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Internal phoretic flows due to the interactions of solid boundaries with local chemical
gradients may be created using chemical patterning. Alternatively, we demonstrate
here that internal flows might also be induced by geometric asymmetries of chemically
homogeneous surfaces. We characterise the circulatory flow created in a cavity
enclosed between two eccentric cylindrical walls of uniform chemical activity. Local
gradients of the diffusing solute induce a slip flow along the surface of the cylinders,
leading to a circulatory bulk flow pattern which can be solved analytically in the
diffusive limit. The flow strength can be controlled by adjusting the relative positions
of the cylinders, and an optimal configuration is identified. These results provide a
model system for tunable phoretic pumps.
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1. Introduction

Microscopic flow generation lies at the root of many technological and biological
processes. With the advent of microfluidic manipulation techniques, fluids flowing
in narrow channels may be used for medical diagnostics, biological sensing and
nano-scale chemical synthesis, and it thus becomes essential to induce and control
flow within a confined geometry (Squires & Quake 2005; Whitesides 2006).
Classically, this has been achieved by imposing a global external pressure gradient in
the system or by surface forcing, either using electrokinetic effects or by generating
stresses at boundaries to locally drive the flow. The latter mechanism is widely
exploited by biological systems. Coordinated beating of biological flagella leads to
self-propulsion of micro-swimmers (Brennen & Winet 1977; Lauga & Powers 2009).
A complementary process of microscale pumping involves directional flow driven by
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boundaries, a mechanism used, for example, in embryonic development (Hirokawa,
Okada & Tanaka 2009; Montenegro-Johnson et al. 2016), in the mammalian
reproductive tract (Halbert, Tam & Blandau 1976) or for the transport of mucus
in human lungs (Sleigh, Blake & Liron 1988). Recently, artificial devices have been
designed in which surface flow is generated by flapping flagella of entrapped bacteria
(Gao et al. 2015).

In a coarse-grained view, all of these surface-driven processes share the common
feature that the bulk flow is generated by imposing the motion of the fluid on the
confining boundary. Classically, phoretic motion is induced by externally imposed
gradients, such as electric field, temperature or concentration (Anderson & Prieve
1984). In artificial biomimetic systems, this may also be achieved using phoretic
effects, where the interactions between a surface and an external field gradient
create a local flow in the close vicinity of the boundary (Derjaguin et al. 1947;
Anderson 1989), which then may be used for self-propulsion (Golestanian, Liverpool
& Ajdari 2007; Howse et al. 2007; Sharifi-Mood, Koplik Maldarelli 2013; Michelin
& Lauga 2014), migration of particles in externally imposed chemical gradients or
flow generation (Gao, Pei & Wang 2012). Local directional flow may be achieved
using chemical micropatterning (Yadav et al. 2015), anisotropic wettability of the
channel surface (Wang et al. 2015) or by spatially varying surface charges of the
walls (Stroock & Whitesides 2003).

An alternative method to locally induce phoretic flow with chemical patterning is
to exploit geometrical asymmetries in the channel walls (Michelin et al. 2015; Yang,
Ripoll & Chen 2015). In this paper, we further explore this concept by presenting a
model system in which the internal flow may be fully controlled by the geometry. We
consider a cavity consisting of two eccentric cylinders and calculate the flow generated
by the chemical activity of its surfaces. Assuming uniform chemical activity of the
walls, where the solute is consumed (or released) at a fixed rate, a fully analytical
solution for the concentration and flow fields may be obtained. We determine the flux
in the resulting flow as a function of the cavity geometry, characterised by the size
ratio of the cylinders and the eccentricity in their position. An optimal configuration
can be identified in which the fluid motion is maximum. An important aspect of the
considered system is that the flow rate may be controlled solely by displacing the
inner cylinder from a symmetric configuration, where there is no motion by symmetry,
to the most eccentric, which maximises the volumetric flux of the fluid within. This
system thus represents a tunable internal phoretic pump.

This paper is organised as follows. The general framework of phoretic motion and
its solution using bipolar coordinates are first presented in § 2. In § 3, we analyse the
resulting flow field and optimise the geometry to achieve the maximal possible rate
of the circulating flow. Finally, § 4 summarises the main findings and presents some
perspectives.

2. Phoretic flow generation between two eccentric cylinders

2.1. Continuum phoretic framework
We follow the continuum framework of phoretic motion (Golestanian et al. 2007;
Jülicher & Prost 2009; Sabass & Seifert 2012) and consider the two-dimensional flow
generated in a cavity contained between two eccentric and chemically homogeneous
cylinders of circular cross-section S1 and S2, filled by a fluid of dynamic viscosity η
and density ρ, containing a solute species of local concentration C and diffusivity κ .
Assuming that the chemical properties of the outer wall maintain a uniform
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concentration C0 on S1, we focus in the following on the relative concentration
c = C − C0. The chemical activity of the inner wall A quantifies the fixed rate of
solute release (A > 0) or absorption (A < 0) at the surface:

κn · ∇c=−A on S2, (2.1)

with n being a unit vector normal to the surface. Because of the short-range interaction
of solute molecules with the cavity boundary, local concentration gradients result in
pressure forces imbalance and the fluid being set into motion. Assuming that the
interaction-layer thickness is small compared with the cavity dimensions, the classical
slip-velocity formulation may be used (Anderson 1989; Golestanian et al. 2007), and
local solute gradients result in a net slip velocity

u=M (1− nn) · ∇c on Sj, j= 1 or 2, (2.2)

which drives a flow within the cavity. Here, M is the local phoretic mobility of
the cylinder surfaces. It should be noted that, since the concentration is uniform on
the outer boundary τ = τ1, equation (2.2) results in the classical no-slip boundary
condition there (u = 0). When the Péclet number Pe = U R/κ is small enough
(e.g. small solute molecules), the solute dynamics is purely diffusive and is thus
governed by the Laplace equation,

∇2c= 0, (2.3)

in the fluid domain. Here, R denotes the radius of S1, chosen as the characteristic
length in this work, and U =|A M |/κ is the characteristic phoretic velocity generated
along S2. Provided that inertial effects are negligible (i.e. the Reynolds number
Re = ρU R/η � 1), the flow and pressure fields satisfy the incompressible Stokes
equations

∇ · u= 0, η∇2u=∇p. (2.4a,b)

The diffusive Laplace problem for the solute thus effectively decouples from the
hydrodynamic problem and may be solved independently. Its solution for the
concentration c can be used to compute the slip flow along S2, equation (2.2),
which then determines the flow field within the cavity by solving equation (2.4).

The problem is non-dimensionalised as follows: with R and U chosen as the
characteristic length and velocity respectively, the characteristic concentration scale is
set by |A |R/κ and the characteristic pressure reads η|A M |/Rκ .

2.2. Formulation of the non-dimensional problem
The two-dimensional cavity Ωf is enclosed between two eccentric cylindrical surfaces
S1 and S2 of respective non-dimensional radii R1 = 1 and R2. The centres of the
cylinders are offset by a distance d (figure 1). The diffusion problem for solute
concentration reads

∇2c= 0 in Ωf , (2.5)
c= 0 on S1, n · ∇c=−A on S2, (2.6a,b)

with the dimensionless activity A = A /|A |, and the associated hydrodynamic flow
problem may now be formulated as

∇2u=∇p in Ωf , (2.7)

u= 0 on S1, u=M(1− nn) · ∇c on S2, (2.8a,b)

with M =M /|M | =±1 being the dimensionless mobility.
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FIGURE 1. Notation for the annular cavity consisting of two non-coaxial cylinders. Bipolar
coordinates are represented by surfaces of constant τ (solid) and σ (dashed). The surfaces
τ = τ1 and τ = τ2 correspond to the boundaries of the outer and inner cylinder respectively.

2.3. Computation of the flow field
2.3.1. Bipolar coordinates

It is natural in this problem to introduce the bipolar cylindrical coordinate system,
−∞< τ <∞, −π6 σ <π, related to the Cartesian coordinates (x, y) by

x= a sin σ
cosh τ − cos σ

, y= a sinh τ
cosh τ − cos σ

, (2.9a,b)

with x being horizontal in figure 1, and the scale factors given by

hσ = hτ = h= a
cosh τ − cos σ

= a
sinh τ

(
1+ 2

∞∑
n=1

e−nτ cos nσ

)
. (2.10)

The last equality follows from representation of the scale factor h in terms of a Fourier
series in σ . Since h is an even function of σ , the series has only cosine terms. The
unit vectors eτ and eσ , normal to the isolines of τ and σ respectively, are given by
∂x/∂τ = hτeτ and ∂x/∂σ = hσ eσ , and form an orthonormal basis in 2D.

The isolines τ = τ0 are circles of radius a/| sinh τ0| centred on the y-axis at y =
a coth τ0. In the following, we choose τ1,2 > 0, i.e. both circular boundaries lie in the
upper half-plane; their centres are separated by a distance d. The parameters of the
system (d, R1, R2) thus satisfy

R1,2 = a
sinh τ1,2

, d= a(coth τ1 − coth τ2). (2.11a,b)

The closest distance between the circles, the gap width H, is given by H=R1−R2−d.

2.3.2. Solute diffusion
The Laplace equation for the concentration field in two dimensions becomes

1
h2

(
∂2c
∂τ 2
+ ∂2c
∂σ 2

)
= 0. (2.12)
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The Dirichlet boundary condition on the outer cylinder is c(τ1, σ ) = 0. Noting that
n(τ )=−eτ for τ = τ2, the flux boundary condition, equation (2.6), follows as

eτ · ∇c= 1
h
∂c
∂τ
= A. (2.13)

Equation (2.12) is separable, and using (2.10) its solution satisfying these boundary
conditions is

c(τ , σ )= AR2(τ − τ1)+ 2AR2

∞∑
n=1

e−nτ2

n
sinh[n(τ − τ1)]
cosh[n(τ1 − τ2)] cos nσ . (2.14)

2.3.3. Stokes flow
The Stokes flow problem may be conveniently formulated in bipolar cylindrical

coordinates using the stream function ψ(τ, σ ), such that

uτ =−1
h
∂ψ

∂σ
, uσ = 1

h
∂ψ

∂τ
. (2.15a,b)

The stream function is related to the flow vorticity by ω=−∇2ψ . Since the vorticity
ω=∇×u is harmonic, ∇2ω=0, we conclude that ψ satisfies the biharmonic equation

∇
4ψ =∇2∇2ψ = 0, (2.16)

with the Laplacian given in bipolar cylindrical coordinates in (2.12). As shown by
Jeffery (1921), it is most convenient to consider the function Ψ =ψ/h for which (2.16)
becomes a linear equation with constant coefficients(

∂4

∂τ 4
+ 2

∂4

∂τ 2∂σ 2
+ ∂4

∂σ 4
− 2

∂2

∂τ 2
+ 2

∂2

∂σ 2
+ 1
)
Ψ = 0, (2.17)

with solution also given by Jeffery (1922). The boundary conditions on the cylinders
are then written in terms of Ψ = ψ/h using (2.15a,b), and simplify, noting that
because of symmetry and boundary conditions, the axis of symmetry and both
cylinders are on the same streamline. Therefore, Ψ (τ1,2, σ ) = 0. The remaining
velocity boundary conditions read

∂Ψ

∂τ
= 0, on τ = τ1, (2.18)

∂Ψ

∂τ
= uσ (τ2, σ ) on τ = τ2. (2.19)

The slip velocity on the surface of the inner cylinder is obtained from (2.2) using the
solution of the solute concentration problem (2.14) as

uσ (τ2, σ )= MAR2

a

[
(d2 − 2d1 cosh τ2) sin σ +

∞∑
n=2

(dn+1 + dn−1 − 2dn cosh τ2) sin nσ

]
,

(2.20)
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FIGURE 2. Distribution of solute concentration c (a) and stream function ψ (b) within the
cavity for R2/R1 = 0.43,H/Hmax = 0.01, and A= 1 (solute released by the inner cylinder)
and M = 1 (the flow direction is reversed when AM = −1). The isolines of ψ are the
streamlines.

with dn = e−nτ2 tanh n(τ2 − τ1). The resulting stream function reads

ψ = hΨ = MAR2

cosh τ − cos σ

[
(α1 cosh 2τ + β1 + γ1 sinh 2τ + δ1τ) sin σ

+
∞∑

n=2

(αn cosh(n+ 1)τ + βn cosh(n− 1)τ

+ γn sinh(n+ 1)τ + δn sinh(n− 1)τ ) sin nσ

]
, (2.21)

with coefficients listed in appendix A. This explicit form of the stream function may
now be used to characterise the flow.

3. Results and discussion

In non-dimensional form, the flow resulting from the chemical activity of the
bounding surfaces now solely depends on two geometric parameters, namely the
relative radii of the cylinders R2/R1 and the asymmetry parameter d/R1 controlling
the eccentricity. The latter can be alternatively described by the relative gap width,
0 6 H/R1 6 1− R2/R1. The maximal gap width thus reads Hmax = R1 − R2.

For the purpose of demonstration, in all of the following figures we truncate the
series (2.14) and (2.21) at a finite sufficiently large n. A typical solute concentration
profile in the eccentric annular cavity is depicted in figure 2. For A> 0 (respectively
A < 0), the requirement of a constant normal gradient at the surface of the
inner cylinder, equation (2.6), results in the concentration of solute being highest
(respectively lowest) in the central area of the cavity, and decreasing (respectively
increasing) along the surface when moving towards the most confined region between
the cylinders. In this narrower gap, concentration gradients are lower due to the
shorter distances allowed for diffusive transport. As a result, tangential gradients of
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concentration and slip flow arise on the surface of the inner cylinder. For AM>0, they
are oriented from the narrower gap to the central part of the cavity. Two stagnation
points are found on the axis of symmetry, and the slip flow is maximal on the lateral
sides of the inner cylinder.

This boundary forcing generates two counter-rotating cells within the cavity, with
the flow speed being maximal at the surface of the inner (driving) cylinder. This is
most easily demonstrated in figure 2, where the streamlines are plotted. It should be
noted that the flow, and thus its direction, depends on the sign of chemical activity
and phoretic mobility of the boundary: if AM> 0, the vorticity is positive in the upper
cell and negative in the lower cell.

An appealing property of the present set-up is the ability to control the magnitude
of the flow by tuning the geometry. In the context of constructing an optimal flow-
inducing device in such a geometry, it is important to determine which configuration
(size ratio and gap width) maximises the strength of flow. For a perfectly centred inner
cylinder, the concentration distribution is isotropic within the cavity, leading to no flow
forcing and no fluid motion. Eccentricity therefore plays a key role in driving the flow
within the cavity, and most asymmetric configurations are expected to stir the fluid
most efficiently.

In order to quantify that intuition and the strength of flow generated by the
chemical activity on the surface of the inner cylinder, we calculate the total flux of
the circulating fluid. Since the flux across a curve between two points A and B is the
difference of the stream functions, ψ(B)−ψ(A), and given that on the surfaces of the
cylinders ψ = 0, the total flux in the circulation cell is given by the maximal value
of the stream function, ψmax, in the fluid. In the following, we focus on the volume
flux per unit area of the cavity, Φ = ψmax/(R2

1 − R2
2), as a measure of flow motion.

An alternative interpretation of 1/Φ also provides an estimate of the characteristic
stirring time for the fluid, namely a weighted average of the period of fluid particle
motion along the streamlines.

For a given size ratio of the cylinders, we find an approximately linear increase of
this flux with increasing asymmetry (decreasing the gap size H), with a maximum
attained in the limit H → 0 regardless of the size ratio (see figure 3a). This is
consistent with the observation that autophoretic particles tend to be strongly repelled
from a neighbouring wall, as recently investigated by Uspal et al. (2015) for a
spherical active particle close to a planar wall. In this limit, we look for the optimal
size ratio that maximises the flow rate.

The value of the optimal scaled flux, Φopt, depends on the relative sizes of the
cylinders. For large size ratios, the motion of the fluid is hindered by the no-slip
boundary condition on the outer boundary and leads to small flow. When the inner
cylinder gets small, strong gradients induce large slip velocities; however, these are
capable of moving only the fluid in their immediate vicinity, resulting in most of the
fluid remaining at rest. This is confirmed by figure 3(b), where we plot the dependence
on the size ratio of the maximum scaled volumetric flux Φ (obtained for touching
cylinders). Clearly, for size ratios of 0 and 1 the flow ceases, and a maximum is
present at R2/R1 ≈ 0.43.

Interestingly, our numerical results show that the optimal size ratio that maximises
the flow rate seems not to depend on the asymmetry parameter H/Hmax, and therefore
is a universal feature of the system, as shown in figure 4. This suggests that this ratio
may be determined likewise in the case when d≈ 0, at only a slight asymmetry, and
by taking only the n = 1 term in (2.21), as this is enough to grasp the character
of the flow in this far-field limit. Numerical solution yields the optimal size ratio
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FIGURE 3. (a) Evolution of the scaled total flux in a circulation cell, Φ =ψmax/(R2
1−R2

2),
with the relative gap width H/Hmax for R2/R1 = 0.1, 0.43 and 0.8. (b) Evolution of the
optimal scaled flux Φopt (obtained for touching cylinders) with R2/R1. The magnitude of
the velocity field is also plotted for three cases (same as above), showing the competing
effects of phoretic driving and wall hindrance on the flow.

R2/R1 ≈ 0.41, which is within 5 % from the value determined at small gap using the
full solution.

As an extension to the flow generation problem discussed above, we note that
the fixed-flux condition (2.1) may be generalised to a one-step chemical reaction by
assuming the activity to be proportional to the local solute concentration, A =−K C,
with a constant reaction rate K (Córdova-Figueroa & Brady 2008). The relative
importance of the reaction rate and diffusive transport of solute is then quantified
by the Damköhler number, Da = K R/κ . For Da� 1, the diffusion of the solute
is fast enough to ensure a homogeneous consumption of solute on the boundaries,
while the limit Da � 1 corresponds to slow diffusion being unable to compensate
for the fast local reactive effects. As for the propulsion problem, the effect of an
increasing Damköhler number on our set-up is a limitation of the inner wall chemical
activity by the depletion in solute resulting from the slow diffusion. As a result,
the concentration gradients induced in the system are reduced, and therefore the
resulting slip velocities are generally lower. The main conclusions of the previous
analysis, namely the existence of an optimal configuration for touching cylinders and
intermediate size ratio, remain valid nonetheless (not shown).
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FIGURE 4. The dependence of the total flux Φ on the size ratio shows that the optimal
size ratio R2/R1 ≈ 0.43 is universal and approximately independent of the gap width H
between the cylinders.

4. Conclusions

Recent years have brought significant attention to autophoresis as a promising
mechanism for microscale fluid manipulation and transport. The production of such
miniature devices poses physical challenges which require a deeper understanding
of the physical mechanisms underlying the phoretic generation of viscous flows in
confined geometries. Our paper provides an example of a system in which the flow
can be fully controlled by adjusting its geometric configuration, and a first attempt at
optimizing internal flows driven by phoretic effects.

Specifically, we have analysed the model system of a two-dimensional cavity
between two eccentric cylinders. Bulk flow circulation can be induced within the
cavity from the chemical activity of the walls (i.e. the release/absorption of solute)
and their phoretic mobility (i.e. their interaction with local solute content). Neglecting
solute advection, the problem has an analytical solution which was presented here
in terms of the Stokes flow stream function. By analysing the explicit formulae, an
optimal configuration was identified for the system, quantified by the maximal flow
rate within the fluid volume, in terms of the position and size of the inner cylinder
with respect to the outer one. Replacing the fixed-flux boundary condition by a
simple chemical reaction leads to a general decrease of the efficiency of the device
but similar overall conclusions.

Our results identify an optimal configuration, namely a maximum eccentricity
achieved for two touching cylinders. In that case, the narrowest gap is effectively
closed and the geometry of the system resembles that of a circular cavity with
an inner protrusion. Optimal flow circulation then results from the concentration
gradients enhanced by the local higher curvature of the boundary. This effect of
curvature on phoretic flow enhancement is consistent with recent work on phoretic
propulsion (Michelin & Lauga 2015). The limit of touching cylinders deserves more
scrutiny however: when H becomes smaller than the typical interaction-layer thickness
λ, the slip-velocity formulation of phoretic flows, equation (2.2), breaks down, and the
above analysis should be replaced by a full description of the solute–wall interactions
within the boundary layer.
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Appendix A. Coefficients of the stream function

The exact solution for the stream function (2.21) involves the following coefficients
which depend solely on τ1,2:

α1 = X{21τ cosh 2τ1 − sinh 2τ1 + sinh 2τ2}, (A 1a)
β1 = X{2τ2 − 2τ1 cosh 21τ + sinh 21τ }, (A 1b)
γ1 = X{−21τ sinh 2τ1 + cosh 2τ1 − cosh 2τ2}, (A 1c)
δ1 = 4X sinh2 1τ, (A 1d)
αn = Yn {n sinh[2τ1 + (n− 1)τ2] − sinh[2nτ1 + (1− n)τ2]
− (n− 1) sinh(n+ 1)τ2}, (A 1e)

βn = Yn {−(1+ n) sinh(n− 1)τ2 − n sinh[2τ1 − (n+ 1)τ2]
+ sinh[2nτ1 − (n+ 1)τ2]}, (A 1f )

γn = Yn {−n cosh[2τ1 + (n− 1)τ2] + cosh[2nτ1 + (1− n)τ2]
+ (n− 1) cosh(n+ 1)τ2}, (A 1g)

δn = Yn {(1+ n) cosh(n− 1)τ2 − n cosh[2τ1 − (n+ 1)τ2]
− cosh[2nτ1 − (n+ 1)τ2]}, (A 1h)

where 1τ = τ1 − τ2 and

X = d2 − 2d1 cosh τ2

8 sinh2 1τ(1−1τ coth1τ)
, (A 2a)

Yn = 1
2

dn+1 + dn−1 − 2dn cosh τ2

n2 − 1− n2 cosh 21τ + cosh 2n1τ
. (A 2b)
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