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Vortex-induced vibrations (VIV) of flexible cables
are an example of flow-induced vibrations that can
act as energy harvesting systems by converting
energy associated with the spontaneous cable motion
into electricity. This work investigates the optimal
positioning of the harvesting devices along the cable,
using numerical simulations with a wake oscillator
model to describe the unsteady flow forcing. Using
classical gradient-based optimization, the optimal
harvesting strategy is determined for the generic
configuration of a flexible cable fixed at both ends,
including the effect of flow forces and gravity on
the cable’s geometry. The optimal strategy is found
to consist systematically in a concentration of the
harvesting devices at one of the cable’s ends, relying
on deformation waves along the cable to carry the
energy towards this harvesting site. Furthermore,
we show that the performance of systems based on
VIV of flexible cables is significantly more robust
to flow velocity variations, in comparison with a
rigid cylinder device. This results from two passive
control mechanisms inherent to the cable geometry:
(i) the adaptability to the flow velocity of the
fundamental frequencies of cables through the flow-
induced tension and (ii) the selection of successive
vibration modes by the flow velocity for cables with
gravity-induced tension.

1. Introduction
The field of renewable energies is gaining interest due
to the limited availability and the environmental impact
of fossil fuels. Flow-induced vibrations, i.e. the motion
of a solid structure resulting from the destabilizing
effect of forces applied by the surrounding flow, have
recently received increased attention as a potential

2016 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Vortex-induced vibrations of a rigid cylinder (a) and a flexible cable (b) in a steady and uniform cross flow.

alternative to classical wind- and water turbines to convert a fraction of the fluid’s kinetic energy
into electricity [1].

From an energy point of view, flow-induced vibrations transfer a fraction of the kinetic energy
of the incoming flow to the solid structure that is set into motion. Vibrations can then be used
to power an electric generator and effectively convert some of the solid’s mechanical energy into
electrical form. Recently, many classical examples of flow-induced vibrations have been revisited
as potential energy harvesting mechanisms, including galloping [2–6], coupled-mode flutter of
aerofoil profiles [7], flutter of flexible cylinders or membranes in axial flow [8–11], flapping in
unsteady wakes [12–15] and vortex-induced vibrations (VIV) of rigid and flexible structures [1,
16–22]. This work focuses on the possibility to harvest energy from VIV of long flexible cables.

VIV results from the coupling of a bluff body to its unsteady vortex wake. The steady flow
around a fixed bluff body at high Reynolds number (Re � 1 or inertial flows) is characterized
by an unsteady shedding of vortex structures. The wake structure is then complex and differs
from a classical Von Karman vortex street observed at lower Re, but its frequency spectrum is still
dominated by a fundamental frequency known as the Strouhal frequency f , proportional to the
flow velocity U as f = STU/D with ST the Strouhal frequency and D the diameter (e.g. [23,24]).
This results in an unsteady lift force on the bluff body. For a flexible or flexibly mounted structure
(figure 1), this unsteady force will force the solid body into so-called VIV, and this unsteady
motion of the body will also introduce a feedback coupling on the vortex shedding and unsteady
lift. VIV of a rigid cylinder mounted on an elastic foundation have been widely studied, both
experimentally and numerically [23–26]. A distinctive feature of VIV is the lock-in mechanism:
when the fundamental frequency of the solid’s vibrations is close to the Strouhal frequency,
the coupling between the vibrations and the vortex shedding synchronizes both dynamics over
an extended range of flow velocity. This results in self-sustained, self-limited large amplitude
oscillations of the solid, typically of the order of one cross-flow diameter.

This lock-in phenomenon is particularly interesting for energy harvesting purposes as large
amplitudes imply that the oscillating structure has a large amount of kinetic energy that
can potentially be harnessed to produce electricity. The VIVACE system [1] relies on that
phenomenon.

However, VIV of elastically mounted rigid cylinders also have intrinsic limitations. Lock-in
occurs only when the Strouhal frequency and the eigenfrequency of the structure are sufficiently
close, e.g. [24]. If this condition is not met (lock-out), the rigid cylinder is not properly excited
by the flow and its oscillations have negligible amplitude, which results in inefficient energy
extraction. Geophysical flows (e.g. oceanic, tidal or river currents) are characterized by an
important variability in the flow velocity magnitude, and systems relying on VIV of rigid
cylinders can only produce energy when the flow velocity remains close to the velocity for which
they are designed.

A method to circumvent this issue is to use flexible structures (cables or beams) rather than
rigid cylinders, as sketched in figure 1: cables have multiple deformation modes which have
their own eigenfrequencies, and different modes can be locked-in for different values of the
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flow velocity (and Strouhal frequency). The selective excitation of a specific deformation mode
of a flexible structure when the eigenfrequency of the latter is close to the Strouhal frequency
was demonstrated experimentally [27,28] and numerically [29]. Rather than lock-out, variations
of the flow velocity induce a transition towards lock-in of higher or lower deformation modes.
This advantage of flexible structures was recently demonstrated for a system consisting of
a hanging cable in a cross flow, attached to a local energy harvester at its upper end [21].
The experimental and numerical results obtained for that system demonstrated its increased
robustness to variations in the flow velocity in comparison with an elastically supported rigid
system.

A challenge and open question associated with harvesting energy from VIV of flexible
structures is to determine the optimal harvesting strategy, i.e. where and how the mechanical
energy of the solid structure should be converted into electricity. With a rigid cylinder, the motion
is a pure translation with a single degree of freedom, and determining the optimal strategy
is relatively simple. For flexible structures, the periodic motion is not uniform throughout the
structure, which results in a much larger configuration space for the harvesting distribution.
Optimization of such a system is a particular challenge. Moreover, the geometry of the structure
and how it is held in the flow are additional design variables. This work addresses these questions
and investigates the optimal route to efficient energy harvesting using VIV of flexible cables.

The paper is organized as follows. Section 2 presents the mathematical and numerical models
used here to analyse the VIV dynamics and resulting energy harvesting. In §3, the distribution
of harvesting devices on a flexible cable is optimized, and the performance of such system is
analysed and compared with the reference rigid system in §4. Section 5 finally summarizes the
main conclusions of our work, stressing out both its fundamental and engineering implications.

2. Model for the vortex-induced vibrations of hanging cables

(a) Problem geometry
In this work, we consider a long inextensible cable of circular cross-section with density ρS, length
L and diameter D with a large aspect ratio Λ = L/D � 1 (figure 2); its extremities O and O′ are
fixed and aligned along eX at a distance �L from each other. By ‘cable’ (or equivalently ‘string’)
we mean that the structure has no bending stiffness; thus the only structural force is the tension
force which acts as a Lagrangian multiplier that enforces the inextensibility condition. The reader
is referred to Audoly & Pomeau [30] for a thorough description of the string model. The cable is
immersed in a uniform horizontal cross flow u = u eY.

The dynamics of the cable are the result of a balance between the cable’s inertia, the internal
tension, gravity and buoyancy, and flow forces. We focus on VIV for which the cable undergoes
small oscillations about a steady mean position as a result of the unsteady vortex shedding on the
structure.

Flow forces on the moving structure can be modelled as the superposition of four different
components [31,32]: (i) a drag force 1

2 ρCDD|ur
⊥|ur

⊥, (ii) a friction force (π/2)ρCFD|ur|ur
‖, (iii) an

added mass, and (iv) an unsteady lift force resulting from periodic vortex shedding in the
structure’s wake. Here, ρ is the mass density of the fluid and ur = u − ẋ is the local relative velocity
of the incoming flow to the cable whose position is noted x(s, t), and (ur

‖, ur
⊥) are its components

along and normal to the cable, respectively.
In the following, the problem is written in non-dimensional form by choosing L, 1/(2π f ) and

1
2 ρCDU2DL as characteristic length, time and force, respectively.

(b) Mean position of the structure
We first focus on the mean (i.e. time-averaged) steady position of the cable, obtained by balancing
the effects of the steady fluid forces, the cable’s weight, buoyancy and the internal tension (inertia,
added-mass and wake effects only contribute to the unsteady dynamics). A local orthonormal
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Figure 2. VIV of a flexible cable. The inset shows the definition of the local orthonormal basis (er , eθ , eϕ ).

basis (er, eθ , eϕ) is used with er = ∂ x̄/∂s the local direction of the cable where x̄ is the mean position
of the cable, and eθ · u = 0 (figure 2). The equilibrium writes

(χ er)′ + β sin ϕ er + cos2 ϕ eϕ − Γ eZ = 0, (2.1)

where 0 ≤ s ≤ 1 is the dimensionless curvilinear coordinate along the cable and (·)′ denotes the
derivative with respect to s. The angles θ and ϕ determine the local orientation of the local
basis with respect to fixed axes (figure 2 and appendix A), and χ (s) = T(s)/( 1

2 ρCDU2D) is the
non-dimensional tension. Equation (2.1), together with the inextensibility condition er = ∂ x̄/∂s,
is an implicit equation for the mean position x̄(s) and tension χ (s). Boundary conditions further
impose that ∫ 1

0
er ds = δ eX. (2.2)

The mean problem is thus completely determined by three non-dimensional parameters

Γ = πDg
2CDU2

(
ρS

ρ
− 1

)
, β = πCF

CD
and δ = �L

L
, (2.3)

where Γ is a relative measure of the net gravity compared with drag forces, β is the ratio of the
friction and drag coefficients and δ is the relative span. Note that δ = 1 corresponds to a straight
cable, and decreasing δ corresponds to a larger sag of the cable in its mean position.

Equations (2.1)–(2.2) are solved numerically using an iterative Broyden’s method [33] for the
mean shape and mean tension of the structure. Depending on the value of Γ , the physical origin
of the tension varies from flow- to gravity-induced regime. When Γ � 1, gravity and buoyancy
effectively balance; as a result of the drag force, the cable is horizontal (in-flow catenary) and its
tension is due to the sole effect of the fluid (flow-induced tension). When Γ � 1, gravity effects
are dominant and the cable is vertical (cross-flow catenary) while its tension is due to the sole
effect of gravity (gravity-induced tension). Conversely, when Γ = O(1), gravity and fluid effects
are comparable in magnitude and they both significantly contribute to the mean position and
tension of the cable.

Whether flow- or gravity induced, the tension within the cable provides it with the ability
to carry waves. To be generic, the typical wave speed should be defined (dimensionally) as
C = √

max(T)/mT, with mT = πD2(ρ + ρS)/4 the total lineic mass of the cable (including the
fluid added mass). This is effectively equivalent to rescaling the non-dimensional tension
as χ̃ (s) = χ (s)/max(χ ) = T(s)/max(T), which is done in the rest of the manuscript. We define
the characteristic frequency of the waves as f0 = C/2L which corresponds to the fundamental
frequency of a straight cable with uniform tension.
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(c) Governing equations of the vortex-induced vibrations
VIV correspond to O(D) displacements of the cable with respect to its mean position in response
to the unsteady flow separation in the structure’s wake and the resulting unsteady flow forces.
These displacements are typically small compared with the structure’s length (D � L) which
justifies in the following the linearization of the equations of motion about the mean position
determined above.

The cable’s motion modifies both its position and its orientation, with O(D/L) leading order
corrections; the position of the cable is thus in non-dimensional form x̄(s) + (D/L)d(s, t) with
d = O(1) the non-dimensional displacement (scaled by D). The relative flow velocity and internal
tension are also modified both in orientation and in intensity. The non-dimensional tension
magnitude in the cable can be decomposed into its steady and unsteady parts as χ̃(s) + (D/L)ξ̃ (s, t)
with ξ̃ = O(1) the non-dimensional fluctuating tension. Linearizing the equations of motion about
the time-averaged static state determined above leads to the non-dimensional equation for the
cable’s displacement d(s, t):

d̈ = fD + fF + fT + fL, (2.4)

where ˙( ) denotes the time derivative, and the fluctuating drag, friction and tension forces are
obtained as

fD = −γ

μ
cos ϕ(ḋθ eθ + 2 ḋϕ eϕ) (2.5)

fF = −β
γ

μ
(ḋr + sin ϕ eY · ḋ)er (2.6)

and fT = 1
π2u2 (χ̃ ′ d′ + χ̃ d′′ + ξ̃ ′ er + ξ̃ e′

r) (2.7)

with (dr, dθ , dϕ) the components of d in the local basis, and u, γ and μ, respectively, defined as the
reduced velocity (or frequency ratio), damping and mass ratios [21,29,34]

u = f
f0

= 2ST
L
D

U
C , γ = CD

4πST
and μ = π

4

(
1 + ρS

ρ

)
. (2.8)

The inextensibility of the cable further imposes that d′ · er = 0.
The effect of the unsteady wake on the structure is modelled here as a fluctuating lift force

fL which is orthogonal to both the direction of the flow and the axis of the cable. As shown by
Franzini et al. [35], vortex shedding is mostly governed by the flow orthogonal to the cable’s axis
and, consequently, the lift force is quadratic in the normal relative flow velocity (i.e. |ur

⊥|2) with a
local fluctuating lift coefficient CL0 q(s, t)/2 (with CL0 the lift coefficient of a still cylinder [34]), so
that in equation (2.4), fL is given by

fL = M q(s, t) cos2 ϕ eθ , with M = CL0

16π2μS2
T

· (2.9)

So-called wake oscillator models describe the dynamics of this fluctuating lift as a nonlinear
van der Pol oscillator forced by the motion of the structure in order to account for the feedback
coupling of solid motion on vortex shedding, which is an essential ingredient to lock-in. Previous
studies have shown that a local inertial coupling leads to a good agreement with experimental
and numerical studies on rigid and flexible structures in VIV [29,34,36,37]. The dynamics of the
wake variable q(s, t) are then governed by

q̈ + ε cos ϕ(q2 − 1)q̇ + cos2 ϕ q = A d̈θ . (2.10)

The values of the non-dimensional parameters ε and A of the wake oscillator model need to be
determined using experimental (or numerical) data. More details about this model for the wake
effects and validation against experimental data for the VIV of rigid cylinders and straight strings
are provided in [29,34].
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Figure 3. Energy harvesting of a flexible cable in VIV using a continuous distribution of harvesting devices (i.e. dampers) of
local intensityσ (s). For the sake of simplicity, we draw a single line of dampers in the figure.

In this work, unless stated otherwise, the following numerical values are used for the
parameters of the model: ST = 0.17, CL0 = 0.61, CD = 2.0, CF = 0.083, ε = 0.3 and A = 12 (e.g. [34]).
Two different values of μ are used in the paper: μ = 2.79, which is consistent with previous works
on the topic (e.g. [21,29,34]), and μ = π/2 ≈ 1.57, which corresponds to a neutrally buoyant cable.

The extremities of the cable are fixed, which yields the boundary conditions d|s=0 = d|s=1 = 0.
Equations (2.4)–(2.7), (2.9) and (2.10) are numerically integrated in time starting from an initial
state where the cable is at rest in its mean position (d(t = 0) = 0) while the wake is given a
small perturbation (at t = 0, q = q0(s) � 1 and q̇ = 0) that triggers the oscillations of the system
which eventually reaches a steady oscillatory regime that does not depend on the choice of initial
conditions.

(d) Modelling energy harvesting
This work focuses on the possibility of harvesting energy from a flow using the cable’s VIV, and
on the optimal strategy to maximize the energy output. Energy harvesting amounts to converting
some of the energy associated with the vibrations into a usable form—typically electricity. As
it effectively removes some mechanical energy from the structure, energy harvesting must be
modelled explicitly in order to properly account for its effect on the vibration itself. The simplest
model is that of a pure linear damping force. This damping can be either distributed (i.e. present
all along the structure) or localized at some position along the cable. The former will be our initial
focus and corresponds to an additional non-uniform damping force fH in the equations of motion
of the cable, equation (2.4):

fH = −σ (s) ḋ. (2.11)

The damping intensity σ (s) (scaled by 2π fmT) may depend on the position s (figure 3), with the
requirement that σ (s) ≥ 0 (passive energy harvester). The latter (i.e. localized harvesting) will be
explored subsequently. In both cases, the power Pel dissipated in the dampers acts as a proxy for
the power harvested from the fluid flow by the device. Its efficiency is, therefore, defined as the
ratio of Pel to the reference kinetic energy flux through the reference surface A= LD

η = Pel
1
2 ρU3A = 16μπ3 S3

T

∫ 1

0
σ (s)〈‖ḋ‖2〉 ds, (2.12)

with 〈·〉 the time average, computed once the system reaches a permanent saturated regime. Note
that η can also be understood as the non-dimensional power output.
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3. Optimal energy harvesting strategy
Finding the optimal harvesting strategy, i.e. determining where the vibration energy of the cable
must be harvested in order to maximize the output power, is equivalent to determining the
function σ (s) that maximizes the harvesting efficiency η defined in equation (2.12). The location
of maximal vibration depends on the vibration mode selected by the flow velocity (see the
experiments in [27]). The optimal harvesting strategy σopt(s) and the corresponding efficiency
ηopt are therefore also expected to depend on the reduced flow velocity u.

(a) Optimal harvesting from vortex-induced vibrations of straight cables
We first focus on the simplest geometry, namely that of a straight cable with uniform tension
(δ = 1). In this special case, the only non-zero component of the displacement is dθ = −z and the
coordinate s matches x.

In that limit, the equations governing the VIV dynamics take a much simpler form, which is
amenable to a full gradient-based optimization using adjoint methods to compute the gradient of
the harvesting efficiency with respect to σ (s).

Adjoint methods represent a popular and powerful approach to optimization problems
involving partial differential equations, e.g. [38]. Here, we follow an approach similar to [39]:
the gradient ∇σ [η](s) of the efficiency with respect to the damping distribution σ (s) is a function
of s and is computed as

∇σ [η](s) = 16μπ3S3
T〈ż(ż − z†)〉, (3.1)

where z† is the adjoint displacement. The derivation of the adjoint equations for (z†, q†) from
the direct equations, equations (2.4) and (2.10), is presented in appendix B. Starting from an initial
guess for z(s, t) and q(s, t) without any damping (σ = 0), the direct and adjoint equations are solved
at each iteration to obtain ∇σ [η] using equation (3.1); a steepest-ascent algorithm is then used until
convergence to the optimal damping distribution σopt(s).

In VIV of flexible structures, the flow velocity selects and excites the eigenmode of the structure
whose frequency is the closest to the Strouhal frequency (see experiments in [27]). For the wake
oscillator model used here, linear stability analysis indicates that the nth mode of the straight cable
is specifically excited when u ≈ n [29]. For instance, when u = 1, the cable deforms in mode 1 and
σopt(s) is expected to be large at the centre of the cable, where the kinetic energy is the largest.
When u = 2, however, the cable deforms in mode 2 and there is little to no available energy at
the centre of the cable; thus the optimal harvesting strategy in mode 1 is unlikely to carry over
to mode 2, and the optimal harvesting strategy must be determined for each individual mode by
setting u to the appropriate value. Figure 4 presents the optimization results for a straight cable
in modes 1 and 2.

For u = 1 (mode 1 lock-in), the distribution of deflection z is qualitatively similar with no
damping (initial guess) and with an optimal damping (final result). The amplitude of the
oscillations with the optimal harvesting strategy is nearly half that of the oscillations without
energy harvesting, indicating a significant energy extraction from the oscillations. The optimal
damping distribution σopt respects the mode 1 symmetry.

For u = 2 (mode 2 lock-in), the distribution of deflection z without damping (initial guess)
corresponds to a mode 2 deformation—which validates our criterion n = u. This is not the case
for the z-contours in the optimal-damping situation: the optimal strategy corresponds to a non-
symmetric damping distribution σopt(s) (figure 4), for which most of the energy extraction occurs
on one-half of the cable. Progressive waves carry energy from the undamped part of the cable to
the harvesting location. The optimal efficiency is similar for u = 1 and u = 2, with ηopt = 8.1% and
ηopt = 8.6%, respectively.

These results are in fact generic: for any n ≥ 2, the optimization algorithm leads to an optimal
strategy with harvesting concentrated on a reduced fraction of the cable near one of its fixed
ends, while the rest of the cable is undamped, and energy is carried to the harvesting region by
travelling waves along the cable.
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Figure 4. Optimization of the harvesting efficiency for VIV in modes 1 (left) and 2 (right) of a straight cable (δ = 1) withμ =
2.79. From top to bottom: (a) sketch of the cable, (b) contours of the cable deflection z without energy harvesting (σ = 0), (c)
optimal damping distributionσopt and (d) contours of z withσ = σopt. (Online version in colour.)

Those results are particularly relevant from a practical and engineering point of view:
regardless of the selected mode except mode 1 (and, therefore, for any sufficiently large velocity),
the optimal strategy consists in restricting the harvesting system to a limited fraction of the cable
near one of its attachment points, rather than distributing it along the entire cable.

(b) Optimal harvesting from vortex-induced vibrations of catenary cables
We can extend the previous approach and results to the general configuration of figure 3.
The optimal harvesting strategy σopt(s) now depends on three parameters: δ and Γ , that set
the mean position of the cable, and u, which sets the vibration mode of the cable excited by the
flow. Assuming a piecewise constant damping σ (s), the damping distribution σopt(s) is computed
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Figure 5. Optimization of the harvesting efficiency for a mode 2 VIV (u= 2) of a cross-flow catenary (Γ � 1) with δ = 0.5
andμ = 2.79. (a) Sketch of the cable in mode 2 lock-in, (b) contours of dθ without energy harvesting (σ = 0), (c) optimal
damping distributionσopt and (d) contours of dθ withσ = σopt. (Online version in colour.)

for different values of (δ, Γ , u) using a steepest-ascent algorithm, now computing the gradient
numerically.

Figure 5 shows the optimal distribution of damping and resulting dynamics obtained for a
cross-flow catenary cable (ηopt = 7.6%). As for the straight cable, the optimal damping distribution
is not symmetric and waves are observed to carry energy towards the harvesting site. This
behaviour is in fact observed for all geometries provided the excited mode number is greater
than 2. This generality therefore suggests to go one step further and investigate the performance
of harvesting energy at a single point located at the extremity of the cable rather than in its vicinity.
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Figure 6. Energy harvesting of a flexible cable in VIV using a local harvester of intensityσ at s= 1.

(c) Local point-wise damper as optimal harvesting strategy
To this end, the fixed boundary condition at s = 1 is now relaxed to allow for transverse
displacements of the cable and energy extraction. More precisely, at s = 1, the cable can slide
in the local (θ , ϕ) plane and energy harvesting is modelled as a linear viscous force resisting its
velocity with a damping intensity σ (figure 6). Note that σ is a scalar value here. The cable and
wake dynamics are still governed by equations (2.4) and (2.10) (without an additional damping
force) and the boundary condition at s = 1 now balances local tension and viscous forces (the fixed
boundary condition at s = 0 remains unchanged):

dr = 0, d′ · eθ + π2u2σ ḋθ = 0, d′ · eϕ + π2u2σ ḋϕ = 0. (3.2)

The harvesting efficiency of this system is still defined as the ratio of the average power dissipated
in the damper to the kinetic energy flux through the area occupied by the cable:

η = 16μπ3S3
Tσ 〈‖ḋ|s=1‖2〉. (3.3)

The optimization now consists in maximizing η with respect to the scalar parameter σ .
For a given geometry (i.e. given δ and Γ ), the optimal damping strategy and efficiency are

determined by directly computing η(u, σ ) and finding its absolute maximum. Figure 7 shows the
evolution of η(u, σ ) for the configurations of figures 4 (straight cable) and 5 (catenary).

The maximum efficiency for the straight cable and the cross-flow catenary is slightly more than
9%, which exceeds the maximum performance obtained with distributed harvesters: the local
harvesting strategy is therefore optimal for both configurations. This finding is again generic, and
valid for most geometries: for δ ranging between 0.25 and 1 and Γ � 1, Γ ∼ 1 and Γ � 1, we
find that the optimal efficiency of a local damper is equivalent or slightly higher than the optimal
efficiency of distributed damping.

We note that the contours of figure 7 are qualitatively similar to the efficiency map obtained
by Grouthier et al. [21] with a hanging cable attached to a local harvester at its upper end. The
agreement is also quantitative if we account for the different values for the lift coefficient CL0
used in the works (0.63 in this work, 0.80 in [21]). Those similarities suggest that the influence of
the detailed geometry on the performance of cables with gravity-induced tension is weak. This
is discussed further in §4c. Besides, we note that the periodic cable studied in [21] exhibits the
same maximum efficiency as the hanging cable and catenary cables although its efficiency map is
considerably different.

 on November 3, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


11

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160583

...................................................

0.001 0.01 0.1 1
s s

10 100

1

2

3

4

0

0.02

0.04

0.06

0.08

0.001 0.01 0.1 1 10 100

1

2

3

u

4

0

0.02

0.04

0.06

0.08

(a) (b)

Figure 7. Efficiencyη as a function of the dampingσ and the reduced velocity u for (a) the straight cable and (b) the cross-flow
catenary with span δ = 0.5. Red crosses are placed at the maximum efficiency. (a) ηopt = 9.2%, uopt = 3.2, σopt = 0.16 and
(b) ηopt = 9.1%, uopt = 3.0,σopt = 0.080. For both contours,μ = 2.79. (Online version in colour.)

4. Peak performance and robustness
Energy harvesting using VIV was originally proposed using a rigid cylinder system (VIVACE
system [1]). The goal of this section is to compare the overall performance of the flexible cable
system in figure 6 to this reference configuration, with a particular focus on its robustness to
variability in the flow velocity.

(a) Harvesting performance and limitation of rigid cylinders in vortex-induced vibrations
Grouthier et al. [21] carried out a detailed study of the rigid cylinder system, and we present
only a brief summary here, together with an update of the numerical results (figure 8) for the
particular parameter values considered here (in particular, the Strouhal number and lift coefficient
are modified in comparison with [21]). This system extracts energy from VIV of a rigid cylinder
and it is the origin of the VIVACE concept.

The system is a rigid cylinder mounted horizontally on an elastic foundation (stiffness k per
unit length) and attached to an energy harvester of intensity R (per unit length). Its resonance
frequency in still flow is therefore f0 = √

k/mT/2π . It is immersed in a horizontal cross-flow U
and its motion is restricted to vertical vibrations along eZ. The harvesting efficiency η (defined as
above) depends solely on the reduced velocity (or frequency ratio) u = f/f0 and damping intensity
σ = R/(2π fmT).

Optimizing the design of such a system, which is meant to be deployed in a current of typical
mean velocity U0, amounts to choosing its dimensional characteristics such that u = uopt and σ =
σopt under normal conditions (U = U0) so that η = ηopt = 10.5%. The velocity of actual geophysical
flows typically exhibits a significant variability in magnitude (in particular, for tidal currents). All
other quantities being fixed (geometry, stiffness, etc.), a change in the dimensional flow velocity
U modifies (u, σ ) and, therefore, induces a departure from the optimal operating conditions and
a reduction of the system’s efficiency (figure 8c). This reduced efficiency results from a departure
from the optimal lock-in conditions: when U �= U0, the shedding frequency f differs from the
fundamental frequency of the cylinder.

The efficiency peak around U0 is narrow: its width at half height, i.e. the range of U in which
the efficiency is at least half its peak value, is almost equal to U0. Thus, the system is efficient only
when 0.67 ≤ (U/U0) ≤ 1.7. In a practical situation, this could result in a negligible efficiency of the
system for a significant fraction of its operating time.
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Figure 8. Energy harvesting by a rigid cylinderwithμ = 2.79. (a) Sketch of the systemand (b) the harvesting efficiencyη. The
red cross is the optimal configuration (ηopt = 10.5%withuopt = 1.1 andσopt = 0.18), and the red line corresponds to variations
of the dimensional flow velocity for an optimal system (all other quantities being fixed). (c) The evolution of the efficiency with
flow velocity around the optimal configuration (red line in (b)). (Online version in colour.)

Below, we show that extracting energy from VIV of flexible cables rather than rigid cylinders
provides a simple and efficient method to remedy this issue, while still maintaining comparable
peak performance.

(b) Harvesting performance and robustness of flexible cables in vortex-induced vibrations
We now turn back to the case of a flexible cable with a local harvester at s = 1 (figure 6). The
performance of this system as well as its sensitivity to variations in the flow velocity depend on
the shape of the cable determined by the span δ and reduced gravity Γ . The performance of the
flexible cable with respect to u and σ is analysed for 0.25 ≤ δ ≤ 1 and Γ � 1 (in-flow catenary) and
Γ � 1 (cross-flow catenary) by computing an efficiency map similar to that obtained for the rigid
cylinder in figure 8b or those obtained for cables in figure 7. The optimal harvesting efficiency
ηopt of each particular geometry is then determined (together with the corresponding optimal
parameters uopt and σopt), as well as the influence on η of a change in the dimensional velocity U
away from its design value U0.

The performance and robustness of the system to flow fluctuations is characterized by two
important quantities: the peak efficiency ηopt and the peak width �U/U0 measuring the relative
velocity range over which the efficiency is at least ηopt/2. Both quantities are critical: the former
characterizes the efficiency of the system and the latter its robustness to flow velocity variability.
They are, respectively, reported in figure 9 and in table 1.

Efficient energy harvesting can be achieved using cross-flow catenaries (Γ � 1, gravity-
induced tension) of any span or in-flow catenaries (Γ � 1, flow-induced tension) that are almost
straight (δ ≈ 1) as shown in figure 9. This efficiency is comparable with the rigid cylinder
performance, albeit slightly lower. In-flow catenaries with larger sag only show poor peak
performance.

All flexible configurations presented are nevertheless significantly more robust to variations of
the flow velocity than their rigid counterpart (table 1). In particular, the efficiency peak width of
the straight in-flow catenary (δ ≈ 1, Γ � 1) is seven times as large as that of the rigid cylinder,
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Figure 9. Maximum harvesting efficiency as a function of the span δ for (a) cross-flow catenaries and (b) in-flow catenaries.
Key to the plots: square,μ = 2.79; triangle,μ = π/2.

Table 1. Width of efficiency peaks at half height for systems extracting energy from VIV of cables and rigid cylinders.

μ = π/2 μ = 2.79

δ = 1 δ = 0.75 δ = 0.5 δ = 1 δ = 0.75 δ = 0.5
in-flow catenary G� 1

6.9 7.8 2.5 8.2 3.1 2.3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cross-flow catenary G � 1

3.3 2.6 3.1 3.6 3.2 3.6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rigid cylinder

1.6 1.0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which makes it an attractive candidate for an energy harvesting system based on VIV. The
comparisons between these different systems is summarized in figure 10, by plotting the variation
of the efficiency with the flow velocity U around the optimal configuration.

(c) Robustness of energy harvesting from vortex-induced vibrations of cross-flow
catenaries

The mean tension of the cross-flow catenaries is determined solely by gravity and is thus
independent of the flow velocity. Hence, the eigenmodes of the cable have constant frequencies.
When the velocity of the flow increases, so does the Strouhal frequency and as a result higher
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Figure 10. Evolution of the harvesting efficiency η as a function of the flow velocity U/U0 for (a) rigid cylinders and cross-
flow catenaries with μ = 2.79 and (b) rigid cylinders and in-flow catenaries with μ = π/2. U0 denotes the flow velocity
corresponding to the optimal design. Key to the plots: thick solid line, rigid cylinder; solid line, catenary with span 1; dashed
line, catenary with span 0.75 and dashed-dotted line, catenary with span 0.5.

modes are successively locked-in. The transitions between the different modes of the cable
correspond to the kinks in the curves in figure 10a. The robustness of cross-flow catenaries to
flow velocity variations, therefore, arises from their ability to adapt their deformation mode to the
surrounding flow and remain at lock-in, which the rigid cylinder is unable to do since it only has
a single resonance frequency. Noticeably, the value of the relative span δ of cross-flow catenaries
has only a minor impact on their efficiency in terms of optimal performance and robustness to
flow velocity variations.

Interestingly, results obtained in [21] show that the robustness to flow variations of cross-
flow catenaries is comparable with that of hanging cables (width of efficiency peak is 3.6 for
the former and 3.7 for the latter). That observation agrees with the minor effect of the span δ on
the performance of cross-flow catenaries in suggesting that the robustness of energy harvesting
from a cable with gravity-induced tension is only determined by the mechanism of transitioning
between mode lock-in and is independent of the cable shape.

(d) Robustness of energy harvesting from vortex-induced vibrations of in-flow catenaries
For in-flow catenaries, buoyancy and gravity balance and the tension is induced by the flow drag
and friction forces. It is, therefore, set by the flow velocity magnitude and larger flow velocity
results in a larger tension in the catenary that scales as U2. An increase in the flow velocity U
now has two consequences: (i) a linear increase in the Strouhal frequency and (ii) a quadratic
increase of the tension in the cable, resulting in a linear increase with U of its eigenfrequencies.
Both fluid and solid frequencies increase in the same proportion, and the system passively
adapts to remain at lock-in despite the flow variations. The efficiency is, therefore, only weakly
dependent on the dimensional value of the flow velocity U (figure 10b). The robustness of
in-flow catenaries to flow velocity variations therefore arises from the passive adaptation of
their internal tension to the surrounding flow. Such passive control is not possible with a rigid
cylinder.

5. Conclusion
This work presented a detailed and systematic analysis of the energy harvesting performance of
flexible cables in VIV. A fundamental symmetry-breaking in the optimal harvesting strategy was
identified that leads to recommending a concentration of the energy harvesting devices near one
of the fixed ends of the cable. We further showed that, out of all distributions possible along the
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Figure 11. Evolution of the harvesting efficiency with the flow velocity for harvesting systems based on VIV of rigid cylinders
(solid) and straight cables with flow-induced tension (dashed).μ = π/2 for the rigid cylinder and the cable.

entire cable, the very simplest one performs best, namely a single energy harvester located at one
of the extremity of the cable; beyond its fundamental importance, this result also has significant
practical engineering implications.

With similar peak performance, flexible cables in VIV are also significantly more robust than
their rigid-cylinder counterpart with respect to variations in the flow velocity (their range of
efficient operation is three to eight times larger). In particular, a fundamental physical insight
on this increased robustness was obtained and two different mechanisms were identified: (i) the
passive control by the flow velocity of the deformation mode (for systems with gravity-induced
tension) and (ii) the passive control of the internal tension of the cable (for systems with
flow-induced tension); both maintain the system at lock-in with high energy harvesting efficiency.

The best performing design is identified as an almost straight cable (i.e. with minimal sag)
with flow-induced tension, which can be practically achieved with a neutrally buoyant cable.
From an engineering point of view, this system is not more difficult to build than a device based
on a rigid cylinder, and figure 11 summarizes the comparison of its performance to the rigid-
cylinder system. Further, for a neutrally buoyant cable the direction of gravity is irrelevant, and
the system can be fixed vertically, providing an interesting design solution to passively adapt to
the variability in the flow direction.
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Appendix A. Local frame definition
The local orthonormal basis in figure 2 is given by

⎡
⎢⎣

er

eθ

eϕ

⎤
⎥⎦ =

⎡
⎢⎣

cos θ cos ϕ sin ϕ − sin θ cos ϕ

− sin θ 0 − cos θ

− cos θ sin ϕ cos ϕ sin θ sin ϕ

⎤
⎥⎦ ·

⎡
⎢⎣

eX

eY

eZ

⎤
⎥⎦ (A 1)
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Appendix B. Straight cable: direct and adjoint equations
For a straight cable with distributed harvester, the only non-zero component of the displacement
is z, and z and q are governed by

z̈ +
(

σ + γ

μ

)
ż − 1

π2u2 z′′ = Mq (B 1)

and
q̈ + ε(q2 − 1)q̇ + q = Az̈ (B 2)

and the boundary and initial conditions are z|t=0 = ż|t=0 = q̇|t=0 = 0, q|t=0 = q0(x) and z|x=0 =
z|x=1 = 0.

We choose a final time tf that is much larger than the saturation time and long enough to ensure
that the time-average operator involved in the definition of efficiency is converged:

η = 16μπ3S3
T

∫ 1

0
σ (x)

[
1
tf

∫ tf

t=0
ż2 dt

]
dx. (B 3)

The definition of η in equation (B 3) is used here for its convenience to derive adjoint equations.
Using equation (B 3), the gradient of η with respect to the function σ is the function of x:

∇σ [η](x) = 16μπ3S3
T

1
tf

∫ tf

t=0
ż(ż − z†) dt, (B 4)

where the variables z† and q† satisfy the adjoint equations

z̈† −
(

σ + γ

μ

)
ż† − 1

π2u2 (z†)′′ = Aq̈† − 2σ z̈ (B 5)

and
q̈† − ε(q2 − 1)q̇† + q† = Mz† (B 6)

with the final and boundary conditions z†|t=tf = q̇†|t=tf = q†|t=tf = 0, ż†|t=tf = −2σ ż|t=tf and
z†|x=0 = z†|x=1 = 0. Note that the functions z and q appearing in equations (B 5) and (B 6) and
in the final condition for z† are the solutions to the direct problem equations (B 1) and (B 2).

Appendix C. Rigid cylinder
For a rigid cylinder, the governing equations for the cross-flow (vertical) displacement z and wake
variable q are

z̈ +
(

σ + γ

μ

)
ż + 1

u2 z = Mq (C 1)

and
q̈ + ε(q2 − 1)q̇ + q = Az̈, (C 2)

where γ , μ, M have the same definition as for the flexible structure (equations (2.8) and (2.9)), and
u and σ are defined consistently with the flexible case as u = f/f0 and σ = R/(2π fmT).
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