this result suggests that the optimal obtained with such simple functions
represents a good approximation of the absolute optimal. Departing from this
maximum of harvested power, in particular at small damping, we see that
concentrated harvesting is superior to the optimal linear distribution.
These results confirm that non-uniform damping distributions can be

advantageously employed to enhance the power harvesting capacity. Focused
damping distributions are optimal for small damping, whereas dispersed distri-
butions are preferential at higher damping. Section 5 investigates in more detail
this transition by considering the impact of damping on the nonlinear dynamical
response of the system.

5. Discussion: impact of localized damping

The earlier-mentioned computations suggest a very different impact of damping
on the dynamics of the structure depending on the magnitude of x0, thereby
leading to quite different optimal strategies to maximize the harvested power. In
this section, we first consider the limit of asymptotically small damping before
studying the effect of focused dampers on the body’s dynamics.
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Figure 9. Focused harvesters at so = 0.81 for small damping: curves show the normalized power
for increasingly focused harvesters for small damping values: x0 = 2.2× 10−5 (solid curve), x0 =
2.2× 10−4 (dashed curve), x0 = 2.2× 10−3 (dashed-dot curve), x0 = 2.2× 10−2 (dotted curve) and
M ∗ = 12.7, U ∗ = 13.

(a)Optimal distribution for asymptotically small damping

For asymptotically small damping (‖ x ‖∞$ 1, with ‖ x ‖∞ the maximum value
of x(s) for s ∈ [0 1]), the flapping dynamics is not modified at leading order so
that K = K0 +O(‖ x ‖∞). Thus

P ∼ 1
M ∗U ∗2

∫ 1

0
x(s)K0 ds ≤

x0

M ∗U ∗2 ‖ K0 ‖∞ (5.1)

and this upper bound can be approached asymptotically using, for example, the
Gaussian distribution (4.2) centred on the maximum of K0 and increasing a.
More precisely, any peaked distribution of damping of L1-norm x0 centred on this
maximum and with a typical width (here a−1/2) much smaller than the length
scale l associated with the K0 peak width should approach the theoretical upper
bound Pth = x0 ‖ K0 ‖∞ /(M ∗U ∗2), provided that the maximum damping remains
small enough that the approximation for P in equation (5.1) still holds (which in
the present case is equivalent to keeping a1/2x0 bounded).
This conjecture is tested numerically using a Gaussian distribution,

equation (4.2), with so = 0.8, and by computing the harvested power for small
damping: 2.2× 10−5 < x0 < 2.2× 10−2. Figure 9 shows P/Pth and confirms that
this conjecture indeed holds because for increasing a, the power asymptotically
approaches its optimal for small enough x0. When x0 ≥ 2.2× 10−3, the asymptotic
value Pth cannot be reached any more: as a is increased, the effect of the maximum
damping a1/2x0 on the flutter dynamics is important even before the dampers are
focused enough for P to approach Pth.
Two essential results are illustrated here. For sufficiently small damping, the

nonlinear response of the structure remains unchanged; so the best strategy
is to focus all the harvesters in the region of maximum curvature-change.
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Figure 10. Focused harvesters at so = 0.45 for large damping (x0 = 0.47): (a) power dependence
on a and (b) K̄(s) for a = 0, 1, 10, 102 (solid, dashed, dashed-dot, dotted curves, respectively).
(M ∗ = 12.7, U ∗ = 13).

However, finite levels of damping significantly modify the nonlinear dynamics
of the beam; so at these levels, a narrow focusing of damping is sub-optimal.
Next, we investigate further the behaviour at finite damping.

(b) Impact of finite and localized damping

The computations from §4 show that for Gaussian distributions and x0 > 0.02, a
defocusing of harvesters is preferable, as the system response becomes increasingly
influenced by damping. In order to understand the impact on the system’s
response, the Gaussian distribution (4.2) is used in the high damping range and a
is varied over a range that transitions the distribution from dispersed to focused
(0< a < 102) with x0 = 0.47 and so = 0.45 (corresponding to the position of ‖ K ‖∞
for a = 0). Consistent with figure 6, the harvested power in figure 10a decreases
with a, and figure 10b shows the evolution of K(s).
For dispersed distributions (a < 10), K(so) decreases with a and the zone of

maximum curvature-change shifts to regions of reduced damping. Nonetheless,
non-zero damping in this zone is adequate to retrieve some of the energy. For
a > 10, damping becomes increasingly focused and the flexible body does not
deform anymore near the damper (K(s0)≈ 0): no energy is harvested anymore,
because no deformation occurs near the harvester’s position, and this is reflected
in the sharp drop in power in figure 10b. This illustrates the main effect of a
focused distribution for finite damping: we see a redistribution of the solid’s
deformation to regions with little or no damping. This is also the reason why
a focused damping distribution is not appropriate for optimal energy harvesting
in the finite damping range.

6. Conclusions

In this work, we considered the possibility of harvesting energy from a slender
body fluttering in an axial flow, and in particular, the impact of harvester
distribution on the performance of the system as well as potential optimization
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strategies. To this end, a simplified fluid–solid model was proposed with energy
harvesting represented as non-uniform structural damping. Depending on the
fluid-to-solid inertia ratio, damping can actually enhance the flutter response of
the structure, as well as reduce the critical flow velocity above which the system
can operate.
For uniform damping distributions, maximizing the harvested power appears

as a trade-off on the damping intensity: for small damping, the flutter response
is only weakly modified and the harvested power increases as more damping is
added to the system. For higher damping however, the dynamical response can
be strongly modified and the self-sustained oscillations are eventually mitigated.
The effect of a non-uniform distribution of harvesters along the structure was
considered next. We show that even simple non-uniform distributions such as
linear and Gaussian functions, can lead to an increase in harvested peak power
on the order of 50 per cent. The similarity in the optimal distribution and in
performance obtained through an optimization on two fundamentally different
families of distributions suggests that simple strategies can capture rather well
the characteristics of the global optimal distribution.
Investigating further into the relationship between damping and flutter

response, we showed that for small damping, localized harvesting is optimal as
it takes full advantage of the system’s maximum curvature without impacting
its dynamics significantly. On the other hand, for finite damping, focused
distributions perform rather poorly as the beam response adapts to rigidify
the damped region, leading to negligible harvested power. Instead, non-uniform
distributed damping over the entire length of the system becomes optimal.
Returning to the result from the simple biarticulated model (Singh et al. 2012),

we note a clear difference in the optimal configurations. While the reduced-order
model optimal has dampers focused at the fixed end, the continuous optimal
requires a dispersed distribution with minimal damping at the fixed end and
increasing to a maximum at the free end. However, we find a crucial difference
between the two system configurations: while the biarticulated system has a single
moving region of curvature (the second articulation) that is responsible for driving
the instability, deformations may occur all along the length of the beam in the
continuous system. Therefore, in the latter, curvature can be displaced away
from regions with focused damping while still maintaining the flutter dynamics.
In both cases, a careful understanding of the dynamics of the system is necessary
to determine the optimal non-uniform positioning of energy harvesters.
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