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In the main manuscript, we showed that the linear stability analysis for an isotropic active droplet is essentially
identical to that of an active autophoretic particle provided the phoretic mobility M is replaced by

M ′ =
aK + 3ηiM

2ηo + 3ηi
, (1)

where ηi and ηo are the fluid viscosities inside and outside the droplet, respectively, and K defines the linear relation-
ship between the local surface tension gradient ∇‖γ and the local solute concentration gradient. In this supplementary
material, we provide the full details on the coupled Stokes and advection-diffusion problem, and show that although
qualitatively similar the nonlinear dynamics and saturation velocity differ between the droplet and solid particle cases.

The droplet is assumed to remain spherical at all times (i.e. the capillary number Ca = ηU∗/γ is small where U∗

is the characteristic droplet velocity). The normal unit vector at the surface is n = er, and ∇‖ = (I − nn) · ∇ is
the tangential gradient operator. We focus on an axisymmetric problem such that all fields depend only on r and
µ = cos θ, with θ the polar angle in spherical polar coordinates.

The solute is released from the droplet’s surface (r = a) at a constant flux A, such that the boundary condition for
the solute dynamics on the droplet’s surface can be written as

Dn · ∇C|(r=a) = −A. (2)

The solute is then advected by the outer flow and diffuses with diffusivity D:

∂C

∂t
+ uo · ∇C = D∇2C. (3)

A uniform concentration C∞ is assumed in the far-field (e.g. zero). Flows inside and outside the droplet satisfy Stokes
equations (i.e. the Reynolds number Re = U∗a/η is small)

ηi∇2uo,i = ∇po,i, ∇ · uo,i = 0, (4)

where superscripts i and o on hydrodynamic fields refer to the inner (r < a) and outer (r > a) flows, respectively.
Considering a reference frame attached to the droplet’s center, the boundary condition at infinity is obtained as

uo(r →∞) ∼ −U, (5)

with U the droplet’s velocity (there is no rotation here due to the axisymmetry). At the droplet’s surface, inhomo-
geneities in the local solute concentration lead to tangential velocity and stress jumps:

uj =
(
uo − ui

)
(r=a)

= M ∇‖C
∣∣
(r=a)

, (6)

τ j =
[
(I− nn) ·

(
σo − σi

)
· n
]
(r=a)

= ∇‖γ
∣∣
(r=a)

= − K∇‖C
∣∣
(r=a)

. (7)

Finally, inertia is negligible and assuming there is no external body force (e.g. buoyancy), the droplet must remain
force-free at all times ∫

(r=a)

σo · ndS = 0. (8)

Equations (2)–(8) form a closed and well-posed set of equations for the solute concentration C(r, µ) outside the
droplet and the flow fields ui and uo inside and outside the droplet. Because of the spherical geometry, the hydro-
dynamic problem, Eqs. (4)–(5) and (8) can be solved formally and analytically as follows, using the squirmer model
[1, 5]. The flow is axisymmetric, and can therefore be computed from the streamfunction ψ(r, µ, t), as

u = − 1

r2
∂ψ

∂µ
er −

1

r
√

1− µ2

∂ψ

∂r
eθ. (9)
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The streamfunction ψ(r, µ, t) is decomposed azimuthally inside and outside the droplet,

ψo,i(r, µ, t) =

∞∑
n=1

2n+ 1

n(n+ 1)
αo,in (t)ψo,in (r)(1− µ2)L′n(µ), (10)

with Ln(µ) the Legendre polynomial of order n. αon(t) and αin(t) are the outer and inner squirming mode intensities and
may differ when the velocity jump uj is non zero. Inside and outside the droplet, the radial part of the streamfunction
must be of the form [2, 4]

ψo,in (r) = Eo,in rn+3 + F o,in rn+1 +Go,in r2−n +Ho,i
n r−n, (11)

where Eo,in , F o,in , Go,in and Ho,i
n are constants to be determined using regularity and boundary conditions in each

domain. Using the force-free condition, Eq. (8) (Go1 = 0), the impermeability condition (ψon(a) = 0) and the far-field
behavior of the flow, Eq. (5), the outer radial modes ψ0

n(r) are obtained as [4, 5]

ψo1(r) =
a3

3r
− r2

3
, ψon(r) =

1

2

(
an+2

rn
− an

rn−2

)
for n ≥ 2. (12)

In particular, αo1(t) = U(t) is the swimming velocity of the droplet. The second mode, n = 2, corresponds to the
intensity of the slowest-decaying singularity created by the self-propelled droplet, namely that of a symmetric force
dipole or stresslet. Enforcing the regularity of the flow field inside the droplet (Gin = Hi

n = 0) and the impermeability
condition (ψin(a) = 0), the inner radial modes ψin(r) are obtained as

ψin(r) =
1

2

(
rn+1

an−1
− rn+3

an+1

)
. (13)

Finally, decomposing the solute concentration azimuthally, C(r, µ, t) =
∑
Cp(r, t)Lp(µ), the different modes Cp(r, t)

satisfy the following system of partial differential equations in the outer fluid:

∂Cp
∂t

+
1

r2

∞∑
m=0

∞∑
n=1

αon(t)

(
Amnp

∂Cm
∂r

ψon +BmnpCm
dψon
dr

)
=
D

r2

[
∂

∂r

(
r2
∂Cp
∂r

)
− p(p+ 1)Cp

]
, (14)

with boundary conditions

D
∂Cp
∂r

(r = a) = −Aδp0, Cp(r →∞)→ C∞δp0. (15)

The tensors Amnp and Bmnp are defined as

Amnp =
(2p+ 1)(2n+ 1)

2

∫ 1

−1
Lm(µ)Ln(µ)Lp(µ)dmu, Bmnp =

(2p+ 1)(2n+ 1)

2n(n+ 1)

∫ 1

−1
(1− µ2)L′m(µ)L′n(µ)Lp(µ)dµ

(16)
The solute is released from the droplet’s surface into the outer fluid only, where it is advected and diffuses. Hence,
its dynamics is not impacted by the flow inside the droplet, and to solve this advection-diffusion problem for Cp(r, t),
one only needs to know the outside flow (i.e. αon(t)).

Using Eqs. (9) and (10), the velocity jump condition, Eq. (6), can now be written in terms of αo,in :

αon − αin = −n(n+ 1)

2n+ 1

M

a
Cn(a, t). (17)

The stress jump condition, Eq. (7), writes

(
σorθ − σirθ

)
(r = a) =

K
√

1− µ2

a

∂C

∂µ
(r = a) (18)

with the stress tensor component σrθ obtained inside and outside the droplet using

σo,irθ = ηo,i

[
r
∂

∂r

(
uo,iθ
r

)
−
√

1− µ2

r

∂uo,ir
∂µ

]
= −ηo,i

√
1− µ2

∞∑
n=1

2n+ 1

n(n+ 1)
αo,in (t)L′n(µ)

[
r

d

dr

(
1

r2
dψo,in

dr

)
+
n(n+ 1)

r3
ψo,in

]
.

(19)
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Applying the stress jump condition on r = a, we obtain

3ηoα
o
1 +

9ηi
2
αi1 = −KC1(a, t), ηoα

o
n + ηiα

i
n = − n(n+ 1)

(2n+ 1)2
KCn(a, t) for n ≥ 2. (20)

Equations (17) and (20) form a linear system for αon and αin that can be inverted to obtain αon(t) as a function of
Cn(a, t), and the entire flow field outside the droplet (the flow inside the droplet can be recovered similarly):

αo1(t) = −2

3

(
aK + 3ηiM

2ηo + 3ηi

)
C1(a, t)

a
, (21)

αon(t) = − n(n+ 1)

(2n+ 1)2

(
aK +Mηi(2n+ 1)

ηo + ηi

)
Cn(a, t)

a
, (22)

As we pointed out earlier, the solute dynamics only requires the knowledge of the outer flow or αon(t), as for the
problem of a rigid phoretic particle. In both cases, αon(t) is proportional to Cn(a, t), Eqs. (21)–(22), but the coefficient
of proportionality (and its variation with n) differs between the two cases.

Repeating the analysis of [8] in the case of a droplet, we consider the stability of the trivial isotropic and steady
solution to the coupled Stokes and advection-diffusion problems above, C̄(r) = Aa2/Dr, which leads to no tangential
gradients and therefore no flow (ᾱo,in = 0). Decomposing the perturbation C ′(r, µ, t) azimuthally, the equation for the
first azimuthal mode C ′1(r, t) is obtained, at leading order in the perturbation, from Eq. (14) with p = 1 as

∂C1

∂t
− D

r2

[
∂

∂r

(
r2
∂C1

∂r

)
− 2C1

]
= −3αo1(t)

r2
dC̄

dr
ψo1 =

αo1(t)Aa2

Dr2

(
a3

r3
− 1

)
(23)

and one can observe that αo1(t) is the only squirming mode influencing the linear instability leading to self-propulsion.
Hence, Eqs. (21) and (23) are strictly identical to the case of a rigid phoretic particle (Eqs. (10) and (11) in [8])
provided the substitution Eq. (1) is performed. The linear stability result of [8] for the swimming mode is therefore
directly applicable to the droplet case and spontaneous self-propulsion of isotropic spherical droplets is predicted
provided AM ′ > 0 and Pe = |AM ′|a/D2 ≥ 4. To investigate the nonlinear saturated dynamics beyond the instability
threshold, all modes must be considered and the result is now modified from the rigid particle case.

In terms of swimming velocity, the rigid particle limit is recovered when ηiM/aK � 1 or equivalently given the
scalings of M and K in the main text when ηi/ηo � a/λ which is essentially only achieved for a rigid particle, since
λ � a. For a droplet, the Marangoni terms dominate systematically, except for very high order modes as suggested
by Eq. (22). From a numerical point of view however, in the Marangoni limit (ηi/ηo → ∞), the convergence of the
result with the number of squirming modes is faster than for the phoretic case (αon = O(Cn) in the Marangoni limit
rather than αon = O(nCn) in the phoretic limit). High-order modes therefore only have a negligible contribution to
the flow field, except if Pe � 1 (in that case the flow field and the solute distribution become strongly polarized
azimuthally [6, 7]).

Equations (14), (15), (21) and (22) can be solved numerically using the numerical methods described in [6, 7] and
the result is shown in Figure 1 in the pure Marangoni limit and with ηi/ηo = 1/36. The evolution of the velocity
with Pe is qualitatively similar to that obtained by [8] for a rigid phoretic particle, albeit slightly larger. Also, as for
rigid phoretic particles, self-propelling droplets are always pushers (Σ < 0), meaning that their far-field signature is
similar to the flow field generated by flagellated bacteria [3].
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FIG. 1: Evolution with Pe = U∗a/D of the non-dimensional droplet velocity U/U∗ with U∗ = |AM ′|/D and the non-dimensional
stresslet 10παo

2. The non-dimensional relative concentration c = (C − C∞)/(Aa/D) is also shown for selected Pe, showing the
symmetry breaking in the solute distribution associated with self-propulsion, despite the isotropy of the solute flux at the
droplet boundary.


