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Many biological systems and artificial structures are ramified, and present a high geometric complexity.
In this work, we propose a space-averaged model of branched systems for conservation laws. From a
one-dimensional description of the system, we show that the space-averaged problem is also one-
dimensional, represented by characteristic curves, defined as streamlines of the space-averaged branch
directions. The geometric complexity is then captured firstly by the characteristic curves, and secondly
by an additional forcing term in the equations. This model is then applied to mass balance in a pipe
network and momentum balance in a tree under wind loading.
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1. Introduction

Branched systems are ubiquitous in nature and man-made
structures. In biological systems, ramification is a mean for increas-
ing exchange surfaces at a given mass; this is commonly observed
in blood circulation, pulmonary system [1], and plants like trees
and bushes [2], to list a few. In these various systems, an accurate
modeling of fundamental conservation laws is of crucial
importance, be it for medical purposes, ecological applications or
predictions of mechanical failure.

Over the past decades, numerous studies helped uncover the
flow kinematics in the blood system, for instance for targeted drug
delivery [3], or in lungs for finding geometries that maximize
ventilation in a limited time [4,5] and to study the behavior of
liquid plugs [6,7]. In plants, various studies have been designed
to understand the static and dynamic response to external flows
[8–10]. The modeling complexity of such systems comes from
the multiple ramifications and branching points. In these branched
systems, robust models exist for individual segments, but
branched systems are not easily modeled and often require heavy
computations. A key issue is to find a continuous way for modeling
these geometries.

A typical example is that of trees submitted to external flows. A
continuous representation of a tree as a tapered beam was
proposed by McMahon for analyzing the mechanical stability of a
tree under its own weight [11]. This model captures efficiently
some key geometric features of tree-like structures and allow for
computing accurately the wind-induced loads on an isolated plant
[10,12]. However, this continuous approach does not account for
the changes in branch orientation, and the tree effect on the flow
cannot be modeled inside the tree crown. To overcome this issue,
many models are based on fractal models for trees [13–15]. Such
models rely on costly computations and a large number of param-
eters. Moreover, despite the variety of existing models, there is a
lack of a general formulation of conservation laws in branched
systems.

In this paper, we present a new model for space-averaged
branching (SAB) in conservation laws. The purpose of this work
is to provide a continuous formulation of conservation laws in
branched systems, represented by a small number of parameters
and applicable to a large variety of problems, in particular for solv-
ing full fluid–structure computations on branched systems
through a porous medium approach. More specifically, we expect
that the proposed approach will help in modeling complex struc-
tures involving large number of branching, avoiding the fine
description of each and every segment. The present SAB model is
inspired from homogenization techniques and porous media
approach. We obtain an equivalent problem where a branched sys-
tem is represented by independent characteristic curves, on which
specific conservation equations are solved. These characteristic
curves correspond to streamlines of the average branch direction,
as sketched in Fig. 1. The SAB model is derived in Section 2. We
present then two applications of the model, first on a case study
of flow rate computation in a simple pipe network in Section 3,
and then on the problem of trees submitted to an external flow
in Section 4. Finally, a general discussion and conclusion is given
in Section 5.
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http://www.sciencedirect.com/science/journal/00457949
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Fig. 1. Space-averaged branching model: (a) ramified system with oriented branches (t), (b) volume averaged branch direction ts , and (c) characteristic curves C equivalent to
the branched system in SAB model.
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2. Space-averaged branching model

2.1. Definitions and problem equations

We consider a branched system where the segments between
two branching points are oriented and described by the corre-
sponding tangent vector t (Fig. 1a). The segments are slender, so
that a segment length is much larger than its transverse dimen-
sion. The resulting description is thus one-dimensional along the
segments. Under these assumptions, a general formulation of the
conservation of a vectorial quantity Q along the system is

dQ
dx
þ GðxÞ ¼ 0;

X
Q� ¼

X
Qþ; ð1Þ

where G is a forcing term, x the curvilinear coordinate, and we use
superscript � (resp. þ) to characterize a segment oriented towards
(resp. away from) the branching point, according to the system ori-
entation given by the tangent vector t (Fig. 2). The first relation is
the conservation of Q along a segment, and the second one gives
a relation at the nodes of the structure. Such conservation equations
are ubiquitous in branched systems, and their complexity arises
from the discontinuities introduced by branching nodes. In the
general case, Eq. (1) is a vectorial equation, but can be decomposed
into a set of scalar equations by projection on a fixed frame. In the
following, we derive the SAB model considering a scalar problem,
dQ=dxþ GðxÞ ¼ 0.

Whereas the initial branched system has no volume (1D
description), it is necessary to introduce its finite volume for aver-
aging purposes (see Fig. 2a). In order to obtain space-averaged
quantities, we introduce a representative volume X and denote Xs

the volume occupied by the branched system included in X, as
sketched in Fig. 2a. We define the volume fraction u ¼ Xs=X. The
representative volume X must be large compared to the typical
diameter of the branched system’s segments [16]. We use a stan-
dard space average operator over the branched system, noted h�is,

h�is ¼
1
Xs

Z
Xs

�dX; ð2Þ
Fig. 2. (a) Space averaging domain and (b) example for the averaging method and
corresponding notations.
for a quantity Q defined in the system. This formalism is typically
used in porous media analysis, where Xs stands for the volume
occupied by a solid and X�Xs is occupied by a fluid [17,18].

2.2. Volume equation derivation

For any quantity QðxÞ, where x is the curvilinear coordinate
along the segment, we introduce in the volume Xs a continuously
differentiable function q corresponding to Q per unit section, so
that in a cross section normal to t,

q ¼ qðxÞ ¼ QðxÞ
AðxÞ ; ð3Þ

where AðxÞ is the local cross-section. This definition yields some
singularities at the branching points and at the borders of the aver-
aging volume. Due to the high slenderness of the segments, these
singularities are easily overcome without loss of generality; these
technical points are discussed in A.

We consider the sketch of Fig. 2b for obtaining volume
equations. We denote Q in (resp. Q out) the sum of Q where the seg-
ments go into X (resp. out of X) with respect to t. According to the
previous notations and slenderness hypothesis, we can write for
segment I in Fig. 2b

Qout
I � Q in

I ¼
I
@Xs I

Q
A

t � nXs dS ¼
I
@Xs I

qt � nXs dS; ð4Þ

where @Xs I is the border of segment I. Since q is continuously
differentiable in Xs, we can apply the divergence theorem. We
can then introduce the space-average operator as defined in Eq.
(2), and we use a special property for the volume average of the
spatial divergence, noted r,

uhr � qtis ¼ r � uhqtisð Þ þ u
Xs

Z
@Xs

qt � ndS; ð5Þ

where @Xs the interface between X and Xs, and n the normal to the
interface oriented towards Xs [16]. As a result, the sum over each
independent segment (here noted I and II) gives

Qout � Q in ¼ Xs

u
r � uhqtisð Þ: ð6Þ

We consider now the conservation equations given in Eq. (1),
which give, for segment I (or II) of Fig. 2b,

Qout
I � Q in

I ¼ �
Z outI

inI

Gdx ¼ �
Z

Xs I

g dX: ð7Þ

The same analysis can be done on segment II using the conservation
of Q at a branching point, leading in the general case to

Qout � Q in ¼ �
Z out

in
Gdx; ð8Þ
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where the integration from ‘‘in’’ to ‘‘out’’ represents the summation
along every oriented segment in X. By neglecting the effect of the
branching region (see A), we can write in the general case

Q out � Q in ¼ �Xshgis: ð9Þ

Combining Eqs. (6) and (9), we get the volume equation on q,
resulting from Eq. (1) for any scalar quantity Q,

r: uhqtisð Þ þuhgis ¼ 0: ð10Þ

This equation was obtained using only the high slenderness of the
segments constituting the branched system (see details in A). At
this point, Eq. (10) is a general volume formulation resulting from
a one-dimensional description similar to that of Eq. (1), but its solu-
tion is no straightforward. In the next section, we present a first
order approximation of the model equation.

2.3. First order approximation

Eq. (10) can be decomposed using spatial fluctuations
Q 0s ¼ Q � Q s, with a simplified notation Q s ¼ hQis. The resulting
equation reads then

r � uqstsð Þ þugs þr � uhq0st0sis
� �

¼ 0 ð11Þ

We consider here as a first order approximation that the
fluctuations, and their derivatives, are negligible compared to the
corresponding mean values,

jQ 0sj � jQ sj: ð12Þ

Equivalently, this consists in modeling any quantity by its space-
averaged value in the branched system volume, Q � Qs. Such
assumption implies that the variations of any quantity defined in
the real structure have to remain relatively small. In particular,
the changes in orientation should not be too important. For
instance, if we consider a Y-shaped branch with branching angle
w (see Fig. 3), the solid volume average of t reads

ts ¼
D2

0L0 þ 2D2
1L1 cos w

D2
0L0 þ 2D2

1L1
ez; ð13Þ

whereas t is equal to ez in the first level, and then cos wez � sin wex,
the ex and ez vectors being defined in Fig. 3. When the angle w is
small, this hypothesis is justified, and it is exact when w ¼ 0. This
provides a range of validity of the first order approximation of Eq.
(12).

Under the assumption of Eq. (12), a new form of the volume
equation is found, neglecting the last term of Eq. (11),

r � uqstsð Þ þugs ¼ 0: ð14Þ

Here, one only needs the average branch direction field ts, the
volume fraction u and the average forcing field gs, where

ts ¼
1
Xs

Z
Xs

t dX; u ¼ Xs

X
; gs ¼

1
Xs

Z
Xs

g dX: ð15Þ
Fig. 3. Example of averaging over a Y-shaped geometry: effect of first order
approximation on tangent vector t.
The volume equation obtained above can be solved directly, how-
ever a particular solution technique is presented in the next section.

2.4. Model equations: solution on characteristic curves

By expending the first term of Eq. (14), we get

r � uhqtisð Þ ¼ uts � rqs þ qsr � ðutsÞ: ð16Þ

The term ðts � rÞ corresponds to a derivative along a curve tangent
to ts. For a given streamline C of the space-averaged branch direc-
tion field ts, we define xs the space-averaged curvilinear coordinate
along C. We can write

ts � r ¼
d

dxs
on C: ð17Þ

The volume Eq. (14) can therefore be written as a set of one-dimen-
sional equations along characteristic curves C

ujtsj
dqs

dxs
þ qsr � ðutsÞ þugs ¼ 0; ð18Þ

where xs is the space-averaged curvilinear coordinate along each
curve C. The characteristic curves correspond to streamlines of the
average branch direction field ts, as sketched in Fig. 4. It is interest-
ing to note that the resulting equations of the SAB model are
one-dimensional, as for the initial equation Eq. (1), but with the
advantage of being now defined everywhere continuously.

The SAB Eq. (18) contains an additional term, namely r:utsð Þ.
This term is crucial in the SAB formulation, as it contains branching
effects and changes in diameter or orientation. This branching term
vanishes for cylindrical sections, but is non-zero when the diame-
ter changes or branching occurs. This term acts as an additional
forcing, and will be referred to in the following as geometrical forc-
ing. Indeed, even in the absence of external forcing, segment size
variations and branching can cause variations of Q. This will be
illustrated in the next section. The geometrical forcing r �utsð Þ
therefore holds the geometric complexity characterizing the real
system.

The SAB continuous medium equivalent to a branched system is
thus modeled by a set of characteristic curves as shown in Fig. 4b,
on which particular one-dimensional equations are solved. The
geometry is thus characterized only by the vector field ts and the
volume fraction u of the branched system with respect to a refer-
ence volume. In the next two sections, we show applications of the
SAB model, first to mass balance, then to momentum balance.

3. Application to mass balance

We consider mass conservation in a one-dimensional pipe
network, as sketched in Fig. 5. This system is made of cylindrical
pipes with fixed length ‘ and possibly varying diameter dn at level
n. At a branching point, each pipe divides into two pipes, and we
Fig. 4. Space-averaged branching model: (a) branched system and domain for space
averaging and (b) SAB equivalent medium, described by characteristic curves C.



Fig. 6. Normalized flow velocity along a 1D pipe network of identical pipes, using
direct analysis (thin line, U=U0 ¼ f ðx=‘Þ) and SAB model (thick line, Us=U0 ¼ f ðxs=‘Þ).

D. Lopez et al. / Computers and Structures 146 (2015) 12–19 15
neglect the branching regions. We consider an incompressible fluid
flowing at a constant flow rate in the system along direction ex,
without any flow source or sink. The averaging volume is such that
its length in the pipe direction is Lx ¼ 2‘; the perpendicular dimen-
sion L0 (in y and z directions) is taken to be arbitrarily large, so that
the SAB problem is one-dimensional. Since the network is oriented
along ex, the space-averaged segment direction is ts ¼ ex. The
problem can therefore be modeled by a single characteristic curve
C, along the x-axis.

We focus here on the flow rate Q. As a result, the quantity q
defined as Q per unit section is in fact the fluid velocity U averaged
over a pipe section. In the absence of external source or sink, the
SAB equation for the flow velocity reads

u
dUs

dxs
þ Us

du
dxs
¼ 0; ð19Þ

where Us is the space-averaged velocity. We first consider the case
where the total section is conserved at a branching point,
2d2

nþ1 ¼ d2
n; this corresponds to the constant velocity case. The

volume fraction u occupied by pipes is constant, and the SAB model
equation reads

u
dUs

dxs
¼ 0; ð20Þ

which naturally results in a constant velocity.
We consider now that all segments are identical, dnþ1 ¼ dn. The

velocity is reduced at each branching point by a factor 2, and reads
UðxÞ ¼ U02�bx=‘c, where b�c is the floor function. Noting xs the posi-
tion of the center of the averaging volume, the number of incoming
pipes in X is equal to 2bxs=‘c�1. It is then possible to compute directly
the volume fraction u which is not constant in this case

uðxsÞ ¼
3p
8

d2
0

L2
0

1þ xs

‘
� xs

‘

j k� �
2bxs=‘c�1: ð21Þ

The resulting equation for the velocity in the SAB model reads
therefore

‘ 1þ xs

‘
� xs

‘

j k� �dUs

dxs
þ Us ¼ 0; Usðxs ¼ ‘Þ ¼ 2U0=3; ð22Þ

which can be solved numerically. The evolution of the velocity is
plotted in Fig. 6, showing a perfect agreement between SAB and
direct computation. This example shows how crucial the geometri-
cal forcing r �utsð Þ is in the SAB model. In this case, it is in fact the
only forcing term, accounting for the increasing total cross-section.

These simple case was derived as a first validation of the SAB
model in a problem with an analytical solution. In particular, the
number of characteristic curves has no influence here, since this
problem is modeled by a single characteristic curve. In the next
Fig. 5. Example of a 1D pipe network, where each pipe divides into two pipes after
a length equal to ‘. The averaging volume X is shown in dotted lines.
section we turn to a more elaborate problem for a complete valida-
tion of the model.
4. Application to momentum balance

4.1. SAB equations of wind-induced loads on a tree

The space-averaged branching model is used for computing the
loads induced by a steady wind on a standing tree-like structure.
The model can be developed in the general three-dimensional case,
however we present hereafter only a two-dimensional example,
for the sake of clarity. This case is inspired from [10]. We consider
a two-dimensional sympodial tree made of cylindrical branches,
described by three parameters: (i) the branching ratio k, giving
the reduction of section through branching (k ¼ ðDþ=D�Þ2, k < 1),
(ii) the slenderness exponent b, giving the relationship for length
and diameter evolution in branch segments of the tree
(Dþ=D� ¼ ðLþ=L�Þb;1 < b < 2), and (iii) the branching angle w as
defined in Fig. 3. The number of branches emerging from one
branch at a branching point is typically equal to 1=k [8,10].

We consider here two geometries: (i) a symmetric tree with
k0 ¼ 0:3; b0 ¼ 1:5 and w0 ¼ 25� and (ii) a tree with random varia-
tions of its parameters ðk; b;wÞ of 30% around the default values
k0; b0 and w0. These two geometries are shown in Fig. 7, along with
contour values of the average branch angle with respect to the ver-
tical axis, and the corresponding characteristic curves used in the
SAB model.

The structure is submitted to an external flow, and is held by a
perfect clamping at the base, the top being free of loads (Fig. 7a).
We assume hereafter that the deformations induced by the flow
are negligible. The equations that govern the mechanical response
of this structure under an external flow read

dV
dx
þ F ¼ 0;

dM
dx
þ t ^ V ¼ 0; ð23Þ

F ¼ 1
2
qCDDjU � njðU � nÞn;

where V is the sum of the normal and shear forces, and M is the
bending moment in 2D [19]. F the fluid force, resulting from a nor-
mal pressure drag oriented along the normal to the branch axis n; q
is the fluid density, U the fluid velocity and CD the drag coefficient,
taken to be 1 [10]. In this problem, there is no external torque
applied on the structure. As the problem is isostatic and the config-
uration known in the absence of deformations, Eq. (23) describes
completely the problem.

These equations correspond to the general form of conservation
laws given in Eq. (1). Applying the procedure described in Section 2



Fig. 7. Symmetric and random tree-like structures used for the validation of the
homogenized model: (a) Real structure under cross flow, (b) average branch angle
with the vertical axis (absolute values), and (c) characteristic curves used in the SAB
model.
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on each component of Eq. (23), we derive the equations of the SAB
model on characteristic curves,

ujtsj
dvs

dxs
þ v sr �uts þuf s ¼ 0; ð24Þ

ujtsj
dms

dxs
þmsr �uts þuts ^ v s ¼ 0; ð25Þ

using the same notations for lower-case letters. The external flow is
taken to be uniform, U ¼ Uex (Fig. 7a). Using the assumption of Eq.
(12), the space-averaged forcing reads

f s �
1
2
qCDU2jex � nsjðex � nsÞns; ð26Þ

where ns ¼ ez ^ ts in 2D. Note that this analysis is carried out in the
two-dimensional case, therefore the cross section A is equal to the
branch diameter D. Finally, we introduce the maximum bending
stress in a branch section, defined as R ¼ 32M=pD3 [20,10]. Noting
that ms ¼ hM=Dis,the bending stress is modeled here by

R � Rs ¼
32
p

ms

D2
s

: ð27Þ

The present SAB model will be compared to finite element com-
putations on exact geometries, noted FEM, using a standard finite
element software (CASTEM v.3 M, [21]). The finite-element model
consists of Euler–Bernoulli beam elements, each branch being
described by ten mesh-elements. This refinement was found
sufficient to compute the static loads according to a convergence
test. The bottom boundary condition is enforced by preventing all
displacement and rotation of the anchoring node, and the computa-
tions are carried out in three dimensions for this 2D geometry. This
software was previously used for computing loads on tree-like
structures [8,22]. The FEM method solves directly Eq. (23) and the
bending stress is then computed using R ¼ 32M=pD3, whereas the
SAB computation solves Eqs. (24)–(27). For the SAB model, the fields
fts;u;Dsg are obtained numerically, with a representative averaging
surface (in two dimensions) whose typical dimension is of the order
of the length of the first branches after the trunk. Applying the aver-
aging method along the trunk can seem dubious, but we want here to
keep the model free of a matching condition between the trunk and
the tree crown; the same model is therefore used throughout the
entire structure. The model equations, Eqs. (24) and (25), are then
solved using an implicit Euler method on each characteristic curve C.

4.2. Flow-induced loads

We compute the loads induced by a uniform cross flow on an
idealized tree, using the present space-averaged branching model
and finite elements computations. Note that the loads are propor-
tional to the fluid dynamic pressure qU2, hence one only needs to
compute the loads for a single fluid velocity U0. The forces are
then normalized by V0 ¼ 1

2 qCDU2
0D0L0, the moments by

M0 ¼ V0L0 and the stresses by R0 ¼ 32F0L0=pD3
0, where D0 and

L0 are the trunk diameter and length. In this problem, the charac-
teristic curves of the SAB representation are independent of each
other. As a result, the number of curves only determines the
spatial resolution.

The results for both symmetric and random trees are shown in
Fig. 8. This figure shows the evolution of the normalized internal
force V=V0, bending moment M=M0 and bending stress R=R0 along
a typical branch and characteristic curve corresponding to the
same physical region. The SAB model shows a very good agreement
with the finite element computations, and captures the loads
evolution as well as their order of magnitude. Note that there is
no fitting parameter in this model.

The discontinuities visible in the FEM curves are due to the
branching points, and are naturally smoothed by the SAB model.
These discontinuities are even more significant for the bending
stress, as it depends strongly on the branch diameter. For this
mechanical quantity, the choice of Eq. (27) has an important influ-
ence on the value computed by the SAB model. With the simple
choice made here, we observe a good agreement, allowing us to
recover the right order of magnitude and stress profile, with a local
maximum near the top, i.e. in the tree crown.

The space-averaged branching model provides a good estimate
of the flow-induced loads, removing the discontinuities introduced
by the branching points, without any fitting parameter. Moreover,
the computations on a random tree-like structures show that there
is no particular symmetry required in the initial system. The pres-
ent model was derived under the assumption of Eq. (12), implying
in particular that the branching angle should be small. Whereas
this was the case in the example of mass conservation in a 1D pipe
system, the branching angle is not negligible in the geometries
considered in this section. We see therefore that the assumption
of Eq. (12) is not very restrictive, and the SAB model remains valid
for various realistic systems.

4.3. Application to flow-induced pruning

We apply now this model to the example of flow-induced prun-
ing in idealized trees submitted to wind [10]. Flow-induced prun-
ing refers to the pruning of branches (or more generally parts of
the structure) by the external flow, as the velocity increases,
thereby reducing the drag experienced by the tree. In this section,
we focus on flow-induced pruning in the absence of deformations.

The pruning procedure is that described in [10]: when the
velocity increases, breakage occurs where and when the bending
stress reaches the yield stress Rc . The broken branch is then
removed, and the computation continues on the remaining



Fig. 8. Flow-induced loads on a tree ðk0 ¼ 0:3; b0 ¼ 1:5;w0 ¼ 25�Þ under uniform cross-flow: (a) symmetric and (b) random tree. The evolution of the normalized internal
force V=V0, bending moment M=M0 and bending stress R=R0 are computed by finite element method on the actual geometry (dashed lines) and using the SAB model on the
equivalent characteristic curve (solid lines). The corresponding branch and characteristic curve are shown using the same line style.

Fig. 9. Convergence of the SAB model as the number of characteristic curves n
increases. Symbols correspond to velocities at first and last breaking events ð�; �Þ
and corresponding drag ð	;
Þ, normalized by their value for n0 ¼ 500.

Fig. 10. Evolution of the drag under increasing velocity for a symmetric tree
undergoing flow-induced pruning, obtained by finite element computations (thin
line) and space-averaged branching model (thick line). Two typical geometries are
shown, before the first breaking event ðU ¼ 0:4Þ and after some breaking events
ðU ¼ 1:5Þ.
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structure. For the SAB model, the same procedure is applied on
each characteristic curve. The fluid velocity is further increased
until a new breaking event occurs. The SAB model is not adapted
for computing the loads in a single branch, in particular in the tree
trunk. In the following, flow-induced pruning is studied only in the
tree crown, and compared with the finite elements computations
by looking at the evolution of the total drag at the base of the
crown. In the SAB computations, this drag is the average value over
the characteristic curves at the base of the tree crown. Finally, in
the finite element analysis, the computation stops when the struc-
ture is entirely broken. This corresponds in fact to the first breaking
event located at the base of the structure. We choose similarly to
stop the SAB computations when 1% of the characteristic curves
are broken at their base.

This problem is now a global problem involving the entire
domain, and raises the issue of convergence with respect to the
number of characteristic curves. We address this issue by compar-
ing four quantities for different numbers of characteristic curves n
to their value for n0 ¼ 500. Those quantities are the flow velocities

at the first and last breaking events ðUfirst;UlastÞ and the corre-

sponding drag ðF first; F lastÞ. We see in Fig. 9 that these quantities
vary dramatically at low numbers of characteristic curves, but con-
verge for n P 50. It is interesting to note that this convergence
occurs at a much smaller number of characteristic curves than
the maximum number of parallel branches (here equal to 729),
possibly reducing the computational cost.

We turn now to the drag evolution as the flow velocity
increases. Since it was observed in Fig. 8 that the stress is underes-
timated in the SAB model, we apply a numerical correction to the
yield stress ðRSAB

c ¼ 0:87RcÞ for comparison purpose, so that the
first breaking event occurs at the same flow velocity. The evolution
of the drag is shown in Fig. 10, for n ¼ 200 in the SAB model. We
observe a very good agreement between SAB and FEM on the drag
evolution under increasing flow velocity. The SAB model repro-
duces accurately the process of flow-induced pruning in a tree:
the first drag reduction is well captured, as well as the subsequent
slow increase. In this figure, sudden drops of the drag correspond
to breaking events. The geometries corresponding to U ¼ 0:4 and
U ¼ 1:5 (in arbitrary units) show similar broken regions and thus



Fig. A.11. Averaging notations and hypothesis: (a) branching point representation
and (b) adapted averaging volume border @X in solid line, compared to the initial
border in dotted line.
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good qualitative agreement. This second application of the space-
averaged branching model validates this model in a more complex
and realistic situation.

5. Discussion and conclusions

Interested in modeling conservation laws in ramified system
in a continuous way, we developed in this work an original
model for branched systems using space averaging, named
space-averaged branching (SAB). Using standard averaging
methods on branched systems described by one-dimensional
equations, we were able to derive a continuous formulation of
conservation laws. We then used a first order approximation,
reducing the model equations to a set of one-dimensional equa-
tions along characteristic curves C, defined as streamlines of the
space-averaged branch direction vector field ts. The SAB equiva-
lent medium therefore is described by a set of characteristic
curves, with one-dimensional balance equations identical to the
initial ones, except for an additional term that contains the local
information on the geometry. The derivation of this formulation
only requires that the initial problem has a one-dimensional
description along the segments of the system. The resulting
medium is not ramified, allowing for much simpler and faster
computations. The fields needed in the SAB model are essentially
the average branch direction, and the volume fraction occupied
by the branched system.

The additional term, r:ðutsÞ, referred to as geometrical forcing,
is the key element of the SAB model, as it accounts for the different
geometrical features of the initial structure, including branching,
which was the fundamental issue in the initial problem. This term,
defined everywhere continuously, accounts for the discrete aspect
of the real system, where each segment has to be treated
separately with boundary conditions given by branching point
relations. The SAB model therefore provides a continuous and uni-
form description in the volume occupied by the system.

We validated the space-averaged branching model by consider-
ing two different problems. The first one was a 1D pipe system,
easily solved analytically. The SAB model was used to compute
the flow rate along the system, and showed excellent agreement
with the analytical solution. The problem, presented in the absence
of external forcing, put a particular emphasis on the crucial role
played by the geometrical forcing. The second problem considered
for validation was the computation of mechanical loads induced by
a static uniform wind on an idealized tree. The results were com-
pared to finite elements computations, showing again a very good
accuracy of the SAB model on the load distribution. We then con-
sidered the sequence of flow-induced pruning, that is the succes-
sive breakage of branches under an increasing wind velocity. The
results, consistent with finite elements predictions, showed a fast
convergence of the SAB computations in terms of number of
characteristic curves. In particular, the convergence was found
for a number of curves lower than 10% of the maximum number
of parallel branches in the tree.

The model was derived considering a first order approximation
on fluctuations compared to volume-averaged values. In particular,
we showed that the ramification angle should be small. However,
the example of wind-induced loads on trees showed that the nec-
essary assumption is not very constraining. In fact, when the
branching angle is reduced to 0 (not shown here for the sake of
brevity), the maximum bending stress in the structure matches
the finite elements prediction. The stress underestimation in the
case w ¼ 25� can be explained by the large branching angle. This
may not be the only reason, the choice made for computing the
bending stress is in fact critical in this case due to the diameter
dependence. Despite this underestimation of the stress, the SAB
model predicted accurately the load profiles and consistent values
without any fitting parameter. Moreover, considering a random
tree, it was shown that there is no particular symmetry required
in the real system.

The model was validated considering particular geometries
where any branching point is characterized by one incoming and
several outgoing segments. In fact, the model was derived in the
general case, and could be used for more complicated networks.
For example, the SAB model could be applied to blood circulation,
where entangled networks of capillaries are more easily described
as a continuous medium. Moreover, the model was derived in the
general case, and complex three-dimensional structures and sys-
tems could be modeled in a similar manner. The pipe example
has natural applications, for sediment or pollutant transport, in riv-
ers or artificial pipe networks. For the problem of wind-induced
loads on a tree, we presented here the case of a uniform cross flow,
but this model can be used in a broader scope. The coupling of this
model with a standard flow model should give additional insights
on the interaction between a flow and vegetation. Models used for
predicting wind damage to forests could be coupled with this
homogeneous description, allowing the possibility of describing
the type of damage that would occur in a forest during a storm.
So far, continuous forest models do not account for branching in
trees, and consider either homogeneous media or arrays of cylin-
ders as forest models [23,24]. As the presented case was derived
under a uniform flow, we did not need to change the SAB fields,
and could treat each characteristic curve independently. However,
if flow modifications were to be significant, an actualization of
these fields would become necessary.

The space-averaged branching model developed in this paper
can be used for describing a large variety of branched systems.
The same methodology can be applied for obtaining continuous
formulations of conservation laws in complex oriented networks,
like internal flows in a pipe network, or in fact the transport of
any quantity through a branched network.

Appendix A. Finite volume related issues

Introducing the finite volume of the system yields some techni-
cal issues at branching regions and at the borders of the averaging
volume. We present here how these issues are overcome.

A first singularity appears at the branching points, concerning
the definition of the continuous quantity qðxÞ, Fig. A.11a. In order
to overcome that singularity, the branching point is extended to
a region whose typical length scale is the diameter of the segments
D. Over this region the branching relations are conserved between
O� and Oþ (see Fig. A.11a). The function q is therefore unknown in
the branching region. However, this region has a volume that
scales as D3, and D� L (the segment length), due to the branch
slenderness. The length scale of X being at least of the order of L,
the volume represented by the branching regions is negligible
compared to the solid volume Xs and the total volume X.

A second issue is related to the intersection with the boundaries
of the averaging volume. Considering that the branches have a
non-zero volume is consistent only if any intersection with the
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border @X occurs in the plane normal to the tangent vector t,
otherwise, q can take different values at the intersection. This is
sketched in Fig. A.11b, which shows this artifact of the three-
dimensionalisation occurring at the borders @X of the averaging
volume. This issue is bypassed considering a modified border,
shown in solid line in the sketch of Fig. A.11b. The modification
in volume that this adaptability will add is again negligible
compared to the total volume X, since it scales as D2L.
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