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Suspended colloidal particles interacting chemically with a solute can self-propel by
autophoretic motion when they are asymmetrically patterned (Janus colloids). Here
we demonstrate theoretically that such anisotropy is not necessary for locomotion
and that the nonlinear interplay between surface osmotic flows and solute advection
can produce spontaneous and self-sustained motion of isotropic particles. Solving
the classical autophoretic framework for isotropic particles, we show that, for given
material properties, there exists a critical particle size (or Péclet number) above
which spontaneous symmetry-breaking and autophoretic motion occur. A hierarchy
of instabilities is further identified for quantized critical Péclet numbers. C⃝ 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4810749]

The locomotion of microorganisms has long been used as a motivation and a practical inspiration
for the design of synthetic self-propelled particles. Typically, biological cells generate propulsion
by deforming their slender appendages, termed flagella or cilia, in a non-time-reversible fashion.1

However, and perhaps not surprisingly given the numerous microfabrication challenges, no gen-
uinely self-propelled micro-swimmer has been manufactured in the lab so far. Instead, man-made
biomimetic propellers are driven by external torques or forces. That actuation allows either to deform
soft propellers whose deformed shape induce propulsion,2–4 to continuously generate propulsion in
chiral shapes,5, 6 or to exploit interactions with surfaces.7–9

An alternative route for the production of artificial small-scale swimmers has proven to be
much more successful. It consists in making miniaturized chemically powered “engines” with no
moving parts, typically made of reactive Janus beads or rods.10–12 The reaction products released by
these chemically asymmetric particles create concentration gradients which induce a net phoretic
fluid motion near their surface leading to locomotion. Theoretically, the interest in these so-called
autophoretic swimmers was triggered by a theoretical model, which accounted for such a novel
propulsion mechanism in a simple and generic fashion.13, 14 This model was then further elaborated to
include the nonlinear interplay between the colloid motion and the advection of the reactants,15–17 or
a more complex kinetic route for the surface chemistry,18 to deal with the rotational Brownian motion
of the swimmers,19 and to detail the microscopic coupling between the concentration gradients and
the fluid flows at small scales.20

In order to self-propel, autophoretic swimmers are chemically patterned, and it is the asymme-
tries in the chemical reactions on their surfaces which are responsible for locomotion in the first
place. This requirement would make it thus difficult to achieve high-throughput production. An
ingenious solution to such an engineering issue was recently offered with the production of isotropic
self-propelled Marangoni droplets.21 In a mechanism akin to the one responsible for the spontaneous
motion of reactive droplets surfing on fluid interfaces,22, 23 a net flow is induced around the droplets
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by interfacial stresses arising from the self-generated gradients of reactive surfactants.21, 24, 25 Unlike
autophoretic Janus particles, which swim as a result of built-in design asymmetries, the concentra-
tion of surfactant molecules at the surface of reactive droplets is spontaneously broken, leading to
propulsion.

In this letter, we demonstrate that asymmetry in the shape or the chemistry of the colloidal
particle, assumed in most existing studies on autophoretic swimmers,13–16, 18 is not necessary for
locomotion. We show that isotropic spherical particles can achieve self-propulsion through a spon-
taneous symmetry-breaking mechanism, a route to locomotion akin to that of a larger variety of
biological systems.26 We solve analytically the classical nonlinear autophoretic theoretical frame-
work at arbitrary Péclet number. We show that, for a given set of material properties, there exists a
critical particle size above which the non-swimming purely diffusive state is unstable and sponta-
neous autophoretic motion occurs. In addition, the flow induced by the reactive particles displays a
hierarchy of instabilities associated with quantized critical Péclet numbers. Using numerical solu-
tions of the full unsteady diffusiophoretic problem, we confirm our analytical predictions and show
that, above the instability threshold, isolated isotropic particles reach, after a transient, a steady
swimming state with broken front-back symmetry in the concentration field and the hydrodynamic
signature of a “pusher” swimmer.

We consider a spherical particle of radius a located in a Newtonian fluid of shear viscosity η.
We focus on the limit of steady Stokes flow so that the inertia of both the fluid and the particle is
negligible. The sphere is chemically active and either emits or captures a single type of solute particles
with an isotropic surface emission rate denoted A.13, 14 Within the standard minimal framework, we
ignore in what follows the specifics of the chemical reaction occurring at its surface, and all other
reactants and reaction products, which are assumed to interact only weakly with the particle. The
solute interacts with the spherical particle through a short-range potential and we focus on the
classical limit λ ≪ a, with λ the characteristic potential range.27

Tangential gradients in solute concentration induce a net slip (phoretic) velocity outside the
diffuse layer, together with a tangential (Marangoni) stress discontinuity at the particle surface.17, 27

For a solid particle, Marangoni stresses vanish, and the phoretic slip velocity is set by the local
chemical-potential gradient parallel to the surface.28 For small variations of the concentration,
c(r, t), its azimuthal component is given by

uθ (r = a) = M
a

∂c
∂θ

· (1)

The mobility, M ∼ ±kB T λ2/η, can either be positive or negative depending on the form of the
solute-surface interactions (kB is the Boltzmann constant, and T the temperature).27 Assuming that the
solute has a molecular diffusivityD, the typical autophoretic velocity which sets the swimming speed
of a Janus colloid is V = |AM|/D.14 Non-dimensionalizing velocities, lengths, and concentrations
in the transport equations are denoted by V , a, and a|A|/D, respectively, the coupled fluid flow
solute advection-diffusion problem takes the form

∇2u = ∇ p, ∇ · u = 0, (2)

|Pe|
(

∂c
∂t

+ u · ∇c
)

= ∇2c, (3)

where we have defined the (signed) Péclet number as Pe = AMa/D2. We henceforth consider
axisymmetric solutions only, so that in spherical polar coordinates the solute concentration is written
as c(r, µ, t) with µ ≡ cos θ , and only rectilinear motion along the axis of symmetry ez is considered.
In dimensionless units, the surface activity and the particle mobility become unitary numbers,
A = A/|A| = ±1, M = M/|M| = ±1, and the boundary conditions in the far-field and on the
particle surface become

u(r → ∞) = −Uez, c(r → ∞) = c∞, (4)

∂c
∂r

(r = 1) = −A, ur (r = 1) = 0, (5)
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uθ (r = 1) = −M
√

1 − µ2 ∂c
∂µ

(r = 1). (6)

In Eq. (4), U(t) is the dimensionless swimming velocity obtained from the force-free condition.
Using the reciprocal theorem, U(t) is found to be the surface average of the slip velocity14, 29 and,
using Eq. (1), is written in terms of the first moment of c(1, µ, t) as

U (t) = −M
∫ 1

−1
µ c(1, µ, t) dµ. (7)

The dimensionless problem is then fully characterized by the signs of both A and M, the far-field
concentration, c∞, and the value of |Pe|.

In the case of uniform surface activity (constant value of A), a trivial solution exists at all
Pe numbers, namely, the solute concentration is isotropic, c̄ = A/r + c∞, leading to no net flow
(ū = 0) and zero swimming velocity (Ū = 0). However, both the solute transport equation, Eq. (3),
and the boundary conditions on the particle, Eq. (6), couple the swimming problem with the solute
dynamics. A small fluctuation of the particle velocity would result in a polar perturbation of the
flow field. Due to the nonlinear convective coupling, u · ∇c, this velocity fluctuation would lead
to a polarization of the concentration field around the finite-size particle. In turn, the first moment
of the surface concentration, c(1, µ, t), would become finite and, depending on its sign in relation
to the initial perturbation, increase or decrease the particle velocity through Eq. (7). If the velocity
decreased, the initial perturbation would be stabilized, and no net motion could occur as a result of
an infinitesimal fluctuation. However, if the velocity increased, the broken symmetry in the solute
concentration would be amplified, and spontaneous motion would occur.

To quantify the conditions for spontaneous motion, we analytically investigate the stability of
the isotropic state. Defining c = c̄ + c′, u = u′, U = U′, and subsequently dropping the primes to
denote perturbations, the Stokes flow problem around the sphere can be solved analytically using
the so-called squirming modes decomposition.30, 31 The streamfunction ψ and solute concentration
c are decomposed azimuthally onto orthogonal modes

ψ(r, µ, t) =
∞∑

n=1

2n + 1
n(n + 1)

αn(t)ψn(r )(1 − µ2)L ′
n(µ), c(r, µ, t) =

∞∑

n=0

cn(r, t)Ln(µ), (8)

with ψ1(r) = (1 − r3)/3r, ψn(r) = (r−n − r−n + 2)/2 for n ≥ 2, and Ln(µ) the nth Legendre polynomial.
The squirming mode intensities, αn(t), are obtained directly from the slip velocity on the particle
surface,31 as

αn(t) = 1
2

∫ 1

−1

√
1 − µ2L ′

n(µ)uθ (r = 1, µ, t)dµ. (9)

The first mode is the only one contributing to the swimming velocity (α1(t) = U(t)), and is therefore
termed the swimming mode. The second mode corresponds to the flow created by a stresslet (i.e.,
a force dipole).32 Higher order modes correspond to higher order singularities decaying faster in
the far field. Because the trivial solution is isotropic, we can project both the advection-diffusion
equation, Eq. (3), and the definition of the slip velocity, Eq. (6), along these modes, and obtain a set
of independent problems for {αn(t), cn(r, t)}. For n = 1, this leads to the following inhomogeneous
eigenvalue problem for the first moment of the concentration profile, c1(r, t):

|Pe|∂c1

∂t
− 1

r2

[
∂

∂r

(
r2 ∂c1

∂r

)
− 2c1

]
= UPe

Mr2

(
1
r3

− 1
)

, (10)

U (t) = −2
3

Mc1(1, t), c′
1(1, t) = 0, c1(r → ∞, t) ∼ 0. (11)

Note that the first moment, c1, evaluated at r = 1 is proportional to the instantaneous swimming
speed of the particle, Eq. (11). Looking for eigenmodes of the form c1(r, t) = eσ tc(r), it can be
shown that all eigenvalues σ of Eqs. (10) and (11) are real, and that any σ < 0 is a solution. We focus
here exclusively on potential unstable modes (σ > 0) and define β ≡

√
σ |Pe| > 0. Introducing the
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Pe

σ

Pe1 = 4

Pe2 = 12

FIG. 1. Growth rate of the unstable swimming mode (theoretical prediction, solid line) as a function of the Péclet number,
Pe, for emitting particles and positive mobility (A = M = 1). Spontaneous symmetry-breaking of the concentration field and
swimming occur at Pe = 4. The crosses represent the growth rate of the swimming mode n = 1 as obtained from numerical
simulations of the full unsteady problem. The growth rates of the unstable modes of azimuthal order n = 2, 3, and 4 are
also shown (theoretical prediction, dashed, dashed-dotted, and thin-solid, respectively). Note that the hierarchy in the growth
rates is reversed at high Pe.

rescaled radial variable x ≡ βr, the function C(x) ≡ c(x/β) satisfies

d
dx

(
x2 dC

dx

)
−

(
2 + x2) C = 2Pe

3

(
β3

x3
− 1

)
. (12)

The general solution of Eq. (12) satisfying the far-field condition C(x → ∞) = 0 is

C(x) = 2Pe
3

{
1
x2

+ β3
[

A(x)
8x2

+ B(x)
8x

+ 1
4x3

]}
+ be−x (1 + x)

x2
, (13)

where b is an integration constant to be determined, and A(x) = sinh(x)Chi(x) − cosh(x)Shi(x),
and B(x) = sinh(x)Shi(x) − cosh(x)Chi(x), with Chi(x) and Shi(x) being the hyperbolic cosine and
sine integral functions, respectively.33 Applying the two boundary conditions on the sphere, C′(β)
= 0 and C(β) = 1, and using the definitions of A(x) and B(x) yield a final implicit expression for the
growth rate, σ = β2/|Pe|, as a function of the signed Péclet number:

Pe = 12β2 + 24β + 24

β4
∫ ∞

β

eβ−t

t
dt + 6 + β2 − β3 − 2β

· (14)

For positive values of β, the right-hand side of Eq. (14) is strictly greater than 4. For any value
of Pe above this critical value, a single positive value of β exists such that Eq. (14) is satisfied.
Consequently, the fluctuations of the first moment, c1, and the particle swimming speed, U, are
exponentially amplified if the condition Pe ≥ Pe1 = 4 is satisfied. Given that Pe is a signed quantity,
the instability condition requires that MA = 1. Particles with positive (respectively, negative) mobility
M are unstable only if they have a positive (respectively, negative) flux A corresponding to the case
of emitting (respectively, absorbing) the solute on the particle surface. The growth rate of the
unstable swimming mode is shown as a function of Pe in Fig. 1 (solid line). The existence of a
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FIG. 2. Time-evolution of the instantaneous swimming velocity, U(t) (thick solid line), and of three higher squirming modes,
cn(r = 1, t): mode n = 2, which corresponds to the magnitude of the stresslet (dashed line), n = 3 (dashed-dotted line),
and n = 4 (thin solid line). Results are displayed for Pe = 6 and AM = 1. The solute concentration is shown at three
different times revealing the establishment of a front-back asymmetry for an upward swimming motion (enhanced online).
[URL: http://dx.doi.org/10.1063/1.4810749.1]

critical Péclet number implies that there exists a critical particle radius above which an isotropic
reactive particle would undergo spontaneous motion. Recently, a study of light-activated colloids
reported the spontaneous surfing motion of reactive isotropic colloids lying on a solid surface,34 a
system which might be a potential candidate to test, at least qualitatively, our predictions.

In order to further investigate the possibility for long-time self-propulsion, we need to go beyond
the above linear stability analysis and check whether the asymptotic state of the concentration
field is compatible with swimming. In order to do so, numerical simulations of the full unsteady
diffusiophoretic problem, Eqs. (2)–(6), are performed: the Stokes flow problem is solved explicitly
using the squirming mode decomposition, and the advection-diffusion problem is marched in time
using a semi-explicit scheme, finite differences in the radial direction, and the Legendre spectral
decomposition for the azimuthal dependence.35 A small velocity perturbation is imposed on the
spherical particle initially at rest. Regardless of the amplitude of the initial perturbation, the system
is stable and returns to its initial rest state after perturbation for Pe < 4. By contrast, when Pe > 4, the
swimming velocity of the particle grows exponentially, and the growth rates obtained numerically
are in quantitative agreement with our analytic predictions, see Fig. 1.

Turning to the long-time behavior, our computations confirm that the asymptotic state of the
concentration field is compatible with locomotion. This is illustrated in Fig. 2 for Pe = 6, where we
plot the time-evolution of the instantaneous particle swimming speed (thick solid line). Three typical
snapshots in Fig. 2 (see also the associated video) illustrate the corresponding evolution of the solute
concentration field. A steady state is reached and the swimming speed plateaus to a finite value in
the long-time limit (note the surprising existence of a local maximum velocity during the transient
dynamics). Repeating the simulations for a range of Péclet numbers, we plot in Fig. 3 the nonlinear
variation of the long-time swimming velocity, U∞, as a function of Pe. Figure 3 demonstrates the
supercritical nature of the autophoretic instability: for Pe > 4, any infinitesimal perturbation of the
isotropic state will lead to spontaneous self-propulsion. Note the non-monotonic variation with an
optimal value of Pe ≈ 9 leading to the highest asymptotic swimming speed.

So far we focused exclusively on unstable swimming modes. In order to address the collective
dynamics of such particles, it is necessary to consider higher order squirming modes. Repeating,

http://dx.doi.org/10.1063/1.4810749.1
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FIG. 3. Long-time spontaneous swimming velocity, U∞ (solid line), and magnitude of the long-time induced stresslet,
)∞ ≡ −4πMc2(r = 1, t = ∞) (dashed line), as a function of the Péclet number (with AM = 1). The steady state solute
distribution around the particle is shown for Pe = 1, Pe = 5, and Pe = 15 for an upward swimming motion. The swimmer is
always a “pusher” in the far field.

for n ≥ 2, the theoretical approach presented above for n = 1, we can obtain the unstable growth
rates of each mode as a function of Pe. The results reveal a hierarchy of supercritical instabilities
corresponding to an infinite set of quantized critical Péclet numbers, Pen = 4(n + 1), for mode n.
This hierarchy of instabilities is illustrated in Fig. 1 where we plot the dependence of the growth
rates for modes 2, 3, and 4 on the Péclet number. Notably, the stresslet mode becomes unstable at
Pe2 = 12.

Beyond linear analysis, the saturation of the swimming velocity results from the nonlinear
evolution of concentration fluctuations having a n = 1 symmetry into higher-order n-modes, as
shown in Fig. 2. Although the Péclet number is below the critical value for all modes but the first
one to be unstable (Pe = 6 in Fig. 2), the nonlinear dynamics leads non-zero values for the other
modes (modes 2, 3, and 4 are shown in Fig. 2). In particular, the long-time value of the induced
stresslet, )∞, is shown in Fig. 3. Independently of the signs of both A and M, the unstable particle
induces in the far field a flow with the symmetry of a “pusher” swimmer, similarly to flagellated
bacteria.1

Similarly to Marangoni flows which have been observed for over 100 years to trigger the self-
propulsion of camphor boats floating on water, we demonstrated in this letter that self-phoretic
flows past isotropic particles show an instability to a spontaneous swimming state. The phenomenon
discovered here could be exploited to readily design self-propelled “submarines” out of isotropic
colloidal particles. Although our description of the surface chemistry is particularly simple (a fixed-
rate absorption or release of solute), the instability and self-propulsion mechanism remain in fact
valid for a much broader class of surface chemistry (see the supplementary material36). These results
are expected to be applicable generically to particles of different shapes or interacting with many
chemical species, and suggest a simple experimental model system to carry out physical studies of
active systems.

We acknowledge valuable discussions with Olivier Dauchot and John Brady. This work was
supported in part by the National Science Foundation (NSF) through Grant No. CBET-0746285
(E.L.).



061701-7 Michelin, Lauga, and Bartolo Phys. Fluids 25, 061701 (2013)

1 E. Lauga and T. Powers, “The hydrodynamics of swimming microorganisms,” Rep. Prog. Phys. 72, 096601 (2009).
2 R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone, and J. Bibette, “Microscopic artificial swimmers,” Nature

(London) 437, 862 (2005).
3 W. Gao, S. Sattayasamitsathit, K. M. Manesh, D. Weihs, and J. Wang, “Magnetically powered flexible metal nanowire

motors,” J. Am. Chem. Soc. 132, 14403 (2010).
4 O. S. Pak, W. Gao, J. Wang, and E. Lauga, “High-speed propulsion of flexible nanowire motors: Theory and experiments,”

Soft Matter 7, 8169 (2011).
5 A. Ghosh and P. Fischer, “Controlled propulsion of artificial magnetic nanostructured propellers,” Nano Lett. 9, 2243

(2009).
6 S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregon, and B. J. Nelson, “Magnetic helical micromachines:

Fabrication, controlled swimming, and cargo transport,” Adv. Mater. 24, 811–816 (2012).
7 P. Tierno, O. Guell, F. Sagues, R. Golestanian, and I. Pagonabarraga, “Controlled propulsion in viscous fluids of magnetically

actuated colloidal doublets,” Phys. Rev. E 81, 011402 (2010).
8 C. E. Sing, L. Schmid, M. F. Schneider, T. Franke, and A. Alexander-Katz, “Controlled surface-induced flows from the

motion of self-assembled colloidal walkers,” Proc. Natl. Acad. Sci. U.S.A. 107, 535 (2009).
9 L. Zhang, T. Petit, Y. Lu, B. E. Kratochvil, K. E. Peyer, J. L. R. Pei, and B. J. Nelson, “Controlled propulsion and cargo

transport of rotating nickel nanowires near a patterned solid surface,” ACS Nano 4, 6228 (2010).
10 J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, “Self-motile colloidal particles:

From directed propulsion to random walk,” Phys. Rev. Lett. 99, 048102 (2007).
11 S. J. Ebbens and J. R. Howse, “In pursuit of propulsion at the nanoscale,” Soft Matter 6, 726 (2010).
12 G. Zhao and M. Pumera, “Macroscopic self-propelled objects,” Chem. Asian J. 7, 1994 (2012).
13 R. Golestanian, T. B. Liverpool, and A. Ajdari, “Propulsion of a molecular machine by asymmetric distribution of reaction

products,” Phys. Rev. Lett. 94, 220801 (2005).
14 R. Golestanian, T. B. Liverpool, and A. Ajdari, “Designing phoretic micro- and nano-swimmers,” New J. Phys. 9, 126

(2007).
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We restrained the analysis in the Letter to a minimal reaction-kinetic model where the
reactants are created/destructed with a constant flux regardless of the local solute concen-
trations. Here we demonstrate that the spontaneous motion is a generic mechanism which
applies to more realistic reaction kinetics. We consider a reaction A → B catalyzed by the
surface of the colloid with a constant reaction rate k. The approach and methods presented
in the paper remain unchanged but for the reactant flux at the surface of the particle. The
surface activity now depends on the local concentration of reactant, Dn ·∇CA = kCA, at
r = a. In general, the advection-diffusion of both the products and the reactants must
be considered. For simplicity, we consider the case where the interaction of the colloid
with B is negligible compared to that with A. Following the approach of the paper, the
characteristic activity of the colloid is now equal to A = −kC∞ (absorption) where C∞ is
the far-field concentration of the reactant. In non-dimensional form, Eqs. (2)–(7) remain
unchanged except Eq. (5) which becomes

∂c

∂r
(r = 1) = Da c(r = 1), (1)

where Da = ka/D is an additional dimensionless number, commonly referred to as the
Damköhler number (J. F. Brady J. Fluid Mech, 667, 216, 2010), and is a relative mea-
surement of diffusive and reactive time-scales. The constant flux approximation considered
in the Letter corresponds to Da = 0: the reaction is slow compared to diffusion processes
and the reactant absorption is controlled by its far-field concentration. The system is now
described by two control parameters, the signed Péclet number Pe = −kMaC∞/D2, and
the new number, Da . Considering a perturbation from the isotropic non-swimming state,
c̄ = Da−1 − 1/[(1 + Da )r] and ū = 0 (a stationary solution of the problem for all Pe and
Da ), the linear stability analysis identifies again an infinite discrete set of critical Péclet
numbers Pen above which the nth squirming mode becomes unstable

Pe1 = 2(1 + Da )(2 + Da ), (2)

Pen = 4(n+ 1 + Da )(1 + Da ) for n ≥ 2. (3)

Consistently with the rest of the paper, self-propulsion can only be achieved by particles with
negative mobility (AM > 0). The growth rate of the swimming mode is shown on Fig. 1
(top). The effect of the reaction (Da ̸= 0) is to delay the onset of spontaneous swimming and
to reduce the instability growth rate (relative to the reaction time-scale). The supercritical
nature of the transition is confirmed for all Da using nonlinear simulations. The long-time
non-dimensional velocity of the colloid particle is shown on Fig. 1 (bottom), and is always
maximum for Da = 0. These results confirm that the self-propulsion mechanism identified
in this paper exists for a large class of surface chemical reactions.



2

Pe

Da

 

 

100 102 10410−3

10−2

10−1

100

101

102

0.04

0.08

0.12

Pe

Da

 

 

5 10 15 200

0.5

1

1.5

2

0.02

0.04

0.06

0.08

FIG. 1. (Color online) Top: Growth rate of the unstable swimming mode as a function of the
Péclet (Pe) and Damköhler (Da ) numbers. Bottom: Steady state swimming velocity as a function
of Pe and Da .


