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Fluttering piezoelectric plates may harvest energy from a fluid flow by converting the
plate's mechanical deformation into electric energy in an output circuit. This work focuses
on the influence of the arrangement of the piezoelectric electrodes along the plate's
surface on the energy harvesting efficiency of the system, using a combination of

flow, equipped with a discrete number of piezoelectric patches is derived and confronted
to experimental results. Numerical simulations are then used to optimize the position and
dimensions of the piezoelectric electrodes. These optimal configurations can be under-
stood physically in the limit of small and large electromechanical coupling.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, a significant research effort has been dedicated to the development of new flow energy-harvesting
systems and the characterization of their efficiency. Many of such systems are based on flow-induced vibrations of
structures, such as vortex-induced vibrations [1–3], flutter of wing profiles [4–6], of cylinders in axial flows [7,8], or flags [9–
12]. The present work focuses on the latter, and considers a flag covered with piezoelectric patches that convert mechanical
deformation into electric charge transfer inside an output circuit.

In this paper the term flag refers in fact to a clamped-free plate in an axial flow. It is well-established that such structure
can undergo strong self-sustained oscillations once a critical flow velocity is overpassed (see the recent review by Ref. [13]
and references therein). These oscillations originate from an instability of the equilibrium position, resulting from the
interaction of the flow forces with the solid's inertia and rigidity. This instability can be predicted from the linearized
dynamics equations and different methods and models have been proposed depending on the aspect ratio of the flag,
ranging from two-dimensional models (large span [14,15]) to slender body models (short span [16]). The general case of a
three dimensional fluid flow around a rectangular plate showed the limits of applicability of both models [17,18]. Linear
analysis is however not able to predict the amplitude of flapping in the saturated regime, hence it is necessary to consider
the nonlinear dynamics of the flag to be able to determine how much energy can be harvested. Beyond full numerical
simulations of the coupled fluid–solid problems, simplified fluid–solid nonlinear models have been proposed in the limit of
two-dimensional flows [19,20] or slender body problems [21,8].
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Piezoelectric patches have traditionally been studied to couple structural mechanics to electrical circuits in the context of
passive damping of structural vibrations [22], of active control of vibrations [23] and of course energy harvesting [24–27].
The use of a piezoelectric flag to convert the kinetic energy of a flow was initially introduced by Ref. [1], to produce energy
from the flapping of a flexible membrane forced by the wake of an upstream obstacle. In the last 5 years, several
experimental, numerical and theoretical studies have been conducted to study the possibility to exploit the flutter instability
itself using piezoelectric plates [10,11,28,29]. In these works, the plate was either entirely or partially covered by one
piezoelectric pair [28,29], or completely covered by a large amount of small piezoelectric elements, so that a continuous
model for a homogeneous plate can be considered [10,11]. In the latter case and for purely resistive output circuits, it was
shown that the maximum efficiency is obtained for large mass ratios when the timescale of the electrical circuit is equal to
the fluid–solid instability timescale [11]. For practical applications, however, only a finite number of piezoelectric elements
can realistically be used. The goal of the present article is therefore to provide some understanding on the impact of such a
discrete coverage on the dynamics and performance of the system, a critical question that has remained so far unanswered.

In contrast with simplified representations of the energy harvesting process (e.g. pure damping [30]), such an approach
provides a fully coupled description of the fluid–solid–electric problem, taking into account both the transfer of energy from
the solid motion to the output circuit and the feedback effect of the piezoelectric patches on the flag's dynamics. The
nonlinear dynamics of the flag (even in the absence of any piezoelectric coupling) exhibit strong inhomogeneities of the
local deformation and motion along the plate: near the clamped leading edge, the flag has little displacement but significant
curvature, while near the free trailing edge, the flag has zero curvature but undergoes large displacements. Local stretching
and compression of the piezoelectric patches resulting from the flag deformation are responsible for the charge transfer in
the output circuit; the location along the structure of the device converting mechanical to electrical energy is therefore
expected to strongly affect the efficiency of the system. A similar question was recently addressed in Refs. [7,8] in the case of
a pure damping model.

The present work focuses on the optimization of the distribution of a small set of piezoelectric elements (one, two or
three pairs) positioned on a plate in an axial flow. In Section 2, the physical model and equations are presented for the fluid–
solid–electric system with a finite number of discrete piezoelectric patches. A method of simulation based on the weakly
nonlinear form of these equations is presented that is appropriate to obtain the nonlinear dynamics near the instability
threshold. The influence of the number of piezoelectric elements on the stability of the system is investigated in Section 3.
In Section 4, the impact of this arrangement on the nonlinear dynamics and energy harvesting efficiency is studied using
experiments and numerical simulations. Finally, a parametric numerical study is performed to determine the optimal
arrangements in the case of one, two or three piezoelectric elements.
2. Physical model

The system considered in this work consists of an elastic flexible plate of length L and width H immersed in an axial flow
of uniform density ρ and velocity U1. The plate is inextensible and clamped at its leading edge. For simplicity only purely
two-dimensional motions of the plate are considered. The plate's geometry is therefore completely determined by the local
orientation of the plate with respect to the flow, θðS; TÞ, where S is the curvilinear coordinate along the plate and T is the
time. A finite number Np of piezoelectric electrodes of length Lpi and width H are attached on each side of the plate. For each
piezoelectric patch pair, the negative electrodes are shunted across the plate while their positive electrodes are connected to
an external circuit. The charge (per unit length in the streamwise direction) in each piezo pair is given by [10]

Qi ¼
χ
Lpi

½θ�S
þ
i
S�
i
þCVi; (1)

with Vi being the voltage between the positive electrodes of the ith piezo pair whose left and right edges are positioned at
S�
i and Sþ

i respectively. C ¼ Ci=Lpi is the equivalent capacitance per unit length of the piezo pair and χ is the mechanical/
piezoelectrical conversion factor of the piezoelectric material. Considering that each electrode is connected to a purely
resistive circuit, Ohm's law leads to

∂Qi

∂T
þGVi ¼ 0; (2)

where G¼ Gi=Lpi ¼ 1=RiLpi is the conductivity per unit length of the harvesting circuit, with Ri being the circuit's resistance.
The voltage Vi between the positive electrodes also generates an internal torque in the piezoelectric patches, and thus on

the flexible plate, so that the total internal torque in the plate and piezoelectric patches assembly is obtained as

M¼ B
∂θ
∂S

�χ
XNp

i ¼ 1

ViFi; (3)

where B is the flexural rigidity, which depends on the respective thickness, Young's modulus and Poisson's ratio of the two
constitutive materials [10]. In Eq. (3), Fi(S) is the polarization function of the ith patch. In the present approach,



Fig. 1. (a) Two dimensional flapping of a flexible plate covered by pairs of piezoelectric patches. (b) Flexible plate flapping in uniform axial flow.
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FiðSÞ ¼HsðS�S�
i Þ�HsðS�Sþ

i Þ, with Hs being the Heaviside step function. The conservation of momentum then leads to [11]

μ
∂2X
∂T2 ¼

∂
∂S

Ftτ�
∂
∂S

B
∂θ
∂S

�χ
XNp

i ¼ 1

ViFi

 !
n

 !
�Pn; (4)

where XðS; TÞ is the local plate position and μ is the mass per unit length of the assembly. Ft is the internal tension in
the plate that enforces inextensibility and P is the pressure force density exerted by the surrounding fluid over the plate.
In Eq. (4), n and τ are respectively the unit normal and tangent vectors to the plate (see Fig. 1). Following previous works on
flapping flag modeling [21,8], P is decomposed into a reactive part Preac accounting for potential flow effects (e.g. added
mass), corrected by a resistive part Pres accounting for the form drag on the plate resulting from lateral flow separation:

P ¼ PreacþPres ¼maρH2 _w� wuð Þ0 þ1
2
w2κ

� �
þ1
2
ρCdH w w;jj (5)

wherema is the added mass coefficient of the transverse section (ma ¼ π=4 for a rectangular plate [31]), and Cd¼1.8 the drag
coefficient [32]. w and u are respectively the normal and longitudinal components of the plate's velocity relative to the fluid
flow, such that _X�U1ex ¼ uτþwn, with ex being the unitary vector in the x direction.

In the present approach, it is assumed that the electrode does not affect the density and bending rigidity of the sandwich
plate that are considered homogeneous along the assembly (see [33] for a study on the passive damping of vibrating beams
including this effect). Also, in the approach followed in this work, Pres accounts for the effect of the lateral flow detachment
in the form of a drag. Flow detachment from the trailing edge and wake dynamics are only accounted through the reactive
term which models the advection of added fluid momentum (see Ref. [34] for more details). Other models exist that
consider the influence of an unsteady wake [35,19].

2.1. Non-dimensional equations

Using L, L=U1, U1
ffiffiffiffiffiffiffiffi
μ=c

p
and U1

ffiffiffiffiffiffi
μc

p
as characteristic length, time, voltage and charge respectively, Eqs. (1)–(4) become

in non-dimensional form

qi ¼ viþ
α

Unγi
½θ�s

þ
i
s�i
; (6)

β
∂qi
∂t

þvi ¼ 0; (7)

∂2x
∂t2

¼ ∂
∂s

f ττ
� �� 1

Un2

∂2

∂s2
∂θ
∂s
n

� �
� MnpresþMnHnmapreac
� �

nþ α
Un

X
i

vi δ
0 s�s�i
� ��δ0 s�sþi

� �� �
n; (8)

with clamped-free boundary conditions. The problem is characterized by the following non-dimensional parameters:

The non� dimensional velocity : Un ¼ LU1

ffiffiffiffi
μ
B

r
; (9)

The electro�mechanical coupling factor : α¼ χffiffiffiffiffiffi
BC

p ; (10)

The fluid–solid inertial ratio : Mn ¼ ρLH
μ

; (11)
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The non� dimensional plate span : Hn ¼H
L
; (12)

The non� dimensional electrode length : γi ¼
Lpi
L
; (13)

The tuning coefficient of the fluid–solid and electric systems : β¼U1C
LG

: (14)

2.2. Weakly nonlinear form of the equations

Eq. (8) is projected onto the x and y directions in order to obtain two equations for xðs; tÞ and yðs; tÞ respectively. The
horizontal projection is used to eliminate the tension term f τ from the y projection. Finally, x and its derivatives are
eliminated using the inextensibility condition. Keeping terms up to Oðy3Þ one obtains a weakly nonlinear equation for yðs; tÞ
(see also Ref. [21] for the case of a non-piezoelectric plate):

L yð Þþ f m yð Þþ 1

Un2f B yð Þ� α
Un

f χ y; vð ÞþMnf res yð ÞþMnHnmaf reac yð Þ ¼ 0; (15)

where

L yð Þ ¼ €yþ 1

Un2y
ð4Þ � α

Un

X
i

vi δ
0 s�s�i
� ��δ0 s�sþi

� �� �þMnHn y00 þ2 _y0 þ €y
� �

; (16)

f mðyÞ ¼ y0
Z s

0
ð _y02 þy0 €y0 Þ ds�y00

Z 01

s

Z s

0
ð _y02 þy0 €y0 Þ ds ds0; (17)

f BðyÞ ¼ 4y0y00y‴þy02yð4Þ þy″3; (18)

f χ y; v1::vNp
� �¼ 1

2
y02
X
i

vi δ
0 s�s�i
� ��δ0 s�sþi

� �� �þy0y00
X
i

vi δ s�s�i
� ��δ s�sþi

� �� �
; (19)

f res yð Þ ¼ 1
2
CD y0 þ _y y0 þ _yð Þ;

				 (20)

f reac yð Þ ¼ �1
2
y00y02þ _y0y02�3y00y0 _y�2 _y0y0 _y�1

2
y00 _y2þy0

Z s

0

_y0 2þy0 €y0

 �

ds

þ2ðy00 þ _y0 Þ
Z s

0

_y0y0 ds�y00
Z 1

s
y0ðy00 þ2 _y0 þ €yÞ ds: (21)

Eq. (16) corresponds to the linearized dynamics while Eqs. (17), (18), (19), (20) and (21) correspond to nonlinearities related
to inertia, stiffness, piezoelectric coupling, resistive and reactive flow effects respectively.

2.3. Numerical method

A Galerkin decomposition is used to solve Eq. (15): the vertical displacement y is expanded as a superposition of
clamped-free beam eigenmodes ϕpðsÞ,

yðs; tÞ ¼
X1
p ¼ 1

XpðtÞϕpðsÞ: (22)

Next, Eq. (15) is projected on the same set of eigenmodes. Details of the Galerkin projection can be found in Appendix A.
After truncation to N linear modes, the resulting coupled system of equations is integrated numerically using a semi-implicit
step-adaptive fourth-order Runge–Kutta method.

2.4. Harvested energy and harvesting efficiency

Once the dynamics of the piezoelectric flag is obtained using the method above and a limit-cycle oscillation is reached,
the total energy harvested by the system is computed as the energy dissipated in all the resistive circuits. In dimensional
form, this reads as

Pe ¼
XNp

i ¼ 1

GiV
2
i

* +
; (23)



Fig. 2. (a) Evolution of the stability threshold as a function of Mn for different values of the coupling factor α, β¼ 1¼ cst, Np¼100. (b) Impact of the number
of electrodes on the critical stability threshold. Values of Un

c are normalized using the critical value corresponding to Np¼100.
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with 〈 � 〉 being the temporal average over one oscillation period. The harvesting efficiency η¼ Pe=Pf is then computed as the
fraction of the fluid kinetic energy flux Pf through the vertical cross-section occupied by the flag that is actually harvested
and dissipated in the output circuits. Using the non-dimensional variables defined above, this can be written as

η¼ 1
MnβAn

XNp

i ¼ 1

γiv
2
i

* +
; (24)

with An ¼ A=L and A the flapping amplitude of the flag.
3. Flapping instability : linear analysis

As a first validation of our model, we investigate the effect of the piezoelectric arrangement of the flag on its stability for
a continuous coverage ðs�iþ1 ¼ sþi Þ, and a large number of piezoelectric patches. Beyond a critical value Un

c of the flow
velocity the system becomes unstable to flutter [13]. Fig. 2 (left) shows the critical velocity Un

c as a function of the mass ratio
Mn for different values of the coupling coefficient and a large number of small piezoelectric patches (Np¼100). Without
piezoelectric coupling, Un

c is a decreasing function of Mn. Cusps in the curve represent a switch in the mode becoming
unstable at the lowest flow velocity (see for example [17]). These results match that obtained in Ref. [11] using a continuous
model, thus indicating that for a large amount of piezoelectric patches, the present discrete model indeed converges to the
continuous framework.

The electro-mechanical coupling also clearly influences the stability threshold of the flag. In the coupled case ðαa0Þ and
for small values of Mn, the damping induced by the electro-mechanical coupling increases the critical velocity Un

c . This effect
is more important as the coupling factor α is increased. However, for high values of Mn, the electro-mechanical coupling has
a destabilizing effect, which was interpreted in Ref. [10] in terms of negative energy waves present on the non-dissipative
flag [36–38].

Several previous studies have focused on the limit of the continuous coverage of the plate by infinitesimal patches
(Npc1 [39,10,11]). The discrete approach considered here allows us to investigate the convergence of the results with Np

and the applicability of the continuous approach to experimental situations where a finite and often small number of patch
pairs are considered. Fig. 2 (right) indeed shows a rapid convergence of the critical velocity for Np412, beyond which the
results of the continuous model are recovered [39,10,11]. Moreover, it also shows that using fewer patches can significantly
modify the stability threshold, positively or negatively, which motivates the present study on a finite number of
piezoelectric pairs.

The rapid convergence of the results beyond Np � 10 can be understood as follows: for the values of the mass ratio
considered, the dominant unstable mode is of low order resulting in typical wavelengths greater than half a flag length. For
a large enough number of patches, the patch length is small enough that the entire mode structure is well captured and the
discrete nature of the piezoelectric coverage has no influence.
4. Optimization of the electrodes' position

During its self-sustained flapping motion, the flag undergoes complex and non-uniform deformations. Electric charge
transfer between the patches' electrodes is intimately linked to the local deformation of the flag. An important challenge for
maximizing the amount of energy harvested by such a device therefore lies in the correct positioning of the electrodes.



Fig. 3. (a) Description of the experimental setup, (b) Graphic representation of the electrode size and distribution for experiments 1 and 2, (c) Schematic of
the multilayer composition of the piezoelectric flag and (d) Connection diagram of the harvesting circuit.
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When the electromechanical coupling is large, the piezoelectric patches can significantly modify the flag's dynamics
resulting in a non-trivial optimization process.

In order to address this question, we first present a set of preliminary experiments exploring the impact of electrode size and
position on the global energy harvesting efficiency of the system. Experimental results are then compared to numerical simulations
based on the physical model presented in Section 2. In the last part of this section, a parametric study is performed based on
numerical simulations using more complex geometrical configurations, to identify optimal positioning of the electrodes.
4.1. Experimental study of the role of electrode size and position

The aim of the experiments described below is to obtain some preliminary evidence of the impact of size and position of
the electrodes on the harvested energy. For this purpose we have focused on a simple configuration consisting of a flexible
piezo-electric plate covered by a single pair of electrodes of variable length and position, immersed in an axial wind flow of
speed U1 (Fig. 3a). Two different experimental configurations are considered (see Fig. 3b for a graphical description of the
experiments):
�
 Experiment 1: the length of the electrode Lp is varied while one of its extremities is fixed at the clamped edge of the plate.

�
 Experiment 2: the length of the electrode is also varied but with one if its extremities fixed to the free edge of the plate.

In these experiments, the plates include a center core consisting of a double sided adhesive tape of length L¼12 cm,
width H¼2.5 cm and thickness hs¼100 μm. Both sides of the tape are partially covered by a piezoelectric PVDF film of the
length L and width Hp ¼ 0:3H, with its negative polarity facing inwards. The thickness of the piezoelectric films is hp¼40 μm
for experiment 1 and hp¼50 μm for experiment 2. The remaining free surface at both sides of the scotch tape is covered by a
layer of Innova biaxially oriented polypropylene (BOPP) film of exactly the same thickness as that of the piezoelectric film.
Fig. 3c shows a schematic view of the plate composition. The piezoelectric PVDF films are covered with an external Cr/Au
which serves as the electrode. In both experiments this Cr/Au layer is sectioned in order to adjust the desired value of δ and
Lp. The objective of covering only one-third of the width of the plate with piezoelectric film is to reduce the impact of the
sectioning process on the global rigidity of the plate.

For each experiment and a given electrode length and position, the experimental procedure is as follows : the
piezoelectric plate is placed in a wind tunnel of rectangular transversal section 10 cm wide and 5 cm high with transparent
walls that allow visual access from the outside [40]. The negative electrodes of the piezoelectric films are shunted while a
resistance R is connected between the positive electrodes (see Fig. 3d). Once the system is set we proceed to generate a wind
flow inside the tunnel. Initially at rest, the wind velocity is gradually increased until the plate starts to flap in a self-sustained
oscillatory regime (upper left image in Fig. 4), at which point the voltage Vo generated along the resistance R is measured
(Fig. 4, upper right). The power dissipated in the resistance is then calculated as the temporal average Pe ¼ 〈V2

o=R〉 for a 5 s



Fig. 4. Top left: image sequence of the flag deformation over one oscillation period. Top right: voltage signal generated by the piezoelectric patches during
a typical experiment. Bottom: normalized dissipated power PN as a function of the tuning parameter β. Data corresponds to experiment 1, different symbols
correspond to different values of Lp. The normalized power PN is calculated as PN ¼ P=Pmax for each given value of Lp. The solid line corresponds to a
numerical simulation using Lp¼1.
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time frame. The resistance R is varied in order to find the value of β that maximizes the dissipated power. Indeed, it is
expected that the harvesting efficiency or damping presents a maximum between the extreme values β¼0 (short circuit
condition) and β¼1 (open circuit condition). The value of β maximizing the efficiency corresponds to a tuning of the
flapping frequency to the characteristic timescale of the RC circuit consisting of the piezoelectric capacitance and output
resistor [11]. Fig. 4 (bottom) shows a good agreement between experiments and simulations obtained from the model
described in Section 2. The discrepancies observed between the experimental and numerical results are mainly due to small
differences in the flapping frequency of the flag, mainly caused by the error in the estimated value of the plate rigidity B
used in the simulations. It is important to remark that the optimal β value remains fairly constant regardless of the size and
position of the electrodes, a direct consequence of the flapping frequency remaining unchanged when changing the
electrode position and size. This result was also confirmed in our numerical simulations.

Once the optimal value of β is identified, synchronized voltage measurements and image capturing of the flapping plate
are carried out using an oscilloscope and a high speed camera placed over the wind tunnel. Finally, the efficiency of the
system is computed as Pe=Pf (see Section 2).

Fig. 5 shows the evolution of the harvesting efficiency of the piezoelectric flag with the electrode's length Lp for both
experiments 1 and 2. A good qualitative agreement is observed between the experimental results and the numerical
simulations corresponding to the same non-dimensional parameters. For experiment 1 (left panel), the maximum efficiency
is achieved when the electrode occupies the whole length of the plate. For experiment 2 (right panel), the maximum
efficiency is achieved when the upstream extremity of the patches is located at s� 0:1. Quantitative discrepancies between
experimental and simulation results are, as mentioned previously, due to errors in the estimation of the plate rigidity B used
in our simulation. Although an effort has been made during the experiments in order to reduce the impact of the electrode
sectioning on the plate rigidity, this effect exists, and it is not accounted for in the theoretical model of the plate.



Fig. 5. (a) Harvesting efficiency as a function of the electrode length Lp for experiment 1. Experimental parameters are Un ¼ 14:6, Mn ¼ 0:68, Hn ¼ 0:3,
β¼0.8 and α¼0.073. (b) Harvesting efficiency as a function of the electrode length Lp for experiment 2. Experimental parameters are Un ¼ 15:7, Mn ¼ 0:61,
Hn ¼ 0:3, β¼0.8 and α¼0.062. Error bars correspond to the error propagation of the standard deviation of Vo used to calculate the dissipated power
Pe ¼ 〈V2

o=R〉 during a 5 s time frame. Solid line corresponds to numerical simulations.

Fig. 6. Three cases of study in the energy harvesting efficiency of the piezoelectric flag.
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Discrepancies in the absolute efficiency values between the two experiments have their origin in the difference between
coupling coefficients of each experiment: α¼0.073 for experiment 1 and α¼0.062 for experiment 2.

The good agreement between experiments and simulations also validates the model presented in Section 2 and
motivates its use in the parametric study of more complex geometries presented in the remainder of this section.
4.2. Parametric study

In this subsection, simulation results for the energy harvesting efficiency are presented in the three cases sketched in
Fig. 6:

I: One single electrode with variable length Lp and variable position along the flag surface (two-parameter problem)
II: Two electrodes of variable length covering the whole surface of the flag (one-parameter problem)
III: Three electrodes of variable length covering the whole surface of the flag (two-parameter problem)

For each case, we analyze the influence of size and distribution of the electrodes on the energy harvesting efficiency,
defined as in the experimental case and expressed in non-dimensional form in Eq. (24).

A strong dependence of the efficiency on the system's physical parameters such as the mass ratio Mn, β, Un and α is
observed [11]. Before exhibiting results of geometry optimizations, it is necessary to select a representative set of these
parameters. First of all, due to the weakly nonlinear nature of the model used in the present work, the accuracy of the results
is restricted to flow velocities Un near the flapping instability threshold. Far from threshold this model exhibits discrepancies
with previous simulations and a fully nonlinear model of the system should be considered [11]. Thus, all the results
presented further in this work correspond to near threshold situations (Un is close to Un

c ), and hence, depend on the value of
Mn selected.

Secondly, two typical values of the mass ratio Mn will be considered: Mn ¼ 0:6 which corresponds to a plate in a low
density fluid (i.e. flag in air), and Mn ¼ 10 which corresponds to a plate in a dense fluid (i.e. light plate in water). For each
case, the flow velocity Un is adjusted to a typical value just above the instability threshold: Un ¼ 13 and 8.25.



Fig. 7. Energy harvesting efficiency of a single electrode with Lp¼1 as a function of β for Mn ¼ 0:6, Un ¼ 13 and α¼0.25 (solid line) and Mn ¼ 10, Un ¼ 8:25
and α¼0.25 (dashed line).
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As explained in the previous section, maximum energy harvesting is achieved when the flapping timescale and the RC
circuit timescale are compared. Hence, the optimal value of β will depend on the flapping frequency, which in turn depends
on the mass ratio Mn [15]. In Fig. 7 the efficiency η in a typical single electrode configuration is plotted as a function of β for
two different values of Mn. One then observes that higher values of Mn tend to reduce the optimal value of β. Indeed, while
for M¼0.6 the optimal tuning parameter is β� 1 (as in the experimental case), for Mn ¼ 10 the value of β is about 0.3. In the
following, these optimal values for β are retained.

The influence of the coupling coefficient α, the electrode position and geometry on the flapping frequency has then been
tested. No significant impact on the flapping frequency, and consequently on the optimal value of β has been observed. This
is expected to result from the relatively low coupling coefficients α considered.
4.2.1. Case I : single electrode
We consider here the case of one electrode of length Lp that partially covers the surface of the plate. It is attached at a

distance δ from the clamped end. Fig. 8 presents the efficiency of the harvesting system as a function of δ and Lp, for fixed
values of Mn ¼ 0:67, Un ¼ 13 and β¼ 1, and increasing values of the electro-mechanical coupling factor α. Each colored
rectangle of these plots corresponds to one single numerical simulation.

We observe that regardless of the value of α, the maximum efficiency is found for values of δa0 and electrode lengths
0:35oLpo0:5. In these cases, the electrode is mainly located on the downstream half of the clamped-free plate. Moreover,
the maximum efficiency region is observed to change as the electro-mechanical coupling factor α is increased. For small
values of α ð � 0:1Þ, the maximum efficiency region on the ðLp; δÞ space extends from long electrodes Lp¼0.8 placed at δ¼0.2
to smaller electrodes of length Lp � 0:4 and δ� 0:45 (Fig. 8a). As the coupling factor α is increased the maximum efficiency is
also increased. Simultaneously, the maximum efficiency region shrinks and migrates in the ðLp; δÞ plane to a new optimal
configuration for an electrode of length Lp � 0:4 and δ� 0:55 (Fig. 8c).

To explain this difference in the optimal configuration, the influence of the geometrical parameters ðδ; LpÞ on the flapping
amplitude is represented on Fig. 9a, b for small and large values of α. These figures show the normalized relative flapping
amplitude ΔAN ¼ ðA�A0Þ=A0 in the ðδ; LpÞ plane for α¼0.1 and α¼0.5 respectively, where A0 is the flapping amplitude
obtained with no coupling (α¼0). Comparison of these figures shows that α only impacts the general magnitude of the
amplitude fluctuation, and does not modify the parameter values leading to maximum (or minimum) amplitude. In
particular, the maximum flapping amplitude corresponds to the optimal efficiency region achieved for high coupling. At
large coupling, maximizing the flapping amplitude seems therefore to be the optimal strategy. These maximum flapping
amplitudes are also associated with the largest reduction of the critical flow velocity (Fig. 9c) which is consistent with the
generally observed result that the flag flapping amplitude is a monotonically increasing function of Un�Un

c in the vicinity of
the threshold.

On the other hand, when the coupling coefficient is small, the flapping flag dynamics is only marginally modified by the
energy transfers to the piezoelectric patches. In that case, and neglecting the feedback coupling of the piezoelectric, the
amplitude of the equivalent current generator (Fig. 1a) can be directly obtained using Eq. (6) from the kinematics of the flag
in the case of no coupling. More specifically it is proportional to the relative rotation rate ½ _θ �s

þ
i
s�i

of the two edges of the
piezoelectric patch. Maximum efficiency is therefore achieved for low coupling when Δθi is maximum, where

Δθi ¼ 〈j _θðsþi Þ� _θðs�i Þj〉; (25)

a result consistent with Figs. 8a and 9d.



Fig. 8. Colormaps of the efficiency η in the ðLp ; δÞ plane; for all cases, Mn ¼ 0:67, Un¼13 and β¼1. (a) η (α¼0.1), (b) η (α¼0.3), and (c) η (α¼0.5). (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Before presenting some results at a higher value of the mass ratio, let us summarize the results obtained so far:
�
 For weakly coupled systems (α¼0.1), the piezoelectric coupling has no influence on the flapping amplitude and the
efficiency scales with Δθi (Fig. 9d).
�
 For strongly coupled systems ðα¼ 0:5Þ, the piezoelectric coupling α has an influence on the flapping amplitude which in turn
also influences the efficiency. It was finally shown that the effect of α onΔAN can be directly deduced from that of α onΔUN .

For Mn ¼ 10 and α¼0.25, we observe different local maxima of the efficiency in the (δ,Lp) plane. They correspond to an
electrode of length Lp � 0:2 at δ� 0:3, 0.5 (absolute maximum) and 0.75 respectively. The presence of several local maxima with
shorter electrodes is explained by the fact that a larger Mn leads to a higher order for the mode selected by the instability [41]:
each local maximum corresponds to the localization of the piezoelectric patches in the zones of maximum curvature. This is
confirmed by the strong correlation of the maximum efficiency with Δθi during the oscillating cycle (Fig. 10c).

It should also be pointed out that the maximum efficiency for Mn ¼ 10 is about 2.5 times bigger than that for Mn ¼ 0:67.
This result stems from the difference in mode structures at higher mass ratio: a shorter wavelength penalizes long
electrodes that only react to the average flag curvature along their length. It also suggests that for higher Mn a larger number
of smaller electrodes occupying the remaining free space on the plate surface could eventually increase the total efficiency
even more. This aspect is investigated further in the following.

4.2.2. Case II: two electrodes
The case of two electrodes covering the entire plate is now considered for the same values of Mn, Un and β as in previous

case, and depends on a single parameter namely the length of the first piezoelectric electrode xc (see Fig. 6). For Mn ¼ 0:67,
the maximum efficiency is obtained for xc � 0:35 (Fig. 11a) and is approximately twice as large as the efficiency obtained for
a single electrode covering the entire flag (xc¼0 or xc¼1), and represents a 6 percent increase of the efficiency in



Fig. 9. Normalized flapping amplitude difference ΔAN ¼ ðA�A0Þ=A0 in the ðLp ; δÞ plane for (a) α¼0.1 and (b) α¼0.5, where A0 corresponds to the flapping
amplitude with no coupling (α¼0). (c) Normalized critical fluid velocity ΔUn

N ¼ ðUn

c �Un

c0Þ=Un

c0 as a function of the electrode position in the ðLp ; δÞ plane
where Uc0 corresponds to the flapping critical flow velocity with no coupling (α¼0). (d) Δθi integrated over one oscillation cycle for a plate with no piezo-
electrical coupling. The mode shape of the fluttering flag over one oscillation cycle is depicted in the inset. Other parameters are Mn ¼ 0:67, Un¼13 and
β¼1.
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comparison with the optimized one-electrode configuration detailed in Case I. In this new optimal situation, the second
electrode covers the most significant part of the plate's surface. Also, it is observed that for the same electrode's length, the
downstream electrode leads to the largest energy harvesting, a result that is somehow expected because this region
corresponds to the largest deflections of the flag.

For Mn ¼ 10, two local maxima are observed around at xc � 0:5 and xc � 0:7. Fig. 11b confirms that the downstream
piezoelectric pair contributes the most to the efficiency for each maximum. However, the maximum efficiency of the two
electrodes configuration is slightly smaller than that of Case I, a consequence of the full coverage of the plate by the two
electrodes, in particular near the leading edge where the local rotation vanishes. Due to the dominant mode structure at
largeMn, shorter electrodes (either when using three or more electrodes or by choosing to cover only a fraction of the plate's
surface) are therefore expected to improve again the efficiency.

4.2.3. Case III: three electrodes
We finally turn to the case of full coverage by three electrodes, described by the positions of the left edge of the first and

second piezoelectric patches, xc1 and xc2 respectively.
For Mn ¼ 0:67 the maximum efficiency is reached for xc1 � 0:4 and xc2 � 0:9 (left plot in Fig. 12). In this configuration, the

second electrode is approximately the same as in the maximum efficiency configuration of case I. The presence of two
additional electrodes results however in a 20 percent increase of the efficiency in comparison with Case I.

For Mn ¼ 10, the arrangement of maximum efficiency ðxc1 ¼ 0:5; xc2 ¼ 0:7Þ is again related to the optimal configuration of
Case I, with the second electrode of length Lp¼0.2 positioned at δ¼0.5. Taking advantage of the deformation mode, the
third electrode of length Lp¼0.3 and positioned at δ¼0.7 contributes in almost the same amount to the efficiency as the
second electrode. As a result, the total efficiency of the three electrode configuration is about three times higher than that of
Cases I and II.

This clearly demonstrates that for higher mass ratios, a larger number of electrodes result in significant improvements of
the efficiency, while this strategy only leads to moderate improvements for lower Mn.



Fig. 11. Energy harvesting efficiency for a piezoelectric plate covered by two electrodes of variables size for (a) Mn ¼ 0:67 and Un ¼ 13, and (b) Mn ¼ 10 and
Un ¼ 8:25. In both cases α¼0.25 and Hn ¼ 0:5. Each figure shows the total efficiency of the two electrode configuration (solid), as well as the efficiency of
electrode 1 (dashed) and electrode 2 (dash-dotted).

Fig. 10. (a) Evolution of the efficiency η with ðLp ; δÞ for α¼ 0:25, Mn ¼ 10, Un ¼ 8:25 and Hn ¼ 0:5. (b) Normalized critical fluid velocity ΔUn

N ¼ ðUn

c �Un

c0Þ=Un

c .
(c) Δθi integrated over one oscillation cycle for a plate with no piezo-electrical coupling. The mode shape of the fluttering flag over one oscillation cycle is
depicted in the inset.

M. Piñeirua et al. / Journal of Sound and Vibration 346 (2015) 200–215 211



Fig. 12. Energy harvesting efficiency for a piezoelectric plate covered by three electrodes of variables size. (a) Mn ¼ 0:67 and Un ¼ 13. (b) Mn ¼ 10 and
Un ¼ 8:25. In both cases α¼0.25 and H¼0.5.
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5. Conclusions

This paper investigated the possibility of converting kinetic energy of a flow into electrical energy through elastic
deformation of a fluttering plate using piezoelectric effect, a problem that has received growing attention in recent years. A
critical question lies in the optimization of the energy transfers among the fluid, solid and electric circuit. The present work
focused on the role and influence of the location of the piezoelectric electrodes on the efficiency of the harvester, explicitly
describing the discrete nature of the piezoelectric coverage of the flag and hence, allowing for a better representation of the
experimental and practical situations.

To address this problem, the present work used a combination of theoretical analysis and experiments. A weakly
nonlinear model considering a plate with a discrete number of piezoelectric patches pairs was developed and confronted to
the experimental results. It was then used to determine geometries that maximize the energy harvesting efficiency in three
different test cases: (1) one electrode partially covering the plate, (2) two electrodes fully covering the plate and (3) three
electrodes fully covering the plate. For each configuration, the optimal geometries were described and analyzed.

The results presented in this work emphasize the critical role of the piezoelectric elements positioning: because the
electric charge transfer responsible for the powering of the output circuit is solely given by the relative change of orientation
of the flag between both ends of the patch, the placement of this patch must be carefully designed to take full advantage of
the non-uniform flag deformation and its specificities, in particular the dependence of the mode shape with the mass ratio.
In the case of a single electrode and small values of the mass ratio, the present study in fact shows that a greater amount of
energy can be harvested when positioning the electrodes on the downstream half of the flag. At a higher value of the mass
ratio, more than one optimal positioning are found, which is a consequence of more spatial oscillations of the unstable mode
shape. Using a larger number of electrodes allows us to improve the efficiency of the system particularly for higher mass
ratios, where the modal structure corresponds to a shorter wavelength and is therefore better suited to shorter electrodes
that are able to capture the flag's deformation best.

The work in this paper extends the results obtained in the context of damping or energy harvesting of vibrating plates in
still fluid [33,42] to flow-induced instabilities and more than one piezoelectric patch. The present results allow us to
conclude that the optimal location for piezoelectric energy harvesting along the plate is on the downstream half, and in that
regard are reminiscent of the conclusions of Ref. [8] obtained for a pure damping model of the energy harvesting process. In
both cases, the local deformation of the flag is driving the energy harvesting process, either through changes in the local
curvature or in the relative orientation at both ends of the piezoelectric patches, and the response of the deformation of the
flag due to the presence of energy harvesting plays a critical role in determining the optimal location for large coupling
coefficient. Both approaches however differ in the relevant measure of flag deformation (either curvature or relative
orientation), which also impacts the detail of the optimal location for the damping or piezoelectric patches.

In the case of weakly coupled systems, it was also shown that the amount of harvested energy can be directly predicted
from the kinematics of the flapping flag obtained for zero piezoelectric coupling. Maximizing the harvested energy hence
requires to determine the positioning that will ensure a maximum relative variation of the orientation between the two
ends of the piezoelectric components. In the case of strongly coupled system, the positioning of the electrodes may
influence the flapping amplitude, and consequently the efficiency, because of the feedback effect of the piezoelectric patches
on the flag dynamics. Near the stability threshold, the flapping amplitude can be directly related to the critical velocity
fluctuations: in that regard, linear stability analysis may be a great tool to estimate the impact of the piezoelectric coverage
on the efficiency in the case of large coupling.
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Appendix A

The vertical displacement y is expanded on clamped-free beam eigenmodes ϕpðsÞ:

y¼
XN
i ¼ 1

ϕiðsÞqiðtÞ: (A.1)

After truncation to N linear modes, Eq. (15) is projected along mode p. Projection of the forces L(y), f m, f B, f χ , f res and f reac, is
given in this appendix. Projection of L(y) along mode p reads

Lp yð Þ ¼ €qpþλ4pqp�
α
Un

XNp

i

vi ϕ0
p sþi
� ��ϕ0

p s�i
� �
 �

þMnHn €qpþ
XN
i ¼ 1

api qpþ2
XN
i ¼ 1

bpi _qp

 !
; (A.2)

where

api ¼
Z 1

0
ϕpϕ

″
i ds; (A.3)

bpi ¼
Z 1

0
ϕpϕ

0
i ds: (A.4)

For f mðyÞ we have

f pmðyÞ ¼
XN

i;j;k ¼ 1

ðqi _qj _qkþqiqj €qkÞðcpi;j;kþdpi;j;kÞ; (A.5)

with

cpi;j;k ¼
Z 1

0
ϕpϕ

0
i

Z s0

0
ϕ0

jϕ
0
k ds ds

0; (A.6)

dp
i;j;k ¼

Z 1

0
ϕpϕ

″
i

Z s0

1

Z s00

0
ϕ0

jϕ
0
k ds ds

00 ds0: (A.7)

The term f BðyÞ projects as

f pBðyÞ ¼
XN

i;j;k ¼ 1

qiqjqkðepi;j;kþ4f pi;j;kþgpi;j;kÞ; (A.8)

where

epi;j;k ¼
Z 1

0
ϕpϕ

″
iϕ

″
jϕ

″
k ds; (A.9)

f pi;j;k ¼
Z 1

0
ϕpϕ

0
iϕ

″
jϕ

‴
k ds; (A.10)

gpi;j;k ¼
Z 1

0
ϕpϕ

0
iϕ

0
jϕ

ð4Þ
k ds: (A.11)

The mechanical–electrical coupling term f χ gives

f pχ y; v1::vNp
� �¼ 1

2

XN
j;k ¼ 1

qjqk
XNp

i ¼ 1

vi Ap
j;k sþi
� ��Ap

j;k s�i
� �
 �

; (A.12)

with

Ap
j;k ¼ϕ0

jϕ
0
kϕ

0
pþϕ″

jϕ
0
kϕpþϕ0

jϕ
″
kϕp�2ϕpϕ

0
jϕ

″
k: (A.13)
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For the resistive term fres we have

f pres yð Þ ¼ 1
2
CDt

p
j;k; (A.14)

where

tpj;k ¼
Z s

0
ϕp

XN
i;j ¼ 1

jϕ0
iqiþϕi _qijðϕ0

jqjþϕj _qjÞ ds: (A.15)

Notice that unlike the other coefficients tpj;k is a function of time. It is due to the presence of the absolute value. This
coefficient must then be recalculated at each time step.

Finally, for f reac we have

f preac yð Þ ¼ �
XN

i;j;k ¼ 1

1
2
βp
i;j;kþϖp

i;j;k

� �
qiqjqkþ

XN
i;j;k ¼ 1

ηpi;j;k�3ζpi;j;k�2ςpi;j;k

 �

qiqj _qk

�2
XN

i;j;k ¼ 1

ξpi;j;k _qi _qjqk�
1
2

XN
i;j;k ¼ 1

σp
i;j;kqi _qj _qkþ

XN
i;j;k ¼ 1

ψp
i;j;k qi €qjqkþqi _qj _qkþ2 _qi _qjqk
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þ2
XN

i;j;k ¼ 1

φp
i;j;kqi _qjqk�

XN
i;j;k ¼ 1

ϱp
i;j;kqiqj €qk (A.16)

with

βp
i;j;k ¼

Z 1

0
ϕpϕ

0
iϕ

0
jϕ

″
k ds; (A.17)

βp
i;j;k ¼

Z 1

0
ϕpϕ

0
iϕ

0
jϕ

0
k ds; (A.18)

ζpi;j;k ¼
Z 1

0
ϕpϕ

0
iϕ

″
jϕk ds; (A.19)
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Z 1

0
ϕpϕiϕ

0
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0
k ds; (A.20)
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0
ϕpϕ

″
iϕjϕk ds; (A.21)

ψp
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Z 1

0
ϕpϕ

0
i
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0
ϕ0

jϕ
0
k ds ds

0; (A.22)
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Z 1

0
ϕpϕ

″
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0
ϕ0
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0
k ds ds
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ϕpϕ
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ϕ0

jϕk ds ds
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0
k ds ds
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