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The flow field created by swimming micro-organisms not only enables their
locomotion but also leads to advective transport of nutrients. In this paper we address
analytically and computationally the link between unsteady feeding and unsteady
swimming on a model micro-organism, the spherical squirmer, actuating the fluid in
a time-periodic manner. We start by performing asymptotic calculations at low Péclet
number (Pe) on the advection–diffusion problem for the nutrients. We show that the
mean rate of feeding as well as its fluctuations in time depend only on the swimming
modes of the squirmer up to order Pe3/2, even when no swimming occurs on average,
while the influence of non-swimming modes comes in only at order Pe2. We also
show that generically we expect a phase delay between feeding and swimming of
1/8th of a period. Numerical computations for illustrative strokes at finite Pe confirm
quantitatively our analytical results linking swimming and feeding. We finally derive,
and use, an adjoint-based optimization algorithm to determine the optimal unsteady
strokes maximizing feeding rate for a fixed energy budget. The overall optimal feeder
is always the optimal steady swimmer. Within the set of time-periodic strokes, the
optimal feeding strokes are found to be equivalent to those optimizing periodic
swimming for all values of the Péclet number, and correspond to a regularization
of the overall steady optimal.

Key words: biological fluid dynamics, low-Reynolds-number flows, micro-organism
dynamics

1. Introduction
In order to be able to swim in viscous fluids, micro-organisms must undergo

non-time-reversible sequences of shape changes referred to as swimming strokes
(Lighthill 1975; Purcell 1977; Lauga & Powers 2009). Through the no-slip boundary
condition, these strokes induce a net flow field around the organism and a distribution
of viscous stresses which lead to locomotion. This swimming-induced flow also
impacts hydrodynamic interactions with neighbouring organisms (Drescher et al. 2009;
Michelin & Lauga 2010b) or material boundaries (Lauga et al. 2006; Berke et al.
2008), the overall dynamics of suspensions of cells (Kessler 1986; Pedley & Kessler
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1992; Sokolov et al. 2007; Saintillan & Shelley 2008a; Evans et al. 2011) and the
feeding ability of organisms (Childress, Koehl & Miksis 1987; Short et al. 2006).

Cellular motility is essential to many biological functions, from reproduction (Suarez
& Pacey 2006) to escaping aggression (Crawford & Purdie 1992; Hamel et al. 2011).
It also allows organisms to travel toward better local environments for example to seek
(or escape) light, nutrient, or heat. The performance of the particular stroke displayed
by a single micro-organism, or that of a suspension of such swimmers, also results in
the modification of the bulk stress and effective viscosity of a flow (Batchelor 1970;
Ishikawa, Simmonds & Pedley 2007), or of its mixing properties (Saintillan & Shelley
2008b; Leptos et al. 2009; Kurtuldu et al. 2011), an effect that is suspected to play an
important role on large-scale bio-mixing in the ocean for example (Doostmohammadi,
Stocker & Ardekani 2012).

The metabolism of many micro-organisms relies on the absorption of diffusing
nutrients present in their vicinity, ranging from dissolved gases and low-weight
proteins, to more complex molecular compounds and, in the case of large organisms
such as the protozoon Paramecium, smaller bacteria whose run-and-tumble motion
is equivalent to a diffusive process at the scale of Paramecium (Berg 1993). For
a particular micro-organism, the impact of the stroke on its feeding ability can be
thought of as twofold: (i) through the motility resulting from the stroke, the organism
can travel toward nutrient-rich regions; (ii) by stirring nutrients in its immediate
vicinity, the stroke-induced flow modifies, and possibly enhances, local concentration
gradients.

The competition of advective and diffusive effects on the dynamics of a particular
nutrient is quantified in the Péclet number, Pe = τdiff /τadv, where τdiff = a2/κ and
τadv = a/U are the characteristic diffusive and advective time scales respectively, where
a, U and κ are the typical size of the organism, the characteristic flow velocity, and the
nutrient diffusivity, respectively. Depending on the nutrient considered, Pe can vary by
several orders of magnitude, even for a given micro-organism.

Performing its stroke represents an energetic cost for the organism, as it must
work against the fluid to overcome viscous dissipation. How far it can swim or how
much nutrient it can absorb is therefore, in theory, limited by the finite amount of
energy it has available. Considering that energy losses other than hydrodynamic can
be accounted for by a fixed metabolic efficiency, the optimization of the swimming
stroke to maximize either motility or feeding can therefore be formulated as follows:
for a fixed amount of energy available to deform its shape, what is the optimal stroke
of a particular micro-organism maximizing either: (i) the net displacement (optimal
swimming problem); or (ii) the amount of a particular nutrient absorbed at the surface
of the organism (optimal feeding problem)? In the latter case, the optimal stroke does
not necessarily require a net displacement of the cell, as the organism can potentially
just sit at a given location and stir the fluid around it. The optimal feeding stroke
may also depend on the particular nutrient considered and the relative importance of
advection and diffusion through the value of Pe.

The optimization problems described above are closely linked to the question of
optimality with respect to a specific biological function, which can take two different
forms: optimal shape or optimal gait. In the former, one is interested in the optimal
morphology of the swimmer (e.g. its aspect ratio, the use of flagella versus cilia, etc.)
and compares different species of micro-organisms. In the latter, the focus is placed
on a given organism, and the goal is to determine the sequence of body deformations
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that performs best (Tam & Hosoi 2007; Spagnolie & Lauga 2010; Michelin & Lauga
2010a, 2011; Tam & Hosoi 2011a,b).

In this work, we focus on the optimal gait of a particular swimmer model, the
so-called squirmer. This canonical model, consisting of a spherical micro-organism
imposing a tangential velocity at its surface, was introduced as a so-called envelope
model for ciliated micro-organisms (Lighthill 1952; Blake 1971). Ciliates, such as
Paramecium, swim in viscous flows using the coordinated beating of a large number
of small cilia distributed over their surface (Blake & Sleigh 1974; Brennen & Winnet
1977). In the squirmer model, the flow field can be determined analytically through the
projection of the stroke on orthogonal squirming modes. Because of its simplicity, this
model has been used to study a large variety of problems related to swimming micro-
organisms, including hydrodynamic interactions (Ishikawa, Simmonds & Pedley 2006),
mixing (Lin, Thiffeault & Childress 2011), suspension rheology (Ishikawa & Pedley
2007), collective dynamics and instabilities (Ishikawa et al. 2007; Evans et al. 2011),
and feeding (Magar, Goto & Pedley 2003; Magar & Pedley 2005; Doostmohammadi
et al. 2012).

Recently, Michelin & Lauga (2010a) determined the optimal time-periodic
swimming strokes (i.e. those maximizing the swimming velocity for fixed energetic
cost) of such a model micro-organism, and identified their main properties. In a
subsequent contribution, Michelin & Lauga (2011) considered the optimization of
the stroke for feeding in the particular case of a steady surface velocity. Although
such strokes correspond to non-periodic displacements of the surface, the results shed
some light on the link between swimming and feeding, and in particular it was
shown that optimal swimming strokes and optimal feeding strokes were essentially
identical regardless of Pe, a result that is not a priori intuitive due to the fundamental
differences in the impact of swimming on feeding at low or high Pe: at low Pe,
swimming only impacts marginally the nutrient distribution, but enables the organism
to travel toward regions with richer nutrient content, while at high Pe, swimming also
impacts feeding through stirring and strong advection of the nutrient in the vicinity of
the organism surface.

The validity of these conclusions, and in particular the intimate relationship between
optimal swimming and optimal feeding, remains to be addressed in the general case
of unsteady strokes, however. Magar & Pedley (2005) showed that in the particular
limit of large Pe and small surface displacement, an equivalent steady problem could
be defined. However, the unsteady effects of advection and diffusion in the general
case of both finite swimmer displacement and finite Pe remain unclear. In this paper,
we specifically focus on the unsteady swimming problem. We first address analytically
and computationally the link between unsteady feeding and unsteady swimming. We
then derive, and use, an adjoint-based optimization algorithm to determine the optimal
unsteady strokes maximizing feeding rate for a fixed energy budget.

The paper is organized as follows. In § 2, the squirmer model is briefly presented,
and the swimming and feeding problems are posed mathematically. In § 3, the
unsteady feeding rate is determined in the asymptotic limit of small Pe. The impact
of the swimming stroke and of the Péclet number on the feeding rate is further
analysed in § 4 using numerical simulations, providing an important insight into the
link between swimming and feeding. Section 5 presents the result of the stroke
optimization with respect to feeding and conclusions and perspectives are finally
presented in § 6.
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FIGURE 1. Swimming and feeding of a squirmer. A purely axisymmetric tangential velocity
and a purely absorbing boundary condition for the nutrient are imposed at the surface of the
swimmer. All variables are non-dimensional.

2. Swimming and feeding of a model ciliate
2.1. The squirmer model

The present work focuses on a particular model micro-organism, the squirmer,
illustrated in figure 1. It is a spherical organism of radius a which prescribes
periodic tangential deformations of its surface S with a frequency ω, in order
to swim in a viscous fluid of dynamic viscosity µf and density ρf . The present
analysis is restricted to purely axisymmetric deformations of S so that the swimming
velocity is parallel to the axis of symmetry ex, with no rotation. In this paper,
we will seek optimal strokes maximizing the feeding rate of the organism for
a given amount of energy available during each period to perform its surface
deformation (and possibly its swimming). This average rate of energy consumption,
P , is identified with the rate of work applied on the fluid by the swimmer at its
surface, or, equivalently, the total mechanical energy dissipated in the fluid through
viscous effects during one period. It is related to the typical surface velocity scale
U by

U =
√

P

12πµf a
· (2.1)

The squirmer is swimming in a continuous suspension of a given nutrient (e.g.
bacteria, large proteins/molecules, heat, etc.) characterized by a far-field concentration
C∞ and a diffusivity κ , and advected by the flow created by the surface stroke.
On the swimmer boundary, the nutrient is instantaneously absorbed and processed
at the surface so that C = Cb, with Cb the equilibrium concentration at the surface
determined by the processing mechanism. A more realistic, but more complex,
boundary condition was proposed by Magar et al. (2003) and Magar & Pedley
(2005), taking into account such effects as the resistance of the membrane to nutrient
absorption, and the finite diffusion and processing time of the nutrient within the cell.
The instantaneous nutrient uptake by the organism through diffusion at its boundary,
Φ(t), is given by

Φ(t)=
∫

S

κ
∂C

∂r
dS. (2.2)
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In the case of a purely rigid sphere, with no advection, a steady nutrient flux is
achieved through diffusion, Φ0 = 4πaκ(C∞ − Cb). In the following, we focus on
the modification of the concentration field by the organism and define the rescaled
concentration field c= (C∞ − C)/(C∞ − Cb).

Three distinct time scales are present in the problem: (i) a diffusive time scale
τd = a2/κ; (ii) an advective time scale τa = a/U ; and (iii) the stroke period
τω = 2π/ω. Only the latter two were present in the purely swimming problem
(Michelin & Lauga 2010a) and only the first two in the steady feeding problem
(Michelin & Lauga 2011). The Péclet number, Pe= τd/τa, is a measure of the relative
importance of advective and diffusive effects near the surface of the squirmer, and is
equal to

Pe= U a

κ
= 1
κ

√
Pa

12πµf
· (2.3)

A second independent time scale ratio can be defined either as a characteristic of
the stroke, for example the relative velocity UR = U /(aω), or as a period-based
Péclet number Peω = a2ω/κ . In the following, all equations and quantities are non-
dimensionalized using a, ω, µf and C∞ − Cb as reference quantities.

2.1.1. Swimming problem
Owing to the small size of the organisms considered, the Reynolds number,

Re = ρf U a/µf , a relative measure of inertia and viscous effects in the flow, is
always much smaller than one, and the velocity and pressure fields satisfy Stokes
equations. The swimming problem in the reference frame attached to the organism is
therefore

∇2u=∇p, ∇ ·u= 0, (2.4)

with the boundary conditions on the swimmer surface and at infinity given by

u = uS
θ(µ, t)eθ at r = 1, (2.5)

u→−U(t)ex for r→∞. (2.6)

Note that the prescribed surface field, uS
θ , is the stroke imposed by the organism and at

the origin of both locomotion and stirring. The stroke is assumed to be axisymmetric,
therefore the surface velocity only depends on µ= cos θ and t, with θ the polar angle
measured from the swimming direction ex (figure 1). In Stokes flow, the swimmer
cannot sustain any net hydrodynamic force, therefore we have∫

S

[−p1+ (∇u+∇uT)] ·n dS= 0, (2.7)

where n is the unit normal vector pointing into the fluid (n = er here). Note that we
have assumed the swimmer to be neutrally buoyant. The solution to the swimming
problem in (2.4)–(2.7) is obtained by decomposing the surface velocity onto the
squirming modes (Blake 1971; Michelin & Lauga 2010a)

uS
θ(µ, t)=

∞∑
n=1

αn(t)Kn(µ), (2.8)
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with

Kn(µ)= 2n+ 1
n(n+ 1)

√
1− µ2L′n(µ), (2.9)

where Ln(µ) is the nth-order Legendre polynomial, and L′(µ) its first derivative. The
values of the pressure field and streamfunction are then obtained as

p(r, µ, t)= p∞ +
∞∑

n=2

αn(t)Pn(r, µ), (2.10)

ψ(r, µ, t)=
∞∑

n=1

αn(t)Ψn(r, µ), (2.11)

with

Pn(r, µ)=−
(

4n2 − 1
n+ 1

)
Ln(µ)

rn+1
, (2.12)

Ψn(r, µ)= 2n+ 1
n(n+ 1)

(1− µ2)L′n(µ)ψn(r), (2.13)

ψ1(r)= 1− r3

3r
, ψn(r)= 1

2

(
1
rn
− 1

rn−2

)
for n > 2. (2.14)

In the decomposition above, the first mode is the only one that contributes to
the swimming motion (we have U(t) = α1(t) for all times) and is referred to as
the swimming mode, or ‘treadmill’. All remaining modes (including the so-called
stresslet, n = 2, characterizing the modification of the bulk stress by the swimmer)
correspond to higher-order singularities in the far-field flow and do not contribute to
the swimming motion.

The dimensionless energetic cost, P, is computed as (Michelin & Lauga 2010a)

P= P

12πµf a3ω2
=
∞∑

n=1

γn〈α2
n〉, (2.15)

with

γ1 = 1 and γn = (2n+ 1)2

3n(n+ 1)
for n > 2, (2.16)

and is equal to the rate of working of the squirmer on the fluid through its boundary
actuation or, equivalently, to the total energy loss through viscous dissipation in
the fluid domain. In the following, we define 〈f 〉 = (1/2π) ∫ 2π

0 f (t) dt as the time-
averaging operator over one stroke period. With this definition,

√
P is the typical

non-dimensional surface velocity of the swimmer. Following Lighthill (1975), the
stroke swimming efficiency, η (or scaled energy cost), is defined as the ratio of the
energetic cost of pulling a rigid sphere with constant velocity 〈U〉 and the energetic
cost of swimming at the same average velocity, obtained here as (Michelin & Lauga
2010a):

η = 〈U〉
2

2P
= 〈α1〉2

2
∞∑

n=1

γn〈α2
n〉
. (2.17)
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2.1.2. Feeding problem
To evaluate the amount of nutrient absorbed at the surface of the organism, the

non-dimensional advection–diffusion problem must be solved:

ε

(
∂c

∂t
+ u ·∇c

)
=∇2c with ε = Pe√

P
, (2.18)

together with the far-field behaviour and purely absorbing boundary conditions on the
swimmer surface (figure 1)

c→ 0 as r→∞, (2.19)
c= 1 for r = 1. (2.20)

In (2.18) the parameter ε = ωa2/κ can also be understood as the period-based Péclet
number. The flow field, u, originates from the organism stroke and is obtained from
the squirming mode amplitudes, αn(t), using (2.11), (2.13) and (2.14). The feeding
performance of the stroke is evaluated using the ratio J(t) = Φ(t)/Φ0 quantifying the
net gain in nutrient uptake in comparison with the purely diffusive case (Pe = 0). The
relative nutrient flux, J, is therefore non-dimensional and given by

J(t)=−1
2

∫ 1

−1

∂c

∂r

∣∣∣∣
r=1

dµ. (2.21)

2.1.3. Eulerian versus Lagrangian description
A given periodic stroke, be it swimming or non-swimming, can be mathematically

described following two different approaches.

(a) By prescribing at each instant, a periodic surface velocity on each point fixed in
the swimmer frame, uS

θ(µ, t), or equivalently a set of functions {αn(t)}n. We will
refer to this description in the following as the Eulerian periodic stroke.

(b) By prescribing periodic trajectories, ξ(µ0, t), of material surface points labelled
by their reference position on the sphere µ0. We will refer to this description in
the following as the Lagrangian periodic stroke. The surface velocity and mode
amplitudes, αn(t), can then be obtained from ξ(µ0, t) as (Michelin & Lauga 2010a)

uθ(ξ(µ0, t), t)=− 1√
1− ξ (µ0, t)2

∂ξ

∂t
(µ0, t), (2.22)

αn(t)= 1
2

∫ 1

−1
Ln[ξ(µ0, t)] ∂

2ξ

∂µ0∂t
dµ0. (2.23)

In both descriptions, the flow velocity is periodic and completely determined by the
periodic functions αn(t). However, in the Eulerian formulation, material surface points
do not necessarily have periodic trajectories. Indeed, periodic Lagrangian strokes only
represent a subset of periodic Eulerian strokes, namely the ones guaranteeing that
every surface point comes back to its original position at the end of a full stroke
period. Despite its shortcomings regarding the description of material point trajectories,
the Eulerian approach has been the most popular for models of swimmers because of
its simplicity, and in particular the possibility to consider steady strokes corresponding
to steady surface and flow velocities (Ishikawa et al. (2006), Short et al. (2006),
Doostmohammadi et al. (2012), Evans et al. (2011) to cite only a few).
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2.2. Optimal swimming and optimal feeding
For a given amount of energy available to perform a periodic stroke, an organism
might have different optimal surface motions depending on the biological function of
interest: migration (swimming problem) or nutrient uptake (feeding problem). A priori,
those two objectives should lead to different optimal strokes, if anything because the
optimal feeding stroke may depend on nutrient diffusivity through the value of Pe
while the swimming problem does not depend on it.

As emphasized earlier, a periodic stroke can be defined in two different ways, either
from an Eulerian point of view (periodic flow field) or from a Lagrangian point of
view (periodic material displacement). In our recent contributions, we presented the
results of the optimal swimming problem (for both Eulerian and Lagrangian strokes)
(Michelin & Lauga 2010a) and of the optimal feeding problem in the Eulerian steady
framework only (Michelin & Lauga 2011). A brief summary of these results is first
presented here.

We start by remarking that, for the swimming problem, Eulerian optimal strokes
are necessarily steady and each mode, αn, is independent of time. This is a direct
consequence of the absence of history effect in the swimming problem: the swimming
velocity and the energetic cost only depend on the instantaneous surface velocity. The
optimal Eulerian stroke is then obtained by choosing the surface velocity distribution
maximizing instantaneously the efficiency η. From (2.17) we see that the Eulerian
optimal swimming stroke is simply obtained by putting all the energy into the
swimming mode, namely αn(t) = δn,1. The resulting treadmill swimmer, with an
efficiency ηmax = 50 %, is therefore the overall optimal for locomotion (Leshansky
et al. 2007; Michelin & Lauga 2010a).

In the case of the feeding problem, the presence of a time-derivative in the
advection–diffusion equation introduces history effects, and the optimal Eulerian
feeding stroke is therefore not necessarily steady. Focusing on the simplified problem
of steady strokes, Michelin & Lauga (2011) showed using adjoint-based optimization
that the optimal steady feeding stroke is essentially the same as the optimal steady
swimming stroke, a result which, surprisingly, remains true for all Péclet numbers.

That result was not obvious a priori. The value of the mean feeding rate of the
organism for a given stroke is a strong function of the diffusivity of the nutrient,
whose distribution around the organism is qualitatively different in the diffusive and
advective regimes (Magar et al. 2003; Michelin & Lauga 2011). The optimal feeding
rate, 〈J〉opt , depends strongly on Pe, but the stroke to achieve this optimal value does
not. This result is important biologically as it implies that, for a given organism, a
unique optimal stroke maximizes the nutrient uptake regardless of the details of its
diffusive transport. For all Pe, and in the steady Eulerian framework, maximizing
feeding and maximizing swimming are therefore equivalent problems.

Although simpler conceptually and mathematically, the Eulerian framework is not
appropriate to describe periodic deformations of a material surface, such as, for
example, the strokes of ciliated cells. To impose periodicity of the surface motion,
it is necessary to turn to the Lagrangian approach and to consider the unsteady
swimming and feeding problems. Michelin & Lauga (2010a) showed numerically that
the optimal Lagrangian swimming stroke could be decomposed into two different
parts: an effective stroke, dominated by the swimming mode, α1, and producing a
forward velocity, and a recovery stroke during which material points (e.g. cilia tips)
are brought back to their original position with front-like dynamics to minimize their
(negative) impact on the swimming velocity. This front, or wave, is reminiscent of
metachronal waves observed on ciliated organisms (Brennen & Winnet 1977) and
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results from a small phase-shift in the motion of neighbouring surface points leading
to global symmetry-breaking at the whole-organism level. When the squirmer model
is used to represent a ciliate, the cilia length constrains the maximum displacement
of the surface and therefore limits the ability of the swimmer not only to approach
the optimal Eulerian stroke (treadmill) during the effective stroke but also to reduce
the impact of the recovery stroke on the swimming motion. Using a constrained
optimization algorithm, the direct relationship between swimming efficiency and
surface displacement amplitude was obtained, and Michelin & Lauga (2010a) showed
that the optimal efficiency of 50 % could be reached asymptotically.

The optimization of the Lagrangian feeding stroke, however, remains at this point an
open question; it is the focus of the present paper. The analysis of the nutrient uptake
is first addressed analytically at small Pe. The general unsteady feeding problem is
then considered numerically before turning to its optimization.

3. Unsteady feeding at low Pe: asymptotics, scalings and optimum
In this section we focus on the feeding problem in the asymptotic limit of dominant

diffusion (Pe� 1). For a given stroke, this is equivalent to the asymptotic analysis of
the advection–diffusion problem in the limit ε = Pe/

√
P� 1.

3.1. Steady and unsteady boundary layers
For a steady velocity field, finding the asymptotic expansion of the scalar
concentration, c, and surface flux, J, in the limit ε � 1 corresponds to a variation
on the classical mass transfer problem near a sedimenting sphere (Acrivos & Taylor
1962; Magar et al. 2003; Michelin & Lauga 2011). It is based on matching two
different solutions for the scalar field c: near the surface of the sphere, diffusive effects
are dominant, and advection only appears as higher-order corrections; in the far-field, a
balance of both advection and diffusion leads to the proper decay of c.

In the case of an unsteady velocity field, the two terms on the left hand-side
of (2.18) do not have the same scaling in the far field. As a result the decay of the
concentration field at infinity is not the same whether one considers the time-average
of c or its fluctuations around the mean, and a double boundary layer problem must be
considered:

(i) in the near field, r = O(1), diffusion dominates and the absorbing boundary
condition (c= 1) at the surface of the swimmer is satisfied;

(ii) in the unsteady boundary layer (UBL), R = ε1/2r = O(1), a balance between
diffusive effects and rate of change of the local concentration ensures the proper
far-field decay for the time-dependent fluctuations of the concentration field
C(R, µ, t)= c(r, µ, t);

(iii) in the steady boundary layer (SBL), ρ = ε r = O(1), a balance between advection
by the steady velocity field and diffusion ensures the far-field decay of the time-
average concentration C0(ρ, µ)= 〈c〉(r, µ).

3.2. Asymptotic problem formulation
Decomposing the mode amplitudes, αn(t), as well as the concentration field, c, and
feeding rate, J(t), into their Fourier components, we write

αn(t)=
∞∑

p=−∞
αn,peipt, c=

∞∑
p=−∞

cp(r, µ)eipt, J(t)=
∞∑

p=−∞
Jpeipt. (3.1)
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The advection–diffusion equation becomes then

in the near field, D cp = ε
(

ipcp +
∞∑

n=1

∞∑
q=−∞

αn,qln cp−q

)
, (3.2)

in the UBL, D Cp = ipCp + ε1/2
∞∑

q=−∞
α1,qL1 Cp−q + O(ε3/2), (3.3)

in the SBL, D C0 = α1,0 L1 C0 + O(ε2). (3.4)

In (3.2)–(3.4), the following linear operators have been defined

D= 1
r2

[
∂

∂r

(
r2 ∂

∂r

)
+ ∂

∂µ

(
(1− µ2)

∂

∂µ

)]
, (3.5)

l1 =−
(

1− 1
r3

)
µ
∂

∂r
− 1− µ2

r

(
1+ 1

2r3

)
∂

∂µ
, (3.6)

ln = 2n+ 1
2

[(
1

rn+2
− 1

rn

)
Ln(µ)

∂

∂r
− (1− µ

2)L′n(µ)
n(n+ 1)

(
n

rn+3
− n− 2

rn+1

)
∂

∂µ

]
, (3.7)

L1 =−µ ∂

∂R
− (1− µ

2)

R

∂

∂µ
, (3.8)

and D (respectively D) is identical to D in (3.5) after replacing r by R (respectively
ρ), and L1 is defined as L1 after replacing R by ρ. The following boundary conditions
must also be satisfied:

∀p, cp(r = 1)= δp,0, (3.9)
∀p 6= 0, Cp(R→∞)= 0, (3.10)

C0(ρ→∞)= 0. (3.11)

3.3. Matched asymptotic expansion
A regular series expansion in ε1/2 of cp, Cp and C0 is then performed up to O(ε3/2).
We write

cp =
3∑

q=0

εq/2cq
p + O(ε2), Cp =

3∑
q=0

εq/2Cq
p + O(ε2), C0 =

3∑
q=0

εq/2C q
0 + O(ε2).

(3.12)

At each order, cp and Cp are to be matched for r→∞ and R→ 0, while C0 and C0

are to be matched in the limit R→∞ and ρ→ 0.
Here, the non-homogeneous forcing (3.9) only acts on the steady-state component

of the concentration field, and is transmitted to the time-dependent components by
advection. Therefore, from the scalings of the different terms in (3.2)–(3.3),

∀p 6= 0, cp = O(εc0) and Cp = O(ε1/2C0). (3.13)

3.3.1. O(1)
At this order, advection is neglected and the solution is simply the steady diffusive

solution c0
p = δp,0/r, which satisfies both near-field and far-field boundary conditions.

Therefore, C0
p = C 0

0 = 0 for all p. The resulting feeding rate is

Jp = δp,0 + O(ε1/2). (3.14)
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3.3.2. O(ε1/2)

Using (3.13), c1
p = 0 and C1

p = 0 for all p 6= 0. The steady components c1
0, C1

0, and C0

satisfy

D c1
0 = 0, (3.15)

D C1
0 = 0, (3.16)

D C 1
0 = α1,0L1 C 1

0 . (3.17)

Solving these equations and matching cp, Cp and C0 up to O(ε1/2) leads to

c1
p = 0, C1

p =
δp,0

R
, C 1

0 = 0, (3.18)

and the resulting feeding rate remains unmodified at this order.

3.3.3. O(ε)
Next, the advection–diffusion equation is expanded up to O(ε) in each region.

(i) In the near field, r = O(1):

D c2
p =

∞∑
n=1

αn,pln c0
0

= µα1,p

r2

(
1− 1

r3

)
−
∞∑

n=2

(2n+ 1)αn,pLn(µ)

2r2

(
1

rn+2
− 1

rn

)
, (3.19)

whose general solution satisfying the near-field boundary condition, c2
p(r = 1)= 0,

is obtained as

c2
p(r, µ)= α1,pµ

(
3

4r2
− 1

2
− 1

4r3

)
+
∞∑

n=1

γn,pLn(µ)

(
1

rn+1
− rn

)

−
∞∑

n=2

(2n+ 1)αn,pLn(µ)

4

(
1

(n+ 1)rn+2
+ 1

nrn
− 2n+ 1

n(n+ 1)rn+1

)
, (3.20)

where γn,p are constants to be determined after matching with the UBL solution.
(ii) In the UBL, R= O(1):

D C2
p − ipC2

p = α1,pL1 C1
0 =

µα1,p

R2
, (3.21)

whose general solution compatible with the boundary condition at infinity (for
p 6= 0) is

C2
0 =

γ ′0,0
R
− γ ′′0,0 + µ

(
γ ′1,0
R2
− γ ′′1,0R− α1,0

2

)
, (3.22)

C2
p =

γ ′0,p
R

e−R
√

ip + µ
[

iα1,p

pR2
+ γ ′1,p

(
1
R2
+
√

ip
R

)
e−R
√

ip

]
for p 6= 0. (3.23)

(iii) In the SBL, ρ = O(1), the general solution of (3.4) is obtained as (Acrivos &
Taylor 1962)

C 2
0 =

1
ρ

exp
(
−α1,0(1+ µ)ρ

2

) ∞∑
q=0

K2
qLq(µ)

(
q∑

m=0

(q+ m)!
(α1,0ρ)

m m!(q− m)!

)
, (3.24)
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where the K2
q are constants to be determined in the matching process. Matching cp,

Cp and C0, up to O(ε) leads to

c2
p =

α1,0

2

(
1
r
− 1
)
δp,0 + µα1,p

(
−1

2
+ 3

4r2
− 1

4r3

)
−

∞∑
n=2

(2n+ 1)αn,pLn(µ)

4

(
1

(n+ 1)rn+2
+ 1

nrn
− 2n+ 1

n(n+ 1)rn+1

)
, (3.25)

C2
0 =−

α1,0(1+ µ)
2

, C2
p =

iα1,pµ

pR2
[1− (1+ R

√
ip)e−R

√
ip] for p 6= 0,(3.26)

C 2
0 =

1
ρ

exp
(
−α1,0(1+ µ)ρ

2

)
, (3.27)

and the resulting feeding rate expansion is

Jp = δp,0

(
1+ εα1,0

2

)
+ O(ε3/2). (3.28)

Up to this order, we see that the results of the classical low-Pe asymptotic expansion
for a steady velocity field are recovered and the mean feeding rate only depends on the
average swimming velocity. In order to capture the leading-order unsteady contribution
to the feeding problem, the expansion must be carried out to the next order.

3.3.4. O(ε3/2)

From (2.21), we see that only the computation of the azimuthal average, c̃3
p, of the

pth Fourier component of the concentration field

c̃3
p(r)=

1
2

∫ 1

−1
c3

p(r, µ) dµ, (3.29)

is necessary in order to compute the O(ε3/2) correction to the nutrient uptake.

(i) In the near field, taking the azimuthal average of (3.2) and using (3.18), we have

1
r2

d
dr

(
r2

dc̃3
p

dr

)
= 0, (3.30)

whose general solution satisfying the boundary condition on the sphere is
c̃3

p = ap(1 − 1/r), where ap is a constant to be determined by matching with
the UBL solution.

(ii) In the UBL, taking the azimuthal average of (3.3) and using (3.26), we get

1
R2

d
dR

(
R2

dC̃3
p

dR

)
− ipC̃3

p =
1
2

∞∑
q=−∞

α1,p−q

∫ 1

−1
L1 C2

p dµ

= 1
3R

∞∑
q=−∞

α1,p−qα1,qe−R
√

iq. (3.31)

This equation can be solved explicitly for C̃3
p using the far-field boundary

condition for the non-constant Fourier components and we get

C̃3
0 =

α2
1,0R

6
+ ã0

R
+ b̃0 −

∞∑
m=1

2 |α1,m|2
3mR

e−R
√

m/2 sin
(

R

√
m

2

)
, (3.32)
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C̃3
p =

ãp

R
e−R
√

ip + α1,0α1,p

3

(
i

pR
− e−R

√
ip

2
√

ip

)
+

p−1∑
m=1

(
iα1,mα1,p−m

3mR

)
e−R
√

i(p−m)

+
∞∑

m=p+1

(
iα1,mα1,m−p

3R

)(
e−R
√

i(p−m)

m
+ e−R

√
im

p− m

)
for p > 1, (3.33)

with C̃3
p defined for p 6−1 using C̃−p = C̃p.

(iii) In the SBL, the equation for C 3
0 is identical to that at the previous order and the

general solution takes the same form, see (3.24).

By matching c̃p, C̃p and C̃0 up to O(ε3/2), the values of b̃0, ãp and ap can then be
determined, and one obtains

〈J〉 = 1+ εα1,0

2
+ ε3/2

√
2

3

∞∑
m=1

|α1,m|2√
m
+ O(ε2), (3.34)

J(t)− 〈J〉 = ε3/2(−i
√

i)
∑
p6=0

J̃peipt + O(ε2), (3.35)

with

J̃p =
[
α1,0α1,p

2
√

p
+

p−1∑
m=1

α1,mα1,p−m

3m

(√
p−√p− m

)
+
∑

m>p+1

α1,mα1,m−p

3m(m− p)

(
m3/2 − p3/2 − i (m− p)3/2

)]
. (3.36)

For a given stroke, the limit ε � 1 is equivalent to Pe � 1 and the asymptotic
expansion in terms of the Péclet number, Pe, can be obtained by substitution of
ε = Pe/

√
P in (3.34)–(3.36).

3.4. Discussion
The asymptotic analysis obtained in (3.34)–(3.36) provides some important physical
insight into the relationship between the swimming motion and the nutrient uptake
on the surface of the swimmer. As for the steady case, the leading-order advective
correction to the feeding rate is linear in Pe and only depends on the average velocity
of the organism (Acrivos & Taylor 1962; Magar et al. 2003). At this order in Pe, there
is a direct correlation between swimming and feeding and only the mean feeding rate
is modified, fluctuations in time being negligible (higher order).

The next-order correction marks a fundamental difference between the steady and
unsteady problems: in the steady case, all squirming modes contribute to the next
correction at order Pe2 (Michelin & Lauga 2011). Instead, in the unsteady feeding
problem, a new correction to J(t) (both its mean value in time and fluctuations)
appears at order Pe3/2, which depends solely on the swimming velocity of the
organism (through all the Fourier components, α1,m, of the swimming velocity, α1(t),
with no other squirming modes), and dominates the contribution of non-swimming
modes that will only enter at O(Pe2). For all time-periodic strokes, the instantaneous
feeding rate is therefore completely determined up to O(Pe3/2) by the characteristics of
the swimming velocity of the organism.

This result has a major consequence for strokes that swim instantaneously (U(t) 6= 0)
but do not swim on average (〈U〉 = 0). In this case, the leading-order improvement
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to the feeding rate is solely governed by the zero-mean fluctuations of U(t). Non-
swimming modes only contribute to higher-order corrections, even if they have non-
zero time averages. Consequently, for an organism that does not have a net swimming
motion (e.g. a time-reversible swimmer), an instantaneous zero-mean swimming
motion still presents a feeding advantage over stirring strokes where the cell stays
in the same position at each instant (U(t)= 0).

Our asymptotic expansion also provides some information on the relative phase
of swimming and feeding. For an unsteady swimming velocity, U(t), with a single
dominant Fourier component, the instantaneous feeding rate has a π/4 delay on the
swimming velocity (since −i

√
i = e−iπ/4 in (3.35)). A maximum in the feeding rate

is therefore expected to take place after the peak swimming velocity, with a delay of
1/8th of a period.

Note that the total nutrient flux is fully determined by the body velocity U(t) up to
O(Pe3/2). Whether the organism is swimming (force-free) or is an actuated rigid sphere
(forced motion) does not actually come into play here. All the conclusions above are
therefore valid for non-buoyant swimmers, but also for oscillating rigid spheres in
Stokes flow, for which the present results represent a generalization of classical steady
mass transfer results (Acrivos & Taylor 1962) to unsteady motions (see appendix A for
more details).

In summary, our analytical results show that for low Pe, feeding is completely
determined by swimming for any periodic stroke. Optimization of the feeding rate for
a fixed amount of available energy is therefore equivalent in this limit to maximizing
the swimming velocity under the same constraint, namely the swimming efficiency
optimization problem. At low Péclet number, the Lagrangian optimal swimming and
optimal feeding strokes are therefore identical, which confirms the result obtained
in the steady framework by Michelin & Lauga (2011). In addition, similarly to
the result for swimming, we get the result that at low Péclet number the optimal
unsteady feeding problem is actually steady. This can be seen from (3.34) where the
steady Fourier mode, α1,0, carries a higher weight than the other Fourier components
compared to their relative importance in the rate of working.

4. Unsteady feeding at finite Pe: simulations
To confirm the low-Pe results obtained analytically, we now turn to characterizing

the feeding performance of different strokes for intermediate and large Pe. Eulerian
periodic strokes are determined by prescribing αn(t) for all n, while Lagrangian
periodic strokes are described by giving the trajectories of material points θ = ϑ(θ0, t)
where θ is the current position of the material point and θ0 its mean position.
Alternatively, those strokes will be defined by µ = ξ(µ0, t), with µ = cos θ . For
illustration we consider three particular swimming and non-swimming Lagrangian
periodic strokes.

(a) Stroke A is the numerical optimal swimmer identified in Michelin & Lauga (2010a)
which has swimming efficiency η ≈ 20 %.

(b) Stroke B is a less efficient swimmer obtained using surface deformations in the
form of a simple progressive wave:

ξ(µ0, t)= µ0 + A(1− µ2
0) cos(kµ0 − t), (4.1)

with A= 1/3 and k = 1.
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FIGURE 2. Trajectories, ξ(t), of surface material points for stroke A (a), stroke B (b), and
stroke C (c). The corresponding time-averaged swimming velocity, 〈U〉, is equal to 0.33,
0.03 and 0 respectively. The swimming and feeding performances of the three strokes are
summarized in table 1.

(c) Stroke C takes the same form as stroke B but with A = 1/3 and k = 0. Stroke C
represents a time-reversible (or ‘reciprocal’) deformation, and therefore has no net
swimming motion, 〈U〉 = 0.

All three strokes display non-zero instantaneous swimming, but only strokes A and
B show swimming on average. Stroke C thus differs from purely stirring strokes
for which the organism is strictly still at each instant. The trajectories of material
surface points are shown for strokes A, B and C in figure 2. Mathematically, from the
knowledge of ξ(µ0, t), the mode amplitudes αn(t) are obtained using (2.23).

4.1. Numerical solution of the advection–diffusion problem
For a given set of mode amplitudes, {αn(t)}, the advection–diffusion equation (2.18) is
solved spectrally in time for each azimuthal component of the concentration field

c(r, µ, t)=
∞∑

p=0

c∗p(r, t)Lp(µ)=
∞∑

k=−∞

∞∑
p=0

ck
p(r)Lp(µ)eikt. (4.2)

The functions ck
p(r) therefore satisfy the following systems of ordinary differential

equations for p > 0 and −∞< k <∞:[
1
Pe

(
d2

dr2
+ 2

r

d
dr
− p(p+ 1)

r2

)
− ik

]
ck

p

=
∞∑

m=0

∞∑
n=1

∞∑
l=−∞

αk−l
n

r2

(
Amnpψn

d
dr
+ Bmnp

dψn

dr

)
cl

m, (4.3)

with boundary conditions

ck
p(r = 1)= δp,0δk,0, (4.4)

ck
p(r→∞)= 0. (4.5)

In (4.3), Amnp and Bmnp are third-order scalar tensors defined in appendix B.
Equations (4.3)–(4.5) are discretized on an exponentially-stretched grid in r to
concentrate points near the surface of the swimmer (see Michelin & Lauga 2011,
for more details), and the solution {ck

p(rj)}(j,k,p) is then found iteratively. In typical
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FIGURE 3. Instantaneous nutrient flux at Pe = 5 for the optimal swimmer (stroke A)
using an increasing number of squirming modes to numerically describe the stroke in the
advection–diffusion solver: nα = 1 (solid), nα = 2 (dashed), nα = 4 (dotted) and nα = 8
(crosses). The error made on the average nutrient flux over a period is respectively 0.5 %,
0.03 %, 0.01 % and 0.002 %.

simulations, the resolution used was Nr = 120 points for the r-grid, Nµ = 40–100
Legendre polynomials for the azimuthal dependence, Nt = 16–128 points in time, and
Nα = 2–10 squirming modes to describe the swimming stroke.

Alternatively, the advection–diffusion equation can be marched in time for each
azimuthal component, c∗p(r, t), using an explicit time-stepping scheme for the
advective terms and Crank–Nicholson for the diffusion term. In the following, the
advection–diffusion equation is solved spectrally in time except for strokes that do not
swim on average (e.g. stroke C) for which the iterative algorithm does not converge
properly or fast enough, and the time-marching approach is used in that case.

Computationally, it is observed that the instantaneous nutrient flux converges rapidly
with the number of squirming modes used to represent the swimming stroke, as
shown in figure 3. The convergence is even faster for the average nutrient flux:
describing stroke A with only the first two squirming modes significantly speeds
up the computations while introducing an error smaller than 0.05 % on the average
feeding rate. Similar numerical tests performed on less efficient swimmers than stroke
A (that is, swimming strokes for which mode 1 is not dominant) did not modify this
observation significantly, and restricting the computation to only 2 or 3 squirming
modes typically introduces an error smaller than 0.2 %. This rapid convergence of the
mean and fluctuating feeding rate is yet another indication that the swimming motion
controls the feeding ability of the organism and higher-order modes only act as a small
correction to the average feeding rate.

4.2. Impact of the swimming stroke on the feeding performance
Figures 4 and 5 show the concentration field around the squirmer for five successive
and equispaced instants of a full period, for Pe = 5 (figure 4) and Pe = 30 (figure 5),
and for the three different strokes. For strokes A and B, at lower Péclet number,
the nutrient concentration field only shows a weak front–back anisotropy as diffusion
dominates over advection, confirming the observations on steady strokes of Magar
et al. (2003) and Michelin & Lauga (2011). As Pe is increased, sharper concentration
gradients can be seen on the front of the squirmer. This results in an increased average
feeding rate for increasing Pe as was observed for steady strokes (Michelin & Lauga
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FIGURE 4. (a–e) Nutrient concentration around the organism at Pe = 5 for stroke A (left),
stroke B (middle) and stroke C (right). (f ) Evolution in time of the feeding rate (solid) and
swimming velocity (dashed) for strokes A, B and C (left to right); the dotted lines indicate the
time corresponding to each of the five snapshots above.

2011). The main difference with the steady results is that in the unsteady scenario, the
velocity of the squirmer changes (and possibly reverses sign) inducing a fluctuation in
this front–back anisotropy and in the boundary layer thickness. For stroke C, which
does not swim on average, the nutrient concentration field shows a strong isotropy,
even at larger Pe, with much weaker concentration gradients resulting in a very weak
modification of the nutrient uptake 〈J〉.
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FIGURE 5. Same as figure 4 but with Pe= 30.

Comparing the results obtained for the different strokes in table 1, we see that
stroke A is clearly more efficient than strokes B and C from a feeding point of
view, and stroke A also corresponds to a ‘better’ swimmer. This is consistent with the
increase of the feeding rate with the instantaneous swimming velocity that enables the
formation of sharp concentration gradients in front of the squirmer. For stroke C, the
periodic reversal of the swimming velocity over the period, and the absence of net
displacement, results in the impossibility of maintaining sharp concentration gradients



Unsteady feeding and optimal strokes of model ciliates 19

Stroke 〈U〉 η (%) 〈J〉(Pe= 5) 〈J〉(Pe= 30)

A 0.33 22 1.97 3.98
B 0.030 1.3 1.33 2.19
C 0 0 1.00 0.99

TABLE 1. Swimming and feeding performance of strokes A, B and C.

at the front of the body and of swimming toward regions with richer nutrient content,
reducing its feeding ability significantly.

Looking at the temporal variations of the swimming velocity and feeding rate
throughout the stroke period (figures 4f, 5f ), a phase delay between the former and the
latter is clearly identified for strokes A and B, and for all Pe considered. For stroke
C, a similar delay is observed between the peaks in velocity magnitude (positive or
negative) and the peaks in feeding rate: for this stroke, the feeding rate frequency is
twice that of the swimming velocity because of the exact symmetry between the two
half-strokes. The presence of this time delay in all strokes is consistent with the results
of the low-Pe asymptotic analysis in § 3 and can be interpreted as the time necessary
for the concentration gradient (and possibly boundary layer) to re-establish at the front
of the cell when its velocity starts increasing again.

4.3. Impact of the Péclet number on the feeding performance
It was observed previously that the value of Pe plays an important role in the feeding
ability of the cell. This is investigated further here by looking at the impact of Pe on
the instantaneous feeding rate for strokes A, B and C. The instantaneous feeding rate,
J(t), is decomposed into its mean value 〈J〉, the amplitude of its fluctuations in time J1,
and its normalized profile J̃(t), so we write

J(t)= 〈J〉 + J1J̃(t), (4.6)

where J1 = max(J) − min(J) and J̃(t) = (J(t) − 〈J〉)/J1. Similar quantities are also
defined for the swimming velocity: 〈U〉, U1 and Ũ. For a given stroke (A, B or C), the
variation of these three quantities with Pe is displayed in figure 6.

For swimming strokes, it is observed that, for low Pe, the modification in the mean
feeding rate, 〈J〉 − 1, scales linearly with Pe (strokes A and B). This is consistent
with the asymptotic analysis of § 3 and with the steady results in Michelin & Lauga
(2011). In such a diffusion-dominated regime, swimming enables the cell to sweep a
region of fresher nutrients with an effective cross-section radius that is independent of
the swimming velocity (because of the predominance of diffusion) and of the order of
the size of the cell. At higher Pe, the reduced importance of diffusion over advection
reduces the effective cross-section radius and 〈J〉 increases at a lower rate with Pe. For
strokes with no net swimming motion (stroke C), the modification in the mean feeding
rate scales as a higher power, Pe3/2, for Pe 6 0.1, consistently with the results of the
asymptotic analysis.

For both swimming and non-swimming strokes, the amplitude of the feeding rate
fluctuations, J1, varies as Pe3/2 for Pe 6 1, consistently with our asymptotic results.
On figure 6 the fluctuations profile, J̃(t), is also represented and compared to the
leading-order prediction of the asymptotic analysis. We see a very good agreement at
low Pe which persists even at high Pe for efficient swimming strokes such as stroke
A. This confirms that the feeding rate (both its mean value and its fluctuations) is
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FIGURE 6. (a) Dependence of the mean feeding rate, 〈J〉 (stars), on Pe and comparison with
the asymptotic prediction in (3.34) (dashed). (b) Dependence of the peak-to-peak amplitude
of the feeding rate fluctuations, J1 (stars), on Pe and comparison with the asymptotic
prediction in (3.35)–(3.36). (c) Rescaled (unit amplitude) feeding rate (solid) and velocity
(dashed) time fluctuations; the asymptotic prediction for the feeding rate fluctuations at low
Pe in (3.35)–(3.36) is shown as a thick grey line. All results are plotted for stroke A (left),
stroke B (middle), and stroke C (right).

determined at leading order by the swimming mode and corrections from the other
modes only play marginal roles. Again, a clear phase delay between the swimming
velocity and feeding rate is observed for all Pe, and for the least efficient swimmers
considered (B and C), this delay seems to increase with Pe.

When Pe becomes large, another significant difference appears between strokes with
zero (stroke C) or non-zero (strokes A and B) mean swimming velocity. For strokes
A and B, the average feeding rate continues to increase with Pe, albeit more slowly.
From the large-Pe steady results in Michelin & Lauga (2011), we expect 〈J〉 to
scale as Pe1/2, when the increase in feeding rate with swimming is driven by the
concentration boundary layer thickness around the cell. In contrast, for non-swimming
strokes, 〈J〉 reaches a maximum for a finite value of Pe (Pec1 ≈ 2) beyond which an
increase in Pe actually results in a decrease of the feeding rate. Moreover, beyond a
second critical value (Pec2 ≈ 11 for this particular stroke), the mean feeding rate falls
below 1, and for large Pe, swimming actually penalizes feeding as it reduces the net
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FIGURE 7. (Colour online) Mean feeding rate as a function Pe for 8500 different swimming
strokes (see text). The dashed line corresponds to the optimal steady feeding stroke
(treadmill). For each stroke, the symbol shade is related to its hydrodynamic efficiency, η.

feeding rate below the level of the purely diffusive regime (Pe = 0). This somewhat
surprising result can be understood as follows. In stroke C, the sphere swims forward
during half of a period leaving behind it a nutrient-depleted wake. In the second half
of the stroke, the cell swims backward into this region of poor nutrient concentration,
resulting in a reduced flux at the boundary.

4.4. The optimal unsteady stroke is steady
As we discussed above, the optimal Eulerian swimming stroke is necessarily steady.
The same conclusion cannot be drawn a priori for the feeding problem owing to the
time-dependence of the advection–diffusion equation (see § 2.2). We saw however that
it was true analytically at low Péclet number. Numerically, it also seems to hold as
illustrated in figure 7. We performed numerical simulations on a large collection of
unsteady Eulerian periodic and Lagrangian periodic strokes (8500 in total), ranging
from very efficient to poor swimmers. For all values of Pe, the feeding rate is seen to
be always less than that obtained with the optimal steady feeding stroke (treadmill). As
for the optimal swimming stroke, the optimal Eulerian unsteady feeding stroke must
therefore also be steady. Furthermore, figure 7 demonstrates that the more efficient the
unsteady stroke is for swimming, the closer it can get to the optimal feeding rate.

4.5. Feeding and swimming
In the previous sections, a relationship between the swimming velocity and the feeding
rate was clearly identified, suggesting that at leading order the mean feeding rate is
determined by the swimming velocity and Pe. More precisely, and in the light of
the steady results of Michelin & Lauga (2011), one expects the feeding rate to be
determined by the ‘swimming Péclet number’, PeU, defined as

PeU = a〈U〉
κ
= Pe

√
2η, (4.7)
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FIGURE 8. Mean feeding rate as a function of the swimming Péclet number PeU = Pe
√

2η
for the same 8500 strokes as in figure 7. The grey line corresponds to the feeding performance
of the steady treadmill swimmer for which αn(t)= δn,1.

which measures the relative importance of advection of nutrients by the net
displacement of the cell and diffusion. This is clearly the case at leading order for
low Pe, as seen in (3.34).

In order to test the validity of this conjecture at higher Pe, we plot in figure 8 the
mean feeding rate as a function of the swimming Péclet number PeU, for the same
large collection of unsteady strokes as in the previous section. All data points collapse
rather well on a single curve, that corresponds exactly to the results for the steady
treadmill swimmer (Michelin & Lauga 2011). The agreement is particularly good for
larger PeU, corresponding to more efficient swimming strokes where the swimming
motion dominates. The collapse of all the data points on that curve indicates that at
leading order, for all strokes and all Pe, the mean feeding rate is determined by the
mean swimming velocity.

Figure 8 shows however that a significant number of points do not follow
that leading-order trend and are located above the grey treadmill curve. Indeed,
for swimming strokes with poor efficiency (including those with PeU = 0), the
contribution from the mean swimming velocity to the mean feeding process is no
longer dominant and the influence of other squirming modes, or from time variations
of the swimming velocity, cannot be neglected, so 〈J〉 remains strictly greater than
one.

5. Optimal unsteady feeding
The results presented in the previous sections and in Michelin & Lauga (2011)

suggest that: (i) swimming determines feeding, at least at leading order, and as a result
(ii) optimal swimming and optimal feeding strokes are essentially identical. In this
section result (ii) is confirmed directly by performing an optimization of the swimming
stroke maximizing the average nutrient uptake for a fixed energetic cost. The approach
and methods presented below are based on the frameworks presented in Michelin
& Lauga (2010a, 2011) and generalized here to the unsteady feeding problem for
periodic Lagrangian strokes.
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5.1. Adjoint optimization framework
The rescaled nutrient concentration satisfies the advection–diffusion problem,
(2.18)–(2.20), and the mean feeding rate, 〈J〉, is given by

〈J〉 = −
〈

1
4π

∫
S

n ·∇c dS

〉
, (5.1)

where n = er is the outward normal unit vector. Considering a small perturbation,
δu = ∑nδαn(t)u(n), in the velocity field, at leading order and for fixed Pe (or
equivalently, fixed energetic cost) the resulting modification in mean feeding rate,
〈δJ〉 = δ〈J〉, is obtained at leading order as

δ〈J〉 = −
〈

1
4π

∫
S

∂

∂n
(δc) dS

〉
, (5.2)

where δc is the resulting linear perturbation in the nutrient concentration field c
satisfying

ε

(
∂

∂t
(δc)+ u ·∇δc

)
−∇2δc=−εδu ·∇c+ δP

2P
∇2c, (5.3)

with Dirichlet boundary conditions, δc = 0, both on the surface of the swimmer and
in the far field. The last term in (5.3) guarantees that Pe = ε√P is constant and is
obtained from δαn and using (2.15) as

δP= 2
∑

n

γn〈αn δαn〉. (5.4)

From (5.3), the change in mean feeding rate for constant Pe can be computed as

δ〈J〉 =
∑

n

〈α̃n δαn〉, (5.5)

where

α̃n(t)= α∗n(t)−
γnαn(t)

P
(〈J〉 − H) (5.6)

is the gradient of the feeding rate, at constant Pe, with respect to the nth squirming
mode amplitude and

α∗n(t)=
ε

4π

∫
Ωf

g∇c ·u(n) dΩ, H=
〈

1
4π

∫
Ωf

∇c ·∇g dΩ

〉
. (5.7)

In the above equation, Ωf is the entire fluid domain, u(n) is the steady velocity
field of the nth squirming mode, and the adjoint field, g, satisfies the adjoint
advection–diffusion problem

ε

(
∂g

∂t
+ u ·∇g

)
=−∇2g, (5.8)

together with boundary conditions

g→ 0 as r→∞, (5.9)
g= 1 for r = 1. (5.10)
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A given Lagrangian periodic swimming stroke is defined by the trajectories of
the surface material points, ξ(µ0, t). The gradient of 〈J〉 with respect to the stroke,
ξ(µ0, t), is then the unique function F[ξ ](µ0, t) such that for any stroke perturbation
δξ , the resulting modification of 〈J〉 is

δ〈J〉 = 1
2π

∫ 2π

0

∫
Ωf

F[ξ ](µ0, t)δξ(µ0, t) dµ0 dt. (5.11)

This gradient can be obtained directly from α̃n(t) as

F[ξ ](µ0, t)= 1
2

[
α̃nL′n(ξ)

∂2ξ

∂µ0∂t
+ ∂

∂t

(
α̃nL′n

∂ξ

∂µ0

)]
, (5.12)

and then projected onto the subspace of acceptable strokes (periodic trajectories, no
displacement at the pole) (Michelin & Lauga 2010a). Note that although presented
here for the particular case of a spherical swimmer, this optimization framework can
easily be generalized to periodic swimming strokes of organisms with arbitrary shapes
(Michelin & Lauga 2011).

5.2. Optimal feeding strokes
Following Michelin & Lauga (2010a) and in order to account for constraints on the
stroke kinematics (introduced for example by a finite cilia-length-to-cell-size ratio), an
additional constraint is included in the optimization algorithm to limit the maximum
amplitude of angular displacements, Θmax , of any surface point during the stroke. This
optimization is performed using a steepest-ascent iterative optimization algorithm as
described in Michelin & Lauga (2011), and the gradient of the feeding rate with
respect to the swimming stroke is computed using the results from previous sections.

Figure 9 shows the optimal strokes obtained for Pe = 5 and four increasing values
of Θmax . The optimal strokes consist of two different parts: an effective stroke where
the surface of the squirmer stretches from front to back, enabling the swimming
motion, followed by a recovery stroke where the material points (e.g. cilia tips)
accumulated on the back side of the sphere are brought back to their original
position with a front-like dynamics, reminiscent of the metachronal waves observed
in ciliates. A wave velocity can be defined from the synchronization of the trajectories
(Michelin & Lauga 2010a). Notice also in figure 9 the phase delay between feeding
and swimming predicted theoretically. Imposing tighter bounds on Θmax results in a
slower phase velocity of the recovery stroke, in a smaller and steadier swimming
velocity, and in a reduced efficiency (table 2). This dichotomy of the optimal stroke
and this impact of the maximum displacement Θmax are essentially identical to that
observed in the optimal Lagrangian swimming stroke by Michelin & Lauga (2010a),
for which it was observed that a continuous set of optimal strokes could be obtained
for 0 6 Θmax 6 90◦, approaching asymptotically the optimal steady swimmer when
Θmax→ 90◦. A similar behaviour is observed on figure 10.

The above conclusions are unchanged when performing the optimization at different
values of the Péclet number, as shown in figure 11. For a given constraint on the
maximum displacement Θmax , the same strokes are obtained regardless of the value
of Pe. These results confirm therefore that the optimal unsteady feeding stroke is
essentially the same as the optimal swimming stroke, regardless of the value of the
Péclet number. In both cases (swimming or feeding), the optimal Lagrangian stroke
can be understood as a periodic approximation of the optimal steady stroke.
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FIGURE 9. Left: Lagrangian trajectories of four optimal feeding strokes, ξ(t), obtained
for Pe = 5 and a maximum angular stretching of the surface equal to: (a) Θmax = 12◦;
(b) Θmax = 24◦; (c) Θmax = 35◦; and (d) Θmax = 50◦. Right: time-variation for each of these
optimal strokes of the instantaneous feeding rate, J(t) (solid), and swimming velocity, U(t)
(dashed). The characteristics of these four strokes are summarized in table 2.

6. Conclusions
In this paper we use asymptotic analysis and numerical computations to address

the link between swimming and feeding for motile micro-organisms. Using the
mathematical model of spherical squirmers acting on the viscous fluid in a time-
periodic manner, we first show analytically at low Pe that the mean rate of feeding
as well as its fluctuations in time depend only on the swimming modes of the
squirmer up to order Pe3/2, even when no swimming occurs on average, while the
influence of non-swimming modes come in later at order Pe2. We also demonstrate
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Θmax (deg.) 〈J〉 〈U〉 η (%) Pe ε PeU

(a) 12 1.47 0.048 3.1 5 26.2 1.25
(b) 24 1.74 0.141 10 5 15.9 2.24
(c) 35 1.85 0.221 15 5 12.3 2.73
(d) 50 1.93 0.295 19 5 10.5 3.09

TABLE 2. Characteristics of the optimal feeding strokes obtained computationally for
Pe= 5 and four maximum angular displacements, Θmax , displayed on figure 9.
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FIGURE 10. (a) Maximum feeding rate, 〈J〉, as a function of the maximum angular
displacement angle, Θmax , in optimal strokes for Pe = 5. (b) Maximum feeding rate as a
function of swimming efficiency, η, for optimal feeding strokes obtained for Pe = 5 and
various maximum displacement angles Θmax . The black stars in both figures correspond to the
optimal steady stroke (treadmill).

the existence of a phase delay between feeding and swimming of 1/8th of a period.
Using three illustrative stokes, we then employ numerical computations to confirm
our asymptotic results and further demonstrate the relationship between swimming and
feeding. Using adjoint-based optimization we finally determine numerically the optimal
unsteady strokes maximizing the feeding rate for a fixed energy budget. The overall
optimal is always the steady swimmer. For time-periodic strokes, we find – as in
the steady case – that the optimal feeding strokes are equivalent to those optimizing
swimming; this result is true for all Péclet numbers even though the value of feeding
rate strongly depends on the Péclet number. As for the optimal unsteady swimming
problem, optimal feeding strokes are therefore mathematical regularizations of the
steady problem (treadmill) of overall maximum swimming and feeding performance.

Clearly the problem studied here is idealized in many ways. The geometry is
that of a sphere and the boundary conditions assume perfect nutrient absorption.
These simplifications allow us, however, to develop a precise mathematical and
computational description of the problem, both for the fluid and for the passive
nutrient concentration. It is hoped that the biophysical insight developed in this study
will be applicable to a wide range of problems in the realm of micro-organism
locomotion, e.g. in bacterial chemotaxis (at low Pe) or the feeding of plankton (at high
Pe). One of the main modelling challenges for future work concerns the issue of shape
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FIGURE 11. Left: Lagrangian trajectories of the optimal time-periodic feeding strokes
obtained for Θmax = 35◦ and: (a) Pe= 0.5; (b) Pe= 5; and (c) Pe= 25. Right: time-variation
for each of these optimal strokes of the instantaneous feeding rate, J(t) (solid), and swimming
velocity, U(t) (dashed).

changes. Most motile organisms display a Lagrangian deformation of their shapes. In
this paper we have assumed that the deformations (the surface boundary conditions)
always act tangentially to the organism surface, allowing the shape to remain that of a
sphere. Clearly, normal surface velocities would also need to be considered, and these
are precisely the ones leading to changes in shape. The problem would then involve
solving for the flow and nutrient concentration around a time-varying boundary. We
hope that our study will inspire future work in this direction.
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Appendix A. Unsteady heat/mass transfer around a sphere in Stokes flow
In § 3, the asymptotic expansion of the concentration distribution around a general

squirmer and the resulting feeding rate, J(t), were obtained in the limit Pe � 1.
The results obtained in (3.35)–(3.36) also hold for any spherical object moving at
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velocity U(t), regardless of whether the sphere is swimming (zero net force) or a rigid
sphere actuated by an external force, as we now show.

Considering a generalization of the work of Acrivos & Taylor (1962) to unsteady
particle velocity α1(t) = U(t), the velocity field around the sphere is given by the
streamfunction

ψ(r, µ, t)= α1(t)(1− µ2)

2

(
3r

2
− r2 − 1

2r

)
. (A 1)

Following the same approach as in § 3, (3.2) takes the same form but (3.6)–(3.7)
become

l1 =−
(

1− 3
2r
+ 1

2r3

)
µ
∂

∂r
− 1− µ2

r

(
1− 3

4r
− 1

4r3

)
, (A 2)

ln = 0 for all n > 2. (A 3)

In the same way, (3.3)–(3.4) are slightly modified due to the contribution of the
Stokeslet in the far field:

in the UBL, D Cp = ipCp + ε1/2
∞∑

q=−∞
α1,qL1 Cp−q

+ ε
∞∑

q=−∞
α1,qL̃1 Cp−q + O(ε3/2); (A 4)

in the SBL, D C0 = α1,0L1 C0 + εα1,0L̃1 C0 + O(ε2), (A 5)

where L1 and L1 remain unchanged from (3.8), and

L̃1 = 3µ
2R

∂

∂R
+ 3(1− µ2)

4R2

∂

∂µ
, (A 6)

and L̃1 is obtained by replacing R by ρ in the previous equation.
Following the approach of § 3, (3.9)–(3.36) remain unchanged except:

(i) equation (3.19) becomes

D c2
p = α1,pl1 c0

0 =
µα1,p

r2

(
1− 3

2r
+ 1

2r3

)
; (A 7)

(ii) equation (3.20) becomes

c2
p(r, µ)= α1,pµ

(
−1

2
+ 3

4r
+ 1

8r3
− 3

8r2

)
+
∞∑

n=1

γn,pLn(µ)

(
1

rn+1
− rn

)
;(A 8)

(iii) equation (3.25) becomes

c2
p =

α1,0

2

(
1
r
− 1
)
δp,0 + µα1,p

(
−1

2
+ 3

4r
+ 1

8r3
− 3

8r2

)
; (A 9)

(iv) and equation (3.31) becomes

1
R2

d
dR

(
R2

dC̃3
p

dR

)
− ipC̃3

p =
1
2

∞∑
q=−∞

α1,p−q

∫ 1

−1
L1 C2

p dµ+ 1
2

∞∑
q=−∞

α1,p−q

∫ 1

−1
L̃1 C1

p dµ

= 1
3R

∑
q

α1,p−qα1,qe−R
√

iq. (A 10)
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These modifications do not impact on the final result for the nutrient flux at the
boundary. The expansion of the feeding rate for an oscillating sphere is therefore
identical to that of the squirmer with same swimming velocity up to O(Pe3/2)
in (3.35)–(3.36). Looking at the corrections in the asymptotic expansion presented
above, it appears that any far-field singularity in the velocity field (Stokeslet, etc.)
will modify the near-field solution starting at O(Pe) and the unsteady boundary
layer starting at O(Pe3/2) but that such modifications will only affect the azimuthal
fluctuations of the concentration and not its azimuthal average which determines the
total feeding rate. Therefore, the asymptotic expansion of the feeding rate remains
unchanged for any sphere moving at velocity α1(t), regardless of the tangential
velocity field applied on its surface, and regardless of the total force applied on
the sphere.

As a result, (3.35)–(3.36) are a generalization to unsteady motions of the classical
result on the heat and mass transfer on a sedimenting sphere (Acrivos & Taylor 1962),
and the physical conclusions of § 3 are also valid in the case of a rigid sphere, in
particular: (i) the phase delay between the velocity and the mass transfer rate; and
(ii) an increase in mass/heat transfer scaling as Pe3/2 for a sphere oscillating around a
fixed mean position (〈U〉 = 0).

Appendix B. Definition of the Amnp and Bmnp tensors
The coefficients Amnp and Bmnp used in (4.3) are defined in terms of the Legendre

polynomials as follow:

Amnp = (2p+ 1)(2n+ 1)
2

∫ 1

−1
LmLnLp dµ, (B 1)

Bmnp = (2p+ 1)(2n+ 1)
2n(n+ 1)

∫ 1

−1
(1− µ2)L′mL′nLp dµ. (B 2)

They are easily computed using

Am0p = δmp, Bm0p = 0 (B 3)

and the following recursive relations for n > 1:

Amnp = 2n+ 1
n

[
− n− 1

2n− 3
Am,n−2,p + m+ 1

2m+ 1
Am+1,n−1,p + m

2m+ 1
Am−1,n−1,p

]
, (B 4)

Bmnp = 2n+ 1
n(n+ 1)

[
(n− 2)(n− 1)

2n− 3
Bm,n−2,p + m(m+ 1)

2m+ 1

(
Am−1,n−1,p − Am+1,n−1,p

)]
. (B 5)
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