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The spontaneous flapping of a flag in a steady flow can be used to power an output circuit using
piezoelectric elements positioned at its surface. Here, we study numerically the effect of inductive circuits
on the dynamics of this fluid-solid-electric system and on its energy-harvesting efficiency. In particular,
a destabilization of the system is identified, leading to energy harvesting at lower flow velocities. Also,
a frequency lock-in between the flag and the circuit is shown to significantly enhance the system’s
harvesting efficiency. These results suggest promising efficiency enhancements of such flow-energy
harvesters through the output circuit optimization.
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I. INTRODUCTION

Flow-induced instabilities and vibrations have recently
received renewed attention as potential mechanisms to
produce electrical energy from geophysical flows (wind,
tidal currents, river flows, etc.). They indeed enable a
spontaneous self-sustained motion of a solid body which
can be used as a generator, effectively converting this
mechanical energy into electrical form [1–5].
A canonical example of such instability is the flapping of

a flexible plate in an axial flow (e.g., a flag), which has been
extensively investigated for its rich and complex dynamics
[6]. The origin of this instability lies in a competition
between the destabilizing fluid force and the stabilizing
structural stiffness. Beyond a critical flow velocity Uc, the
flag becomes unstable, leading to large-amplitude self-
sustained flapping [7–14].
Energy harvesting based on flapping plates may follow

two routes: producing energy either from the displacement
[15] or from the deformation of the plate [16–18]. The latter
has recently been the focus of several studies based on
active materials [19].
Piezoelectric materials, considered in this article, pro-

duce electric charge displacement when strained [20], a
“direct piezoelectric effect” that effectively qualifies them
as electric generators. This electric charge can be used in an
output circuit connected to their electrodes, as in vibration
control applications [21]. Piezoelectric materials also
introduce a feedback coupling of the circuit onto the
mechanical system: any voltage between the electrodes
creates an additional structural stress that modifies its
dynamics (inverse piezoelectric effect).

The concept of piezoelectric energy generator has
received an increasing amount of interest in the last
20 years [22,23]. Its basic idea is to convert ambient
vibration energy to useful electric energy through piezo-
electric materials implemented on vibration sources. Many
researchers have contributed to this field in order to
improve the efficiency of such energy-harvesting systems
[24–27]. Some studies show that simple resonant circuits,
i.e. resistive-inductive circuits combined with the piezo-
electric material’s intrinsic capacitance [20], offer promis-
ing opportunities to achieve high efficiency [28,29].
Flow-energy harvesting can be achieved by exploiting

the unsteady forcing of the vortex wake generated by an
upstream bluff body to force the deformation of a piezo-
electric membrane [16,17,30]. Fluid-solid instabilities offer
a promising alternative as they are able to generate
spontaneous and self-sustained structural deformation of
the piezoelectric structure, e.g., cross-flow instabilities
[29,31,32]. In their work, De Marquis et al. [29] used a
resistive circuit and a resistive-inductive one, and found in
addition to the beneficial effect of the resonance to the
energy harvesting, that a resistive-inductive circuit may
also affect the stability of the vibration source. However,
the resonant circuit’s influence on the structure’s dynamics
was not reported in this work.
Fluid-solid instabilities in axial flows, including the

aforementioned flapping flag instability, are also studied
in the context of piezoelectric energy harvesting [33–36].
In particular, Michelin and Doaré [34,36] considered a
piezoelectric flag coupled with a purely resistive output.
They observed moderate efficiency, which is maximized
when the characteristic time scale of the circuit is tuned to
the frequency of the flag. A significant impact of the
circuit’s properties on the fluid-solid dynamics was also
identified.*xia.yifan@ladhyx.polytechnique.fr
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The present work therefore focuses on the coupling of
the fluid-solid system, i.e., the flapping piezoelectric flag,
to a basic resonant circuit (resistive-inductive loop with the
piezoelectric material’s intrinsic capacitance). Resonance is
expected when the flapping frequency ω of the flag, forcing
the circuit, matches the circuit’s natural frequency. Using
linear stability analysis and nonlinear numerical simula-
tions of the fluid-solid-electric coupled system, we inves-
tigate the impact of such resonance on the dynamics and on
the amount of energy that can be extracted from the device
(i.e., the energy dissipated in the resistive elements). This
explicit description of both the fluid-solid and the electric
systems’ dynamics provides a deeper and more accurate
insight into the energy-harvesting process than its classical
modeling as a pure damping [4,15,18].

II. FLUID-SOLID-ELECTRIC MODEL

A. Fluid-solid coupling

The coupled system considered here is a cantilevered
plate of length L and span H, placed in an axial flow of
density ρf and velocity Uf. The flag’s surface is covered by
pairs of piezoelectric patches [Fig. 1(a)]. Within each pair,
two patches of reversed polarities are connected through
the flag, the remaining electrodes being connected to the
output circuit [34,37]. The resulting three-layer sandwich
plate is of linear mass density μ and bending rigidity B.
We restrict here to purely planar deformations (bending in

the z direction and twisting are neglected). The flag’s
dynamics are described using an inextensible Euler-
Bernoulli beam model forced by the fluid,

μẌ ¼ ðT τ −M0nÞ0 þ Ff; ð1Þ

X0 ¼ τ; ð2Þ

with clamped-free boundary conditions,

X ¼ _X ¼ 0 at s ¼ 0; ð3Þ

T ¼ M ¼ M0 ¼ 0 at s ¼ L: ð4Þ

Here T andM are respectively the tension and the bending
moment. Throughout this article, overdot and prime denote
derivatives with respect to t and s, respectively. The fluid
loading Ff is computed using a local force model from the
relative velocity of the flag to the incoming flow,

Unnþ Uττ ¼ _X −Ufex: ð5Þ

The present fluid model includes two different contribu-
tions. The first one results from the advection of the fluid
added momentum by the flow, an inviscid effect, and can be
obtained analytically in the slender-body limit through the
large-amplitude elongated body theory [38],

Freact ¼ −maρH2

�
_Un − ðUnUτÞ0 þ

1

2
U2

nθ
0
�
n: ð6Þ

Candelier et al. [39] recently proposed an analytic proof of
this result, and successfully compared it to Reynolds-
averaged Navier-Stokes simulations for fish locomotion
problems. These authors also stated that, in the case of
spontaneous flapping, it is necessary to account for the
effect of lateral flow separation, which is empirically
modeled by the following term [40]:

Fresist ¼ − 1

2
ρHCdjUnjUnn; ð7Þ

where Cd is the drag coefficient for a rectangular plate in
transverse flow. It is important to mention that the dynamics
of flapping flags considered here implies a large Reynolds
number. A 10-cm-long flag in a wind flowing at around
5 m=s leads to Re ∼ 104, while in water we would have
Re ∼ 105 for a flow velocity around 1 m=s. These values of
Re are sufficiently large to justify a constant value of Cd
[41]. A Re dependence could however be introduced to
extend the applicability of this model to intermediate Re.
The fluid forcing is the sum of these two terms,

Ff ¼ Freact þ Fresist: ð8Þ

(a)

(b) (c)

FIG. 1. Flapping piezoelectric flag in a uniform axial flow.
(a) Three-dimensional view; (b) enlargement of the circled area
in ðx; yÞ plane; (c) equivalent circuit of a piezoelectric pair
connected with a parallel RL circuit.
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The applicability of this result to a flapping flag was
confirmed experimentally, at least up to an aspect ratio
H=L ¼ 0.5, the value considered in our work [42].

B. Piezoelectric effects

Piezoelectric patch pairs are positioned on either side of
the plate, with opposite polarity. This guarantees that,
during the plate’s bending, the two patches reinforce each
other, rather than cancel out.
Each piezoelectric pair is connected to a resistance and

an inductance in parallel connection [Fig. 1(c)].
We focus on the limit of continuous coverage by

infinitesimal piezoelectric pairs [34,36]. Within this limit,
the electric state of the piezoelectric pairs is characterized
by the local voltage v and lineic charge transfer q, which
are continuous functions of the streamwise Lagrangian
coordinate s. The electrical circuits are characterized by a
lineic conductance g, and a lineic inductive admittance 1=l.
The electrical charge displacement across a piezoelectric
pair resulting from the direct piezoelectric effect is given by

q ¼ χθ0 þ cv; ð9Þ

where χ is a mechanical-piezoelectric conversion coeffi-
cient and c is the lineic intrinsic capacity of a piezoelectric
pair [43]. Equation (9) shows that the effect on the circuit of
the piezoelectric components is that of a current generator
with an internal capacitance [Fig. 1(c)]. The charge con-
servation of the resulting RLC circuit leads to

vþ gl_vþ lq̈ ¼ 0: ð10Þ

The inverse piezoelectric effect manifests as an added
bending moment, so that the total bending moment in
the structure is given by [37]

M ¼ Bθ0 − χv: ð11Þ

Finally, we define the harvested energy as the time
average of the total rate of dissipation in the resistive
elements, which is formally given as

P ¼
�Z

L

0

gv2ds

�
; ð12Þ

and the efficiency is defined as

η ¼ P
Pref

: ð13Þ

Pref is the kinetic energy flux of fluid passing through the
cross section occupied by the flag,

Pref ¼
1

2
ρU3

∞AH; ð14Þ

where A is the peak-to-peak amplitude of the flapping
flag.
In the following, the problem is nondimensionalized

using the elastic wave velocity Us ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=L2μ

p
as charac-

teristic velocity. L, L=Us, ρHL2, Us

ffiffiffiffiffiffiffiffi
μ=c

p
, and Us

ffiffiffiffiffi
μc

p
are

respectively used as characteristic length, time, mass,
voltage, and lineic charge. As a result, six nondimensional
parameters characterize the coupled system,

M� ¼ ρfHL

μ
; U� ¼ Uf

Us
; H� ¼ H

L
;

α ¼ χffiffiffiffiffiffi
Bc

p ; β ¼ cUs

gL
; ω0 ¼

L

Us

ffiffiffiffi
lc

p ; ð15Þ

with M� the fluid-solid inertia ratio, U� the reduced flow
velocity, and H� the aspect ratio. The piezoelectric cou-
pling coefficient α characterizes the fraction of the strain
energy transferred to the circuit, and as such critically
impacts the energy-harvesting performance. Finally β and
ω0 characterize respectively the resistive and inductive
properties of the circuit.
The effect of the mechanical parameters, M�, U�, and

H�, on the dynamics of flapping flags has been extensively
studied in the literature [34,36]. In the following, we focus
specifically on the dynamical properties of the circuit and
maintain M� ¼ 1 and H� ¼ 0.5 throughout this study.
Unless stated otherwise, we will also consider α ¼ 0.3, a
value consistent with existing material properties [34].
The effect of varying the piezoelectric coupling will also
be briefly discussed. The full nonlinear dynamics of the
coupled system are now described in nondimensional
form by

ẍ ¼ M�ðTτÞ0 − ðθ00nÞ0 þ αðv0nÞ0 þM�ffn; ð16Þ

x0 ¼ τ; ð17Þ

βv̈þ _vþ βω2
0vþ αβθ̈0 ¼ 0; ð18Þ

and the nondimensional boundary conditions are

x ¼ _x ¼ 0 at s ¼ 0; ð19Þ

T ¼ θ0 − αv ¼ θ00 − αv0 ¼ 0 at s ¼ 1. ð20Þ

The nondimensional tension T is computed using the
inextensibility of the beam [44].
Finally, the nondimensional fluid loading is obtained as

ff¼−maH�
�
_un−ðunuτÞ0þ

1

2
u2nθ0

�
−1

2
Cdjunjun; ð21Þ
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with ma ¼ π=4 and Cd ¼ 1.8, the added mass and
drag coefficients for a rectangular plate in transverse flow
[45,46].

III. CRITICAL VELOCITY

The critical velocity U�
c is defined as the minimum flow

velocity above which self-sustained flapping can develop
and energy can be harvested. In this part, the influence of
the RL loop on U�

c is studied using linear stability analysis,
in the limit of small vertical displacement, i.e., y ≪ 1,
allowing linearization of Eqs. (16)–(18). The resulting
linear equations are

ð1þMaÞÿþ2MaU� _y0þMaU�2y00þy0000−αv00 ¼0; ð22Þ

βv̈þ _vþ βω2
0vþ αβÿ00 ¼ 0; ð23Þ

where Ma ¼ πM�H�=4.
Equations (22) and (23) are then projected onto the

fundamental beam modes and their second derivatives,
respectively, and recast as an eigenvalue problem. The
coupled system is unstable if one of its eigenfrequencies
has a positive imaginary part.
The evolution of U�

c with ω0 is computed using linear
stability analysis and is shown in Fig. 2. For intermediate
values of ω0 (3 < ω0 < 10), we observe a significant
destabilizing effect of inductance that increases with β,
as the circuit becomes dominated by inductive effects. For
small β, however, no such destabilization is observed, as
the inductance plays a small role in this resistive limit.
These results highlight a major benefit of the circuit’s
inductive behavior: the instability threshold may be low-
ered, resulting in energy harvesting with slower flow
velocity. For ω0 ≫ 1, the inductance acts as a short circuit,
and U�

c converges, regardless of β, to U0
c, the critical flow

velocity without coupling (α ¼ 0). For ω0 ≪ 1, the effects
of inductance are negligible, and U�

c ≥ U0
c, illustrating the

stabilizing effect of the resistance. Note that a destabilizing
effect of the resistance can be observed at higher values of
M� [34], and in more general cases of damping [47].
To determine the origin of this destabilization, Fig. 3

shows the evolution of the two most unstable pairs of
eigenvalues withω0 atU� ¼ 10, which is lower thanU0

c but
higher than the minimum critical velocity (Fig. 2). Starting
from ω0 ≫ 1 and decreasing ω0, the electrical circuit
evolves successively from short circuit to RLC loop, and
finally to a purely resistive circuit. Instability occurs when
the imaginary part of any mode becomes positive.
In the absence of coupling (ω0 ≫ 1), both pairs consist

of two eigenvalues: (i) an electrical mode with a frequency
equal to ω0 and (ii) a mechanical mode, with a frequency
independent of ω0. Decreasing ω0 leads to interactions
between the electrical and mechanical modes, successively
within each pair. This interaction destabilizes the mechani-
cal mode, leading to the flag’s instability at intermediate ω0

(Fig. 3). Note that this interaction within other pairs also
leads to an increase of ImðωÞ for the mechanical mode, but
does not lead to instability (at least for M� ¼ 1).

IV. NONLINEAR DYNAMICS
AND ENERGY HARVESTING

Above the critical velocity, the unstable coupled system
experiences an exponential growth in its amplitude, which
eventually saturates due to nonlinear effects. A direct

FIG. 2. Evolution of the critical velocity with ω0 at α ¼ 0.3 and
β ¼ 0.05 (solid), β ¼ 1 (dash-dotted), β ¼ 4 (dashed), β ¼ 8

(dotted). U�
c ¼ U0

c is plotted (dash-dotted, gray) as a reference.

(a)

(b)

FIG. 3. Evolution with ω0 of (a) the imaginary part (growth
rate) and (b) the real part (frequency) of the second and third pairs
of eigenvalues for α ¼ 0.3, U� ¼ 10, and β ¼ 4. In both (a) and
(b), solid lines represent mechanical modes and dashed lines
represent electrical modes. The destabilized pair is plotted in red
and the other plotted in black. In (b), ω0 is plotted with a thin gray
solid line as a reference.
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integration of the fluid-solid-electric system’s nonlinear
equations Eqs. (16)–(18) is performed using an implicit
second-order time-stepping scheme [44]. The flag is
meshed using Chebyshev-Lobatto nodes, and a
Chebyshev collocation method is used to compute spatial
derivatives and integrals. At each time step, the resulting
nonlinear system is solved using Broyden’s method [48].
The simulation is started with a perturbation in the flag’s
orientation [θðs; t ¼ 0Þ ≠ 0], and is carried out over a
sufficiently long time frame so as to reach a permanent
regime.
The reduced flow velocity is chosen at U� ¼ 13, a value

sufficiently higher than the critical velocity U�
c. The flag’s

behavior is observed to drastically differ with varying ω0

(Fig. 4). When ω0 is within the range of destabilization, the
flag undergoes a remarkably larger deformation [Fig. 4(b)]
than with other values of ω0 [Fig. 4(a)].
Figure 5(a) shows the evolution of the efficiency withω0,

and demonstrates that this increased flapping amplitude
indeed leads to a significant efficiency improvement: a
maximum efficiency of 6% is obtained here, significantly
higher than the optimized efficiency obtained at M� ¼ 1
and U� ¼ 13 without inductance (∼0.1%) [36].
Within the high-efficiency range, the flapping frequency

is deviated and locks onto the natural frequency of the
circuit, ω0 [Fig. 5(b)]. A frequency lock-in is therefore
observed here, similar to the classical lock-in observed in
vortex-induced vibrations (VIV) [49,50]: the frequency of
an active oscillator (the flag) is dictated by the natural
frequency of a coupled passive oscillator (the circuit). The
lock-in range is extended by a reduction of the circuit’s
damping (1=β), consistent with what is observed in VIV for
varying structural damping [51]. The lock-in range leading
to high efficiency coincides with the range of ω0 associated

with the destabilization by inductance (Fig. 2). This
suggests that a coupled piezoelectric flag, once destabilized
by inductive effects, may flap at a frequency close to the
natural frequency of the circuit. As a result, a permanent
resonance takes place between the flag and the circuit,
leading to increased flapping amplitude and harvesting
efficiency.
By varying ω0 within the lock-in range, Fig. 5 shows that

when the frequency of the output circuit matches the short-
circuit natural frequency of the flapping flag (ω ∼ 17.5), the
maximal efficiency is obtained for every value of β. This
observation highlights again the interest of exciting piezo-
electric structures at their natural frequencies for energy
harvesting, as suggested by previous studies, where maxi-
mal efficiency is observed when the external forcing
resonates with the piezoelectric system [17,52,53]. The
existence of a lock-in extends this effect to a larger range of
parameters, by maintaining the system at resonance, hence
guaranteeing efficient energy transfers from the flag to the
circuit.

V. IMPACT OF PIEZOELECTRIC COUPLING

A decisive factor is the intensity of piezoelectric cou-
pling, characterized by α in this work. It quantifies the
proportion of the mechanical work transmitted to the circuit
via piezoelectric effects. In practice, this coupling coef-
ficient α, defined in Eq. (15), depends primarily on the
materials used for the piezoelectric flag. The importance of
the coupling factor has been reported by many studies on
energy harvesting by piezoelectric systems [25,27]. In
Refs. [34,36], a dependence of the harvesting efficiency
to α2 was identified.

(a)

(b)

FIG. 4. Flapping motion of flags at α ¼ 0.3, β ¼ 4, U� ¼ 13,
and (a) ω0 ¼ 3.25 (no lock-in), (b) ω0 ¼ 4.12 (lock-in).

(a)

(b)

FIG. 5. (a) Harvesting efficiency η and (b) flapping frequency ω
as a function of ω0 for α ¼ 0.3, U� ¼ 13, and β ¼ 0.05 (solid),
β ¼ 1 (dash-dotted), β ¼ 4 (dashed), and β ¼ 8 (dotted).
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In the present work, the influence of α is observed both
in terms of critical velocity (Fig. 6) and the lock-in range
(Fig. 7). In Fig. 6, lower critical velocities and larger
destabilization range in terms of ω0 are observed with
increasing α. Figure 7 shows that the range of frequency
lock-in also increases with increasing α. The impact of the
coupling coefficient α on the system’s performance is again
identified: a strong piezoelectric coupling is desired so that
the beneficial effects of a resonant circuit, namely the
destabilization and the frequency lock-in, can be obtained.
In practice, α ∼ 0.3 could be expected with large scale

devices [34], and in general α ∼ 0.1 is achievable, for
example using two 10 cm × 10 cm macro-fiber composite
patches glued by an epoxy layer with a thickness of
0.1 mm. A potent piezoelectric material, leading to a
strong coupling, is therefore an essential prerequisite to
utilize the lock-in phenomenon.

VI. CONCLUSION

The results presented here provide a critical and
new insight on the dynamics of a piezoelectric energy-
harvesting flag. First and foremost, they emphasize how the
fundamental dynamics of the energy-harvesting system and
of the output circuit may strongly impact the motion of the
structure and its energy-harvesting performance. Also, they
identify two major performance enhancements associated
with the resonant behavior of the circuit, namely (i) a
destabilization of the fluid-solid-electric system, leading to
spontaneous energy harvesting at lower velocity; and (ii) a
lock-in of the fluid-solid dynamics on the circuit’s funda-
mental frequency, resulting in an extended resonance and a
significant increase of the harvested energy.
This lock-in behavior at the heart of both effects above is

classically observed in VIV where it is also responsible for
maximum energy harvesting [5]; it is in fact a general
consequence of the coupling of an unstable fluid-solid
system to another oscillator’s dynamics. We therefore
expect that the conclusions presented in the present paper
go beyond the simple inductive-resistive circuit considered
here, and should be applicable to a much larger class of
resonant systems. Such systems could be other forms of
electrical output circuits, or other mechanical oscillators.
The critical impact of the coupling coefficient α on the

system’s performance is also underlined in the present work
through its strong influence on the destabilization range
and the lock-in range. The choice of the piezoelectric
materials is therefore essential in the practical achievement
of high efficiency.
This lock-in mechanism also plays a critical role in the

robustness of the energy-harvesting process with respect to
the flow velocity (Fig. 8). Lock-in indeed persists over a

FIG. 6. Evolution of the critical velocity with ω0 and β ¼ 4,
M� ¼ 1 and α ¼ 0.1 (dash-dotted), α ¼ 0.2 (dashed), and
α ¼ 0.3 (solid).

FIG. 7. Flapping frequency ω as a function of ω0 for β ¼ 4,
M� ¼ 1, U� ¼ 13, and α ¼ 0.1 (dash-dotted), α ¼ 0.2 (dashed),
and α ¼ 0.3 (solid).

(a)

(b)

FIG. 8. (a) Flapping frequency ω and (b) harvesting efficiency η
as a function of U� for α ¼ 0.3, M� ¼ 1, β ¼ 3.5, and ω0 ¼ 0.1
(dotted), ω0 ¼ 29 (solid), ω0 ¼ 1000 (dashed).
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wide range of U�, effectively acting as a passive control of
the flapping frequency in response to flow velocity: while
ω increases rapidly in the limit of weak fluid-solid-electric
interactions, lock-in with the output circuit maintains
ω ≈ ω0 and high harvesting efficiency over a large range
of flow velocity. Such a control of the flapping frequency
was shown to be essential for efficiency enhancement
and robustness (e.g., to delay mode switches or frequency
changes) [36].
These results nonetheless illustrate the fundamental

insights and technological opportunities offered by the full
nonlinear coupling of a passive resonant system (electric,
mechanical, or other) to an unstable piezoelectric structure
for the purpose of energy harvesting. The lock-in phe-
nomenon and the enhanced performance demonstrated by
the coupling between the piezoelectric flag and a simple
resonant circuit open the possibility of applying different
kinds of resonant systems to energy-harvesting piezoelec-
tric systems. The choice of an inductive circuit is motivated
by its simplicity, while in practice, other designs of
resonant circuits may present important advantages over
the proposed formulation in our work. Meanwhile, com-
plex circuitry, such as propagative [37] and active circuits
[54], also represent interesting perspectives for future work.
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