
Energy harvesting from axial fluid-elastic instabilities of a cylinder
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a b s t r a c t

A flexible cylindrical system unstable to flutter oscillations is analysed from the
perspective of energy harvesting. In this work we analyse the non-linear reduced order
model of a two-degree of freedom system of cylinders modelled with discrete stiffness
and damping. The non-linear system of equations is solved in terms of cylinder
deflection angles. We seek the flow speed range over which flutter oscillations are
stable and correspondingly amenable to energy harvesting. Energy harvesters are
modelled as viscous dashpots and the coefficients of damping are parametrised in
order to determine combinations that harvest maximum power. We show that for
harvesting the maximum possible energy the viscous dashpot should be placed away
from the region driving the instability and for this model the optimal location is the
fixed end. This result is robust to flow speed variation, action of viscous drag and to
variations in cylinder geometry.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Geophysical flows in the oceans have been recently recognised as a possible energy source (Fairley, 2010), and tides in
particular are appealing due to their uniformity and predictability (Westwood, 2004). Motivated by the possibility of
exploiting such energy sources, in this work we analyse fluid–structure instabilities from the perspective of harvesting
energy.

Recent experiments and analysis show that it is possible to generate electric power from time periodic strain
deformations of a piezoelectric material actuated by flutter oscillations of an aerofoil in an external air flow. Bryant and
Garcia (2011) consider a rigid aerofoil mounted on a flexible cantilevered beam with piezoelectric patches converting
bending energy to electric energy. Dunnmon et al. (2011) place the piezoelectric patches on a flexible flap which is
connected at the trailing edge of a rigid aerofoil. Although energy harvested from these experiments is of the order of a few
milliwatts, they suggest the feasibility of energy harvesting from flutter instabilities.

The concepts discussed above consider the possibility of harvesting energy from flutter instabilities of two-dimensional
plate-like structures in a flow (Paı̈doussis, 2004). Recently this problem has been studied in the context of flapping flags:
Michelin et al. (2008) and Alben and Shelley (2008) analysed a flexible plate generating large amplitude deflections in two-
dimensional inviscid flow. These studies show that flutter occurs when the destabilising action of the fluid flow overcomes
the stabilising action of the internal bending stiffness of the plate. Linear stability analysis (Eloy et al., 2007) of a finite
aspect ratio rectangular plate in a three-dimensional inviscid flow indicates that the flutter speed scales inversely with
plate aspect ratio (ratio of span/length) and for decreasing aspect ratio it approaches the slender body limit.
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In this work we are interested in flutter instabilities in slender structures immersed in a bulk flow. Experiments by
Lemaitre et al. (2005) examined the onset of flutter in vertical ribbons of varying lengths and it was observed and
confirmed theoretically that the critical flutter speed saturates to a fixed value above a certain length. This observation was
also supported by the linear analysis of de Langre et al. (2007) for long slender flexible cylinders immersed in a flow. This
work demonstrated that the inviscid fluid component in the region of high curvature is important for flutter. Viscous drag
however contributes dissipation terms that act to mitigate oscillations. Experiments and non-linear analysis show that the
amplitude and frequency of the limit cycle oscillations depend on system parameters such as flow speed (Lopes et al.,
2002; Paı̈doussis et al., 2002; Semler et al., 2002).

The simplicity of a flexible system in an axial flowstream capable of self-sustained oscillations is attractive for energy
harvesting. The main contribution of this paper is a theoretical examination of the feasibility of harvesting energy from
fluttering elastic structures in axial flow using a bi-articulated link model. In this work we model energy harvesters as
viscous dashpots where the damping is deformation or strain based. This is akin to the structural damping model
examined by Doaré (2010) for pipe conveying fluids and is distinct from displacement based viscous damping (also see
Peake, 2001 for damping in flexible plates). Curvature based damping might be considered as a representative model for
energy harvesting by strain activated materials such as piezoelectrics (see Doaré and Michelin, 2011 for implementation in
flexible plates).

The larger goal of this work is to analyse continuously flexible cylinders for energy harvesting. However, the theoretical
and experimental work by Benjamin (1961a,b) on a bi-articulated pipe conveying fluid shows that canonical two degree of
freedom systems can display several important characteristics of the instability observed in flexible continuous structures.
In this paper we consider the bi-articulated cylindrical system immersed in a flow as a first step towards understanding
energy harvesting from flexible slender structures.

In Section 2 the system of equations are derived from the principle of conservation of momentum. The inviscid fluid
dynamics are modelled using the theory of Lighthill (1971) that is valid for large amplitude deformations in slender bodies
(specific care is taken to model the fluid dynamics at the articulation). The energy harvester is modelled as a viscous
dashpot and the harvested energy dependence on the damping coefficients is analysed in Section 3. In Section 4 we include
a model of the viscous drag forces exerted by the fluid on the body. We also examine the harvested power for different
cylinder cross-sections and flow speeds.

2. Development of the fluid–structure model

Here we develop the system of equations to model the bi-articulated energy harvesting system. We consider planar
motion of a pair of rigid cylinders: the first cylinder is allowed to rotate about the fixed joint O and is connected to the
second cylinder through the articulation P (see Fig. 1). These articulated joints give us a two degree of freedom
configuration where y1, y2 are the angles through which the first and second cylinders rotate about an axis perpendicular
to plane ðex,eyÞ at joints O and P, respectively. Energy harvesting is modelled as a viscous dashpot (damping coefficient, Ci).
Note that contrary to standard practice where a dashpot is implemented as a means to damp out oscillations, in our model
it represents an energy harvester. Here we intentionally maintain distinct damping coefficients as we analyse their role on
harvested power. Cylinders are modelled with equal lengths, L, torsional spring stiffness, K, and mass per unit length, M.
We assume neutral buoyancy (density of the structure matches the fluid density, r). The flow at infinity, U1, is assumed to
be uniform and directed along ex. In Section 4 the fluid model is extended to include viscous drag.

In this section we develop the system of equations required to model the fluid–structure system combined with the
dampers/energy harvesters. Since flutter oscillations are a non-linear phenomenon, the equations of motion are developed
for large rotation angles. The rest of the paper is presented in dimensionless form, for characteristic dimensions of length,

Fig. 1. (a) The bi-articulated cylinder model consists of a pair of cylinders of lengths, L, torsional spring stiffness, K, and viscous damping, Ci. The ith
cylinder rotates through angle yi relative to the fluid stream moving with velocity U1ex . (b) Kinematic description used in the text: position vectors at
points on the cylinders are indicated by thick solid arrows. Coordinate system ðex ,eyÞ indicates the inertial frame of reference fixed at O, ðsi ,niÞ is the local
tangent frame for the ith cylinder.
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L, mass, ML, and time, tn ¼ ðML3=KÞ1=2. Thus the non-dimensional flow speed is given as

u¼U1ðML=KÞ1=2: ð1Þ

2.1. Formulation of governing equations

2.1.1. Kinematic description
Fig. 1(b) indicates the kinematic notation adopted here. Lagrangian coordinates, si, uniquely identify points along the

ith cylinder axis. The first cylinder is fixed at O and connected to the second cylinder at P, the second cylinder is free at the
other end. The frame of reference ðex,eyÞ is fixed at O and defines the plane to which motion is confined.

The kinematics of a material point on the rigid cylinder is expressed in the local cylinder basis so the position vector of a
point on the first cylinder is given as

r1ðs1,tÞ ¼ s1s1ðtÞ, ð2Þ

where s1 is the Lagrangian coordinate with respect to O. Similarly we define Lagrangian coordinate s2 with respect to P
with the position vector of a point on the second cylinder given as

r2ðs2,tÞ ¼ r1ð1,tÞþs2s2ðtÞ ð3Þ

and first and second partial derivatives in time are, respectively, denoted as

_r i ¼
@ri
@t

and €r i ¼
@2ri
@t2

: ð4Þ

2.1.2. Reduced-order dynamical equations
We apply the conservation of momentum principle to derive the equations of motion for the pair of rotating rigid

cylinders in contact. The expressions can be identically obtained using Hamilton’s principle of least action, which is the
preferred approach for similar problems (Benjamin, 1961a; Paı̈doussis, 1998). The principal advantage of our formulation
is that we avoid the need to obtain an expression for the Lagrangian of the unbounded inviscid fluid.

Conservation of momentum applied to a system of moving rigid bodies in contact requires that the rates of change of
linear momentum ðdP=dt¼m€rÞ and angular momentum ðdL=dt¼ @ðr4m_rÞ=@tÞ, respectively, balance the external forces
and torques acting on a rigid body of mass m (Landau and Lifshitz, 1978). External forces on the ith cylinder are the fluid
dynamic force,

R li
0 ffdsi, and the contact or reaction force that manifests at the extremities. Thus applying the principle of

linear momentum conservation on cylinder 2 we get
Z 1

0

€r2 ds2 ¼
Z 1

0
ff2 ds2%Fc , ð5Þ

where Fc is the reaction force exerted by cylinder 1 on cylinder 2 due to contact at P. The principle of angular momentum
conservation applied to cylinders 1 and 2 lead to the following equations:

Z 1

0
r14€r1 ds1 ¼

Z 1

0
r14ff1 ds1þðTk1%Tk2 ÞþðTc1%Tc2 Þþr1ð1,tÞ4Fc , ð6Þ

Z 1

0
r24€r2 ds2 ¼

Z 1

0
r24ff2 ds2þTk2 þTc2%r1ð1,tÞ4Fc : ð7Þ

The left hand side of (6)–(7) correspond to the inertia terms, which can be expressed in terms of the moment of inertia of
the cylinders. For instance for cylinder 1:

Z 1

0
r14€r1 ds1 ¼ I €y1ez, ð8Þ

where I ¼ 1=3 is the moment of inertia of cylinder 1 with respect to point O. A similar expression may be derived for
cylinder 2. The stiffness and damping torques due to the ith linear spring and dashpot are given as

Tk1 ¼ y1, Tk2 ¼ y2%y1, ð9Þ

and

Tc1 ¼ c1 _y1, Tc2 ¼ c2ð _y2% _y1Þ: ð10Þ

Using expressions (2)–(5) and substituting (9)–(10) the equations of motion (6)–(7) reduce to

4 €y1

3
þ

€y2

2
cos y%

_y
2

2

2
sin y ¼%2y1þy2%ðc1þc2Þ _y1þc2 _y2 þTf

1, ð11Þ
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€y1

2
cos yþ

€y2

3
þ

_y
2

1

2
sin y ¼ ðy1%y2Þþc2 _y1%c2 _y2þTf

2, ð12Þ

where y ¼ y2%y1. The fluid contribution for each cylinder is absorbed in the term Tf
i , expressions for which are

developed next.

2.2. Fluid dynamic model

The inviscid fluid dynamics are modelled using large amplitude elongated body theory (Lighthill, 1971). This theory
was developed to analyse the inviscid fluid dynamics of a swimming fish, modelled by an internally actuated slender
flexible cylinder generating large amplitude deformations. Recently this theory has been employed successfully in several
studies that compute the pressure forces on slender bodies undergoing large amplitude deflections (Candelier et al., 2011;
Eloy, in press). In particular Candelier et al. show that the model compares favourably with results from a Reynolds-
averaged Navier–Stokes (RANS) numerical solver suggesting the validity of this approach for modelling large amplitude
motion of slender cylinders in an inviscid flow.

The idea behind modelling the purely inviscid fluid in the first instance is to understand the fundamental aspects of
energy harvesting from flutter, noting that the inviscid terms are key to triggering the flutter instability. A similar approach
has been adopted in classical work on high Reynolds number (Re) fluid–structure interaction problems. For instance,
Crighton and Oswell (1991) and Lucey et al. (1997) used inviscid flow models to understand fundamentals of panel flutter.
In this section we briefly examine fundamental modelling aspects of the inviscid theory and then develop the fluid
dynamic equations specifically applicable to the articulated rigid cylinder pair.

2.2.1. Lighthill’s large amplitude elongated body theory
Lighthill developed the large amplitude elongated body theory to model the inviscid fluid dynamic force due to large

deformations of a slender cylinder, where the measure of slenderness is the dimensionless diameter d51. The relative
velocity, ~u, of a point on the body is given by

~u ¼%uþ _r ¼ utsþunn, ð13Þ

where u is the background velocity of the fluid. The relative velocity due to motion of a point on the body, _r, is known from
(2)–(4). It is convenient to express ~u in tangential ðutÞ and normal components ðunÞ.

The theory assumes that the normal component of flow velocity acts reactively whereas the tangential flow component
acts resistively, where the term reactive was introduced by Lighthill to refer to the unsteady added mass contribution.
Resistive terms are discussed in Section 4.1 when we model viscous drag. An expression for the reactive force distribution,
ff , exerted by the fluid in contact with the cylindrical element can be defined in terms of the normal reactive momentum,
maun. Note that ma ¼Ma=M, where Ma is the dimensional added mass per unit length, the added mass being defined as the
fluid mass accelerated along with the moving cylinder (Lighthill, 1960). Unless otherwise specified we assume cylinders of
circular cross-section ðma ¼ 1Þ. A key assumption of this theory is that if the radius of curvature is much larger than the
cross-wise dimension then the force exerted by the fluid on a point on the body at r only depends upon ~uðrÞ and the cross-
sectional dimensions local to r.

Lighthill states that the total reactive fluid force acting on the body may be determined by the application of the
principle of momentum conservation on the volume of fluid surrounding the body ahead of the trailing edge—thereby
ignoring wake induced effects. More generally, momentum conservation on an arbitrary cross-section gives us an
expression for reactive force, ff , acting at that section. By the principle of momentum conservation the contributions of the
following components must sum to zero: (i) the rate of change of momentum within the fluid volume, dV, (ii) the normal
momentum flux convected out of dV, (iii) the pressure force acting on the surface bounding dV and (iv) the reactive force,
ff , exerted by the fluid on the structure. Thus we get

ff ðs,tÞ ¼%
@maunn

@t
þ

@maunð%utÞn
@s

þ
1
2
@mau2

ns
@s

! "
: ð14Þ

Contributions (i), (ii), (iii) correspond to the first, second and third terms, respectively, on the right hand side in (14). Here
ff includes non-linear terms due to large amplitude motion of the structure. Cylinders are allowed to rotate through large
angles, however we impose the condition 9yi9op=2, such that the tangential component of the flow velocity is positive.
This condition is employed to ensure the validity of the fluid model, noting that the premise of Lighthill’s theory is that
lateral motion occurs in a flowstream where the tangential component is advected downstream from the body.

2.2.2. Fluid dynamic equations for the bi-articulated system
We split the inviscid fluid dynamic force into contributions due to the relative flow over (a) the rigid cylinders and (b)

the transition region over the articulation at P. Expressions for fluid force over the rigid cylinders 1 and 2 are, respectively,

Ff1 ¼
Z 1

0
ff1 ds1 ¼%ma

1
2
€y1þ2u _y1 cos y1

! "
n1,
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Ff2 ¼
Z 1

0
ff2 ds2 ¼%ma

€y1 cos yþ _y
2

1 sin yþ
1
2
€y2%2 _y1

_y2 sin yþ2u _y2 cos y2
! "

n2: ð15Þ

The fluid contribution in the curvature region requires closer scrutiny. We develop an expression for this component by
assuming that the transition in angle from y1 to y2 at joint P occurs over a length 2El along which the curvature varies
smoothly (where El51, see sketch Fig. 2). The conditions, d5El51, and, RcZEl, for yop=2 satisfy the assumptions of
Lighthill’s theory. Integrating ff over this region gives a point force at P at leading order. The torque exerted by this term
will be r1ð1,tÞ4FJþOðElÞ, where

FJ ¼%ma

Z 1þ El

1%El

@unn
@t

%
@unutn

@s
þ

1
2
@u2

ns
@s

! "
ds,

¼
1
2
ðu sin y1Þ2s1%

1
2
ð _y1 cos yþu sin y2Þ2s2þð _y1ucosy1þu2 siny1cosy1Þn1

þð cosy sinyð _y1
2
%u2Þ%ucosð2y2%y1Þ _y1Þn2þOðElÞ: ð16Þ

For compactness we include contributions from FJ into the equations for cylinder 1. Combining (15) and (16), expressions
for the fluid dynamic terms in (11) and (12) are, respectively,

Tf
1 ¼

Z 1

0
r14ff1ds1þr1ð1,tÞ4

Z 1

0
ff2 ds2þr1ð1,tÞ4FJ

¼%ma
sin2y
2

_y
2

1þ
1
3
þ cos2y

! "
€y1þ

€y2

2
cos yþu _y1 cos y1þ2u _y2cos y2 cosy% _y1

_y2sin2y

 !

ezþr1ð1,tÞ4FJ , ð17Þ

Tf
2 ¼

Z 1

0
s2s24ff2ds2 ¼%ma

sin y
2

_y
2

1þ
cos y
2

€y1þ
€y2

3
þu _y2 cos y2% _y1

_y2 sin y

 !

ez: ð18Þ

Retaining Oð1Þ terms in FJ we get

r14FJ ¼ma
1
4
_y
2

1sin2ycosyþuðcosy1%cos2ycosy2Þ _y1þ sin2y1%siny2cosy1%
1
2
sin2y2cosy

! "
u2

2

! "
ez: ð19Þ

Substituting fluid dynamic expressions, (17)–(18), into equations of motion, (11)–(12), we solve for the system response,
y1 and y2.

2.3. Solution of the equations of motion for zero damping

Eqs. (11)–(12) are second-order non-linear ordinary differential equations in time with variables y1, y2. We solve these
numerically using a Runge–Kutta ode45 solver in MATLAB with a relative error tolerance of 10%6. The calculations are
initiated with a perturbation from the rest state, and the integration is stopped if either yop=2 or 9yi9op=2 is violated.

To test the implementation we first consider the case of no structural damping (ci¼0) and examine the basic fluid–
structure response. Fig. 3(a) shows the system response to increasing flow speed, u. We calculate a critical flow speed of
ucr & 2:13, below which the fluid acts to damp out disturbances imparted to the system. At ucr the system undergoes a

O

!1

!2

Rc

P
"l

"l

Fig. 2. A close-up view of the transition over the articulation region of length El51 for modelling the fluid dynamics. Radius of curvature in this region is
defined as Rc4El , dotted lines indicate the rigid cylinder geometry near P corresponding to the structural model indicated in Fig. 1(a).
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Hopf bifurcation and at higher velocities we see steady flutter oscillations as in Fig. 3(b). A physical picture of these
oscillations can be seen from Fig. 3(c) where we superimpose snapshots in time of the bi-articulated cylinder position.
Note that the linear equations for the bi-articulated pipe conveying fluid system and the bi-articulated cylinders in a flow
are identical for an inviscid fluid, and so the critical flutter speeds must agree. This result is consistent with the prediction
of Benjamin (1961a), once the differing non-dimensionalisations are accounted for with the multiplication factor offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð1þmaÞ

p
. The upper limit, uupper & 2:48, corresponds to the flow speed at which y1 ¼ p=2 and calculations terminate

above this flow speed in accordance with the criterion discussed in Section 2.2.1.
Linear analysis shows that if FJ , the inviscid component of the force at articulation point P is neglected, flutter

oscillations are not predicted at any flow speed (de Langre et al., 2007). Fig. 3(b) shows that the oscillation cycle of the
second cylinder lags in phase behind the first cylinder (Fig. 3(c) helps visualise this motion). Thus this might be interpreted
as positive work being done on the structure by FJ , the inviscid fluid force contribution from the articulation at P.

Phase plots in Fig. 4 indicate the change in topological structure of the dynamical system with u. Below ucr (Fig. 4(a),
u¼2) the equilibrium point is a stable focus, at ucr it switches stability to an unstable focus and above this speed a stable
limit cycle emerges (Fig. 4(b), u¼2.2). The limit cycle becomes increasingly tortuous at higher speeds (Fig. 4(c), u¼2.4) and
the solution is terminated for values of u4uupper as angles exceed p=2, the condition that renders Lighthill’s model as
invalid.

These results show a simple picture of the onset and evolution of the flutter instability with varying flow speeds. In
Section 3 we analyse the power response at a fixed value of flow speed (u¼2.45).

3. Results: Harvesting energy from an inviscid fluid

We next investigate harvesting of energy from the flutter instabilities observed above critical speeds in the bi-
articulated cylindrical system. Energy harvesters are modelled as viscous dashpots as noted in Section 2, henceforth these
expressions are used interchangeably.

The energy dissipated in a viscous damper gives an expression for the time-averaged power harvested over a period of
oscillation, T (Landau and Lifshitz, 1978):

P ¼
1
T

Z T

0
½c1 _y1

2
þc2ð _y1% _y2 Þ2( dt: ð20Þ

P is the sum of individual contributions from the two harvesters, P1 and P2, corresponding to the first and second terms in
expression (20), respectively. We evaluate these contributions for varying values of c1 and c2 in order to understand the
harvested power dependence on damping.

Fig. 3. In (a) the variation of JyiJ1 ði¼ 1;2Þ with u shows the onset of flutter above ucr ¼ 2:13 (uupper ¼ 2:48). In plots (a) and (b) solid curves correspond
to y2, dotted curves to y1. Shown in (b) and (c) is the flutter response of the system at u¼2.2: the time series response to an initial perturbation is plotted
in (b); in (c) the bi-articulated system in flutter is indicated by superimposed snapshots of the system at successive time intervals during an oscillation
period.

Fig. 4. Phase-plane plots show the change in topological structure with increasing flow speed. In (a) u¼2.0 and is below ucr whereas limit cycles emerge
above ucr as seen for (b) u¼2.2 and (c) u¼2.4.
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3.1. Power response for one harvester

First we introduce one damper at the fixed end O. Thus c2 ¼ 0 and c1 is varied from zero to a value above which
oscillations are completely damped out. The power harvested and system response to increasing c1 are indicated in Fig. 5.
The power curve in Fig. 5(a) shows an intermediate peak, which establishes the existence of an optimum damping
coefficient (copt1 & 0:6) at which harvested power is maximum. The intermediate peak in power is consistent with the
expression in (20) and the system response–power is neither harvested for c1 ¼ 0 since none of the mechanical energy of
oscillations is transferred to the dashpot nor for c1Z3:05 as oscillations are completely mitigated owing to excessive
damping. Fig. 5(b) illustrates that the process of energy harvesting in this system causes a reduction in the amplitude of
oscillations. It is worth noting that for each flow speed there is a unique cmax

1 and copt1 , and these are increasing functions
in u.

3.2. Power response for two harvesters

We next introduce a second harvester at movable joint P in order to investigate the possibility of generating additional
power over the maximum value predicted for a single harvester. Thus P is computed for all combinations of c1 and c2 and
from Fig. 6(a) we see that the peak power value lies on the c1-axis. We may conclude that for any c2a0 the maximum
possible power that may be harvested is lower than the corresponding maximum power for a single-damper system.
Superimposed on the power map is the stability boundary predicted by linear theory that shows the combinations of c1
and c2 above which flutter oscillations are completely damped out, so no power is harvested. As for the case of a single
harvester, the upper bounds on the damping coefficients for the two harvesters also increase with flow speed.

We examine the contribution from both joints by plotting the power variation with c2 at copt1 . In Fig. 6(b) the total
power, P, and individual contributions, P1 and P2, are plotted. It should be noted that the dominant contribution to P
comes from P1. Although P2 displays a maximum at an intermediate value of c2, it is insufficient to counter the sharp
reduction in P1 associated with the net decrease of flapping amplitude induced by the introduction of c2. Hence the total
power decreases monotonically with c2.

The power and oscillation amplitude variation with c1 as plotted in Fig. 5 is representative of the competitive elements
involved in energy harvesting in the idealised fluid. From the expression for the harvested power (20) we see that adding
more structural damping increases the proportion of the energy harvested, but the process of harvesting energy
necessarily mitigates the oscillatory response. The challenge lies in identifying an optimal balance between these
competing effects.

3.3. Linear stability analysis of differential dashpot contribution

The surprising outcome of the above computations is that for the bi-articulated system with identical cylinder length
and spring stiffness there lies a preferred position for placement of energy harvesters. To probe this observation further we
look to the linearised system for a possible explanation. One notes that the linear flutter response differs significantly from
the non-linear configuration as only the onset of the Hopf bifurcation can be predicted in the linear case and not the limit
cycle itself. Nonetheless, the linear solution can give clues as to reasons for the differing response of the system. In Fig. 7(a)
we plot the growth rate, s, of the most unstable mode as a function of c1 and c2. The variation of the growth rate with
damping reflects the differing contributions of each dashpot on the total harvested power, and c2 emerges as the dominant
oscillation mitigating parameter. The curves in Fig. 7(b) indicate the variation of s along the abscissa and ordinate of the
map and clearly portray the different actions of the two dashpots as the neutral curve is approached. We see a sharp

1.5

0.5

1

0

0.1

0.05

0
0 1 2 3

c1

0 1 2 3
c1

Fig. 5. (a) Harvested power, P and (b) Jy1J1 variation with damping coefficient c1 for a single harvester case (c2 ¼ 0). Computations are performed at
flow speed, u¼2.45.

K. Singh et al. / Journal of Fluids and Structures 30 (2012) 159–172 165



reduction in growth rate for small c2 in contrast to the more gradual reduction with c1; an indication of the effective
damping properties of a dashpot at P. From the perspective of energy harvesting this result leads us to conclude that a
dashpot at joint P is less effective in harvesting energy than a dashpot at O.

From a physical perspective the differing influence of c1 and c2 appears to originate from the source of the instability. As
noted in Section 2.3, the inviscid fluid near the articulation region P works to destabilise the system to flutter. A viscous
dashpot placed near the source of the instability has a strong damping effect. Thus the condition to maximise energy
harvesting from the bi-articulated system requires the placement of a viscous dashpot away from the region driving the
instability and for this reduced order model we find the optimal point to be the fixed articulation O. This model also shows
that the optimal damping coefficient depends on flow speed. In the next section we confirm these results with a more
representative fluid model that includes the viscous fluid dissipation term.

4. Drag modelling and parameter variation

As discussed in Section 2, the large amplitude elongated body theory assumes that the normal flow component
contributes to the inviscid force whilst the tangential component contributes to resistive drag. In Section 4.1 we apply the
resistive force theory of Taylor (1952) to analyse the role of drag on changing the flutter response and harvested power.
We then extend the parameter space to understand the impact of variation in cross-sectional geometry of the cylinders in
Section 4.2. In Section 4.3 we compute the peak power harvested at different flow speeds.

4.1. Drag model

Integration of the viscous stresses acting on a solid body moving relative to the fluid manifests as a drag force. We
calculate this drag using the resistive force theory of Taylor (1952) which posits that there are two main contributions to
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drag: (i) friction drag due to tangential viscous stresses exerted by the fluid on the body, and (ii) form or parasitic
drag due to the normal stress exerted on the body due to its motion relative to the fluid (also see Sherman, 1990).
Taylor’s calculations suggest that the rough cylinder model is appropriate for Re4105 thus here we assume a rough
cylinder. We use Taylor’s scaling for dimensional parasitic drag per unit length, rDUn9Un9, where D is the cross-sectional
diameter noting that Taylor’s model for parasitic drag is unambiguously adopted in the literature. However, the
friction drag term appears to be open to interpretation, in all likelihood due to Taylor’s speculation as to the choice
of the empirical roughness parameter. In order to implement a model of friction drag for large amplitude motion we
turn to the model of Kambe (1978) for the tangential friction drag. Here we extend it to include the normal
component, and we note that the dimensional friction drag per unit length scales as rDUtU. Combining these
two components, the non-dimensional expressions for tangential and normal drag for the ith cylinder are,
respectively,

Dt
i ¼

ma

2pdCf u
2
t,isi, Dn

i ¼
ma

2pd ðCf un,iut,i%CD,pun,i9un,i9Þni, ð21Þ

where, consistently with the slender cylinder assumption, we define the slenderness parameter, d¼0.1. Here Cf is the
friction drag coefficient and CD,p is the parasitic drag coefficient. Equations of motion (11)–(12) are modified to include
drag. For brevity these expressions are not re-derived here. It is worth noting that Boyer et al. (2008) use a similar
approach as adopted here and agreement with their RANS computations suggests that the combined reactive-resistive
theory is a valid model for slender structures in the high Re regime.

In the literature, the parasitic drag coefficient is typically ) Oð1Þ and the rough cylinder (Re4105) friction drag
coefficient is )Oð10%2Þ (Boyer et al., 2008; de Langre et al., 2007; Taylor, 1952). As observed from the inviscid fluid
analysis, the bifurcation curve for the unharvested system gives a general idea about the range of u in which flutter
oscillations occur, and the amplitude of oscillation at specific values of u. In Fig. 8 we plot this curve for representative
values of Cf and CD,p (for ci¼0). Friction drag is seen to be stabilising as the oscillatory instability sets in at higher values of
flow speed as compared to the zero drag case. Parasitic drag does not change the critical flow speed, but at a particular u it
reduces the amplitude of oscillations. We observe that drag acts to extend the range of operating flow speed for which the
oscillation amplitudes lie within accepted bounds. As in Section 2.2.1, the criterion for the assumptions of this model to
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Fig. 8. Effect of drag on the transition to flutter: The bifurcation curves show the Jy1J1 variation with increasing flow speed, u, for the inviscid case (thin
solid curve), Cf ¼ 0:01, CD,p ¼ 0 (dashed curve) Cf ¼ 0:05, CD,p ¼ 0 (dashed-dot curve), Cf ¼ 0, CD,p ¼ 1:0 (dotted curve), Cf ¼ 0:01, CD,p ¼ 1 (thick solid
curve).
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remain valid is JyiJ1op=2. Based on the results in Fig. 8, we select Cf ¼ 0:01,CD,p ¼ 1 for the drag model in the remainder
of this work.

In Fig. 9(a) we plot the power harvested for varying combinations of c1 and c2. Comparisons with the purely inviscid
case (Fig. 6) at the same flow speed (u¼2.45) show that the qualitative dependence of harvested power on c1 and c2 does
not change. As observed for the inviscid computations, the optimal value at which maximum power is harvested also lies
on the c1 axis (c2 ¼ 0). However, quantitative differences are significant: at the same flow speed we see a reduction in
power by almost two orders of magnitude when drag is included. Despite this reduction at a fixed u, Fig. 8 shows that the
flow speed range in which flutter oscillations are observed is significantly larger. As a consequence, energy harvesting is
possible at speeds that exceed the limits for a purely inviscid fluid. Thus, with the inclusion of drag higher values of non-
dimensional power are achieved in a higher u range. This can be seen from Fig. 9(b) where we plot the power response as a
function of c1 for various values of u. This result effectively captures the contradictory roles of viscous drag: its dissipative
action effects a reduction in the power available for harvesting energy whilst its stabilising action leads to sustained flutter
oscillations of suitable amplitudes over a wider range of flow speeds, far exceeding the range of u for the inviscid fluid.
Thus we find that the stabilising action allows for higher values of power to be harvested. In Section 4.3 we examine this
dependence of P on u.

4.2. Variation in mass ratio

For neutrally buoyant cylinders of non-circular cross-sections the mass ratio differs from 1. For instance, an elliptic
cross-section with ma41 will have the major axis of the ellipse directed perpendicular to the plane of motion (conversely
parallel for mao1). In this section we repeat the computations in Section 4.1 for two elliptical cross-sections. A change in
cross-section geometry warrants a representative change in values of the empirical drag coefficients; a possible approach
in choosing these values was demonstrated by Boyer et al. (2008). However, this study also showed that the order of
magnitude of the coefficients does not vary greatly with change in geometry. Bearing in mind the exploratory nature of our
work and in the interest of consistency in this study we use the circular cylinder drag coefficients.

The non-linear response for selected values of mass ratio may be understood from the bifurcation curve in Fig. 10.
Compared to ma¼1, the critical flutter speed decreases for ma¼2, we see a shrinking of the flow speed range over which
flutter oscillations are observed and oscillation amplitudes grow rapidly above ucr. Conversely, for mar1 oscillation
amplitudes grow more gradually, the useful flow speed range increases and flutter onset is delayed to higher flow speeds.
The discontinuity in the curve at ma¼2 corresponds to a small u range over which the bi-articulated system transitions
from limit cycle oscillations to divergence. Outside this range, divergence disappears and flutter oscillations are observed
(this is not a unique observation, see Semler et al., 2002). We proceed by selecting the appropriate values of u to analyse
power dependence on c1 and c2.

In Fig. 11 we plot the power response for ma¼2 at u¼2.42. Compared to the nominal case (ma¼1, Fig. 9) we see that
peak power is harvested at a lower value of c1. Close to the stable boundary there is an abrupt reduction in power for a
marginal increase in c1, which is seen in Fig. 11(b). Dynamically, the discontinuity arises due to a switch in the equilibrium
state as symmetric flutter transitions to an asymmetric flutter mode.

Computations reveal that this onset of asymmetric flutter is observed in the higher range of u. Whereas the onset of
asymmetric flutter is associated with a reduction in harvested power for ma¼2, it results in an increase in power for
mar1. We see this increase in power for ma¼0.1 in Fig. 11(c) and (d) where the map reflects the two regimes of
symmetric and asymmetric flutter segregated by a cusp in the power contours. Switching occurs at a comparatively small
value of damping as compared to the final damping coefficient above which all oscillations are mitigated. And although for
c2 ¼ 0 the discontinuity manifests at c1 ) 1, we find that asymmetric flutter is the only stable mode for high enough values
of structural damping, as is evident from the curve at c2 ) 0:9. It must be emphasised that asymmetric flutter is not
restricted to ma values that differ from unity. Although we do not see the jump in the power curves in Fig. 9(b), the
phenomenon appears in the high flow speed range (u42:7 for ma¼1).

Fig. 10. Jy1J1 variation with flow speed for: ma¼1.0 (solid curve), ma¼2.0, (dotted curve) and ma¼0.1 (dashed curve). Here c1 ¼ c2 ¼ 0 and drag
coefficients, Cf ¼ 0:01, CD,p ¼ 1:0.
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In Fig. 12(a) and (b) we compare the phase–plane plots for both cross-sections prior to and after the onset of
asymmetric flutter. For both ma the limit-cycle plotted for asymmetric flutter is one of a pair and which of the pair is
triggered depends on the sign of the initial perturbation (we have checked to ensure that the time averaged power is the
same for both). The phase–plane plots suggest that the transition from asymmetric to symmetric flutter occurs through
different global bifurcations, this is observed from the oscillation period variation as well in Fig. 12(c) where the
discontinuities in the curves indicate the bifurcation points. It is interesting to note that asymmetric flutter corresponds to
a reduction in oscillation period with increasing c1 for both ma.

The power map in Fig. 11(c) also indicates islands of zero power, which correspond to non-deterministic behaviour (no
relevant time scale of oscillation can be determined). These occur in the regime of small structural damping and are due to
the transition from symmetric to asymmetric flutter via a chaotic route. Despite these obvious differences observations
suggest that the essential characteristics of power harvested from flutter are very similar to the purely inviscid case
analysed in Section 3. Peak values of power are generated for intermediate values of c1 at zero c2 and the value of the
optimal damping coefficient, copt1 , corresponding to peak power varies with u. We also note here that the reduction in
critical flow speed with ma is apparently at odds with the results of Paı̈doussis (1998, see Section 3.8.2). The apparent
anomaly arises due to differences in non-dimensionalising parameters used in the two analyses. This leads to expressions
for non-dimensional flow speeds that differ by a multiplication factor of m1=2
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Fig. 12. System response for symmetric (thick grey lines) and asymmetric flutter (black lines) is captured in the y1 phase-plane plots for: (a) ma¼2.0 at
u¼2.42 with damping coefficients c1¼0.2 (grey) and c1¼0.4 (black) and (b) ma¼0.1 at u¼11.1 and c1¼0.4 (grey) and c1¼2.5 (black). In (c) the variation
of oscillation period with c1 for ma¼2.0 (squares) and ma¼0.1 (inverted triangles) is indicated. Note: For all figures c2 ¼ 0.
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4.3. Dependence on flow speed

The bifurcation curves in Fig. 10 reveal that for a given geometric configuration there is a range of flow speeds over
which energy can be harvested. To investigate how power harvested varies with u, in Fig. 13 we calculate peak power
harvested in the flow speed range for which flutter oscillations are observed. We compute power for three values of mass
ratio, ma ¼ 0:1,1:0,2:0. We find that a reduction in mass ratio leads to a wider range of flow speeds over which flutter is
observed as well as an increase in peak power, particularly useful from an energy harvesting standpoint. Recall that the
upper limit on flow speed comes from the constraint JyiJ1op=2.

An expression for the dimensional harvested power, Pharv, can be obtained from dimensional analysis:

Pharv ¼
K3=2

L3=2M1=2
PðU1ðML=KÞ1=2,MÞ: ð22Þ

We compute dimensional values of power for varying cylinder lengths and two cross-sections, ma ¼ 1, 0:1, with values of
flow speed, U1, and torsional spring stiffness, K, as indicated in Table 1. It is worth noting here that the value of U1 is
constrained by typical tidal or river currents speeds, hence the geometric dimensions of the cylinder emerge as useful
parameters.

The tabulated values show the sensitivity of the power to variations in length. Expression (22) may suggest that Pharv

scales inversely with L however, from Fig. 13 we see that P scales algebraically with u and hence L since other parameters
are held constant. Our computations suggest that it is possible to increase the harvested power by almost two orders of
magnitude either byincreasing the cylinder length by & 30% and retaining a circular cross-section or by replacing with an
elliptical cross-section and increasing the cylinder length by & 20%.

5. Conclusions

The objective of this work is to develop a simplified model that includes the principal physical components that
contribute to flutter oscillations in slender, flexible cylinders in a bulk flow. By employing the model to understand
fundamental aspects related to energy harvesting from mechanical oscillations that arise from fluid–structure instabilities
we can attempt to interpret its scope for practical applications.

Flutter oscillations occur when the structure absorbs energy from the fluid. We show that it is the inviscid component
of the fluid that is responsible for the instability; these inviscid forces lead to finite amplitude oscillations that are

100
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10-4

1 2 5 10
Flow speed, u

Fig. 13. Non-dimensional peak power variation with flow speed at three different values of mass ratio: ma ¼ 0:1,1;2 represented by circle, square and
diamond symbols, respectively (drag coefficients: Cf ¼ 0:01, CD,p ¼ 1:0).

Table 1
Dimensional power for different cylinder lengths of massM ¼rpD1D2=4. Two
cross-sections are compared: Column (I): circular cross-section, D1 ¼D2 ¼
L=10, Column (II): elliptical cross-section D1 ¼ L=

ffiffiffiffiffiffi
10

p
, D2 ¼D1=10. Other

dimensional quantities are U1 ¼ 1 m=s, K ¼ 1 N-m, r¼ 103 kg=m3.

L (m) Pharv (W)

(I) (II)

1.0 4*10%3 7.5*10%2

1.1 3*10%2 1.2*10%1

1.2 8*10%2 1.8*10%1

1.3 2*10%1 2.5*10%1
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observed for a certain range of flow speeds and it is this mechanism that is responsible for flutter regardless of geometry
and other configurations. Inclusion of the viscous contribution of the fluid extends the range of flow speeds for which
flutter is observed, however the fundamental physics corresponding to these flutter oscillations is virtually unchanged. The
prediction based on the inviscid analysis that c1 is the only important energy harvesting parameter remains valid even
with the inclusion of drag. The inviscid model is thus shown to be a powerful tool in analysing the dominant physics of
complicated systems.

We see that viscous drag has a dual influence on energy harvesting: at a given flow speed its dissipative action reduces
the power output; however, the stabilising action of drag leads to sustained limit cycle oscillations at higher values of flow
speed. Furthermore, in the high flow speed range, asymmetric modes are triggered in the presence of structural damping.
In this study we have only performed a cursory examination of the dynamical characteristics of the system, nonetheless
two facts emerge: (a) the asymmetric flutter mode is associated with a growth in the frequency of oscillation for increasing
levels of dashpot damping and (b) for mao1, we can employ this mode to harvest greater levels of power. Estimates of the
dimensional power that can be harvested suggest that a circular cylinder of 1 m length immersed in a flowstream of
) 1 m=s would harvest power of the order of a few milliwatts. However, the harvested power increases by almost two
orders of magnitude with a 20% increase in length and a switch to an elliptical cross-section.

The primary appeal of this bi-articulated system under investigation as an energy harvesting device is the
demonstrated simplicity of harvesting the energy of self-sustained oscillations from a slender flexible structure in an
axial flowstream. An important result from this analysis is that a single harvester at the fixed end (with an optimal value of
damping coefficient) can extract the maximum available power from the system. Conversely, an additional dashpot at the
articulation P would mitigate the flutter instability and reduce the total harvested power.

Our analysis shows the theoretical feasibility of energy harvesting from such a system, which motivates an extension of
the analysis to a continuously flexible cylinder. A key insight gained from this analysis with a reduced order model of a
flexible cylinder in an axial flow is that energy harvesters ought to be distributed non-homogeneously along the length.
The optimal distribution of damping for a continuous system that will lead to maximum energy harvesting is a topic for
further investigation.
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de Langre, E., Doaré, O., Paı̈doussis, M.P., Modarres-Sadeghi, Y., 2007. Flutter of long flexible cylinders in axial flow. Journal of Fluid Mechanics 571,

371–389.
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