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Self-propulsion near the onset of Marangoni
instability of deformable active droplets
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Experimental observations indicate that chemically active droplets suspended in a
surfactant-laden fluid can self-propel spontaneously. The onset of this motion is
attributed to a symmetry-breaking Marangoni instability resulting from the nonlinear
advective coupling of the distribution of surfactant to the hydrodynamic flow generated
by Marangoni stresses at the droplet’s surface. Here, we use a weakly nonlinear
analysis to characterize the self-propulsion near the instability threshold and the
influence of the droplet’s deformability. We report that, in the vicinity of the threshold,
deformability enhances self-propulsion of viscous droplets, but hinders propulsion of
drops that are roughly less viscous than the surrounding fluid. Our asymptotics
further reveals that droplet deformability may alter the type of bifurcation leading to
symmetry breaking: for moderately deformable droplets, the onset of self-propulsion
is transcritical and a regime of steady self-propulsion is stable; while in the case of
highly deformable drops, no steady flows can be found within the asymptotic limit
considered in this paper, suggesting that the bifurcation is subcritical.

Key words: bifurcation, drops, low-Reynolds-number flows

1. Introduction

Several experimental studies have recently reported self-propulsion of active
droplets, whose swimming motion in viscous flows arises from spontaneously
generated surface tension gradients (Maass et al. 2016; Ryazantsev et al. 2017).
These active droplets can rely on either chemical reactions (Thutupalli, Seemann &
Herminghaus 2011) or solubilization (Izri et al. 2014; Krüger et al. 2016b; Moerman
et al. 2017) as a source of chemical energy to power their self-propulsion for
many hours at velocities up to one diameter per second. Experimental observations
further indicate that self-propelling microdroplets may exhibit complex dynamical
behaviour, including straight, curved or chaotic trajectories (Suga et al. 2018). Recent
studies have focused specifically on the type of chemical activity (Herminghaus et al.
2014; Izri et al. 2014; Nagasaka et al. 2017), the physical properties of the fluid
making up the drop (Krüger et al. 2016b), the presence of other active droplets
(Maass et al. 2016; Moerman et al. 2017) or geometrical constraints on the droplet’s
environment (Krüger et al. 2016a; Jin et al. 2018). Sophisticated dynamics paired
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with potential biocompatibility makes active droplets a prime candidate for modelling
and engineering of biological systems (Izri et al. 2014; Maass et al. 2016; Nagasaka
et al. 2017), as well as for studying and characterizing the collective motion of
self-propelled agents.

In order to elucidate the mechanisms responsible for their self-propulsion,
their complex individual motion and their interactions, active droplets have also
attracted much theoretical and modelling effort. Unlike other currently popular
microswimmers, such as bacteria or Janus particles, active droplets do not possess
inherent asymmetry and, thus, rely on a symmetry-breaking instability to initiate
self-propulsion (Herminghaus et al. 2014; Ryazantsev et al. 2017; Yoshinaga 2017).
In a typical scenario, the instability establishes a concentration or temperature gradient,
which produces an uneven stress distribution at the droplet interface, and the droplet
may self-propel due to the Marangoni effect. Naturally, spontaneous loss of symmetry
calls for a bifurcation analysis: Rednikov, Ryazantsev & Velarde (1994a,b) developed
a weakly nonlinear theory of a self-propelling non-deformable active droplet in the
presence of a net buoyancy force. In the limit of small Péclet and Reynolds numbers,
Rednikov et al. showed that the balance of self-propulsion and buoyancy force
spawns multiple regimes of steady propulsion of the droplet featuring different flow
patterns within and outside of the propelling drop. In contrast, recent theoretical works
assume a finite value of Péclet number to emphasize the role of advection in the
symmetry-breaking instability enabling the transport of active droplets; several models
sharing the same basic ingredients have been considered, which differ on the exact
production mechanism, transport or bulk reactivity of the chemical solute responsible
for the Marangoni flows at the heart of the symmetry-breaking instability (Thutupalli
et al. 2011; Yabunaka, Ohta & Yoshinaga 2012; Yoshinaga et al. 2012; Izri et al.
2014; Moerman et al. 2017). In particular, Yoshinaga et al. (2012) adopted a weakly
nonlinear approach to the problem and derived amplitude equations governing the
droplet dynamics near the onset of self-propulsion in the presence of a linear chemical
reaction in the bulk fluid.

Three-dimensional Marangoni flow stirred by an active droplet was considered
by Schmitt & Stark (2016), who employed their results to engineer a set-up for
guiding active drops with laser light. Dynamics of active drops can also be modelled
based on reaction–diffusion equations (Shitara, Hiraiwa & Ohta 2011; Schmitt &
Stark 2013). In particular, Shitara et al. (2011) investigated the motion of an isolated
domain confined in an excitable reaction–diffusion system and demonstrated that there
are three basic motions of the domain: straight motion, rotating motion and helical
motion. The diffusion–advection–reaction equation-based model developed by Schmitt
& Stark (2013) also yields several dynamical regimes: depending on the strength
of the Marangoni effect, the droplet may self-propel steadily, spontaneously stop or
oscillate. The effect of chemical product that changes the interfacial energy of a
droplet and thus affects the symmetry-breaking Marangoni instability was investigated
by Yabunaka et al. (2012), while Yabunaka & Yoshinaga (2016) recently analysed the
hydrodynamic and chemical interactions of two droplets, and their resulting collision
dynamics. The interested reader is referred to the recent reviews of Herminghaus
et al. (2014) and Maass et al. (2016) on the self-propulsion of active droplets for a
more exhaustive review of both experimental and theoretical work on this topic.

It should be noted that the transport due to Marangoni forces is not exclusive
to submerged droplets: the same mobility mechanism applies to swimmers moving
along a liquid surface (Würger 2014; Frenkel et al. 2018). Self-propulsion enabled
by a symmetry-breaking instability was also observed in active particles driven by
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diffusiophoresis (Moran & Posner 2017). In particular, Michelin, Lauga & Bartolo
(2013) have demonstrated theoretically that the flow around a chemically active
isotropic autophoretic particle may lose its stability via symmetry-breaking bifurcation,
resulting in self-propulsion of the particle. Together with the chemical activity of the
particle or droplet, the advective transport of chemical species by the flow field
they generate through Marangoni stresses or phoretic slip velocities is, thus, the key
ingredient leading to self-propulsion beyond a certain threshold required to overcome
the effect of diffusion. Even below the critical threshold for propulsion, chemical
activity and phoretic mobility of the particles were also shown to significantly impact
their response to outer flows (e.g. phoretic drag reduction (Yariv & Kaynan 2017)).

Self-propelled droplets and rigid diffusiophoretic particles share many similarities
but differ on one key feature, namely the origin of the flow field in response to
a concentration gradient. For rigid phoretic particles, the flow stems from non-zero
slip velocity at the particle surface in response to a chemical gradient, whereas the
mobility of Marangoni droplets is sustained by interfacial stresses (Moran & Posner
2017; Yoshinaga 2017). It should be noted that both mechanisms can be described
within the same framework, and in fact coexist in the case of droplets, although
phoretic effects are essentially negligible in front of Marangoni forcing except for
very viscous droplets (Anderson 1989).

As noted in the opening paragraph, the physics of spontaneous self-propulsion
is complex and represents considerable interest. In particular, recent experimental
observations of liquid-crystal droplets revealed the coupling between the director field
inside the drop and the trajectory of droplet self-propulsion (Krüger et al. 2016b).
The importance of the internal droplet structure was further investigated by Kree,
Burada & Zippelius (2017), who developed a theoretical model of self-propulsion of
a spherical droplet containing a rigid skeleton. Even in the absence of advection,
the geometry of active particles was also shown recently to strongly affect or
control the direction and magnitude of propulsion as well as their hydrodynamic
signature (Lauga & Michelin 2016; Nourhani & Lammert 2016; Michelin &
Lauga 2017; Ibrahim, Golestanian & Liverpool 2018). Shape can also act as a
symmetry-breaking mechanism for chemically homogeneous systems (Shklyaev, Brady
& Cordova-Figueroa 2014; Michelin & Lauga 2015). Although their Laplace pressure
remains typically greater than the hydrodynamic viscous stresses they sustain from the
surrounding fluid, self-propelled droplets do not have a fixed shape but may deform
under the effect of surfactant gradients or fluid motion. One of the present paper’s
main objectives is to characterize the fundamental effect of surface deformability on
mode competition and self-propulsion characteristics of active droplets. Deformability
typically accompanies self-propulsion of microorganisms and active particles in
general (Winklbauer 2015; Ohta 2017). The dynamics of deformable droplets driven
by the Marangoni effect was recently investigated theoretically by Yoshinaga (2014)
and by means of lattice-Boltzmann simulations by Fadda et al. (2017).

A large number of microscopic active droplets sustained in a bulk liquid constitute
an active emulsion. It has been established that the collective behaviour of drops
in active emulsions may follow several distinct scenarios of symmetry breaking
(Herminghaus et al. 2014). The focus of the present paper is on the self-propulsion
of a single active droplet, and such collective phenomena are beyond the scope of
the present paper; we refer the reader interested in the theory of active emulsions to
the recent review by Weber et al. (2018).

Active droplets have typical diameters of a few tens of micrometres, and swim
at a few micrometres per second. Hence, viscous stresses are typically much larger

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

85
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

C 
Sa

n 
D

ie
go

 L
ib

ra
ry

, o
n 

11
 D

ec
 2

01
8 

at
 1

5:
57

:3
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.853
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


714 M. Morozov and S. Michelin

than inertial forces. Following recent theoretical analyses of active droplets (see
Herminghaus et al. 2014; Izri et al. 2014; Yoshinaga 2014; Maass et al. 2016), we
consider the droplet dynamics within the framework of Stokes flows and for moderate
values of the Péclet number. We note that the self-propulsion of an active deformable
droplet in the limit of high solutal Péclet number, Pe � 1, and vanishing thermal
Péclet number was investigated by Golovin, Gupalo & Ryazantsev (1989). Unlike
Yabunaka et al. (2012) and Yoshinaga et al. (2012), we disregard any chemical
reaction in the bulk fluid both within and outside the droplet. That is, in our
model, activity is sustained by a reaction at the droplet interface which roughly
corresponds to the micellar dissolution under moderate surfactant concentration (i.e.
lower than the critical micelle concentration), as observed by Moerman et al. (2017).
We adopt an asymptotic approach to the problem at hand to obtain the self-propulsion
characteristics near the onset of propulsion as well as analyse the stability of the
steady-state solutions. As opposed to the analyses of Rednikov et al. (1994a,b), we
include dynamic deformability of the droplet interface into consideration and build
our argument based on both the investigation of steady states and explicit stability
analysis of these states. The latter allows us to distinguish between physically different
temporal scales involved in the onset of the Marangoni instability, thus providing
additional insight into the competition of different physical mechanisms driving the
droplet dynamics.

The paper is organized as follows. In § 2, the mathematical formulation of the
problem is outlined and relevant dimensionless parameters are defined. Neutrally
stable eigenmodes of the linearized problem are obtained in § 3. Then § 4 presents
a weakly nonlinear analysis of the problem in order to identify and characterize the
steady flow regimes emerging due to saturation of neutrally stable modes above the
instability threshold. In § 5, linear stability analysis of these steady states is discussed
and is employed to estimate the typical time scales associated with saturation of
different instability modes. Finally, we discuss our findings in § 6 and present some
perspectives.

2. Physical problem and model

The focus of the present work is the spontaneous propulsion and fluid motion
generated by active droplets under the effect of the Marangoni instability, and more
specifically the effect of interface deformability on the dynamics of an active droplet
near the onset of self-propulsion. We focus on an axisymmetric problem and employ
spherical polar coordinates (r, µ= cos θ) centred at the droplet’s centre of mass.

2.1. Governing equations and boundary conditions
A liquid droplet of a Newtonian fluid is considered here, with density ρi and dynamic
viscosity ηi, submerged in a second Newtonian fluid of density ρo and viscosity ηo,
containing a surfactant solute of concentration C, as sketched in figure 1. Note that
different experimental set-ups employ different inner and outer fluids: for instance, Izri
et al. (2014) observed water droplets in oil, while others used oil droplets in water
(Moerman et al. 2017). To remain general, we denote in the following by subscripts
i and o the quantities relevant to the inner and outer fluid, respectively. Far from the
droplet, the concentration of surfactant molecules is C∞. In the following, we consider
axisymmetric deformations of the droplet under flow and Marangoni stresses, whose
surface is thus described in spherical polar coordinates by r= R(t, µ) with µ= cos θ .
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z
C(t, r, µ) C → C∞

C < C∞ due to adsorption
r

Fluid 2 + surfactant

Fluid 1

R(t, µ)

FIGURE 1. (Colour online) Cross-section of an axisymmetric deformable active droplet
undergoing gradual micellar dissolution. As the droplet dissolves, it adsorbs surfactant that
powers the chemical reaction at the droplet interface, thus sustaining the dissolution.

Denoting the radius of the drop at rest (i.e. when it is spherical) as R0, the radius of
the deformed droplet can be written as

R(t, µ)= R0(1+ ξ(t, µ)). (2.1)

Naturally, the presence of deformations would contribute not only to the position of
the droplet interface, but also to its curvature. That is, vectors normal and tangential
to the interface are now functions of t and µ, thus affecting the boundary conditions
formulated below.

Multiple physico-chemical mechanisms have been identified in experiments leading
to the self-propulsion of active droplets (Herminghaus et al. 2014). In the following,
we explicitly refer to the molecular pathway identified in the experiments of Moerman
et al. (2017). Yet the formalism presented here is completely general and could easily
be applied to the micellar pathway relevant to the experiments of Izri et al. (2014). In
the molecular pathway leading to the solubilization of the oil phase into the aqueous
solution, surfactant molecules are absorbed at the surface and swollen micelles are
released, leading to slow decrease of the droplet size. In experiments, the typical time
of droplet dissolution is substantially longer than the time scale associated with self-
propulsion (Izri et al. 2014; Moerman et al. 2017), so that this dissolution process can
be neglected and the volume of the droplet is assumed constant, V = const., while the
droplet consumes surfactant molecules at a fixed rate A> 0,

Dn · ∇C=A at r= R, (2.2)

where n is the outward normal to the droplet interface. Surfactant molecules do not
penetrate into the droplet. Thus, advection–diffusion of surfactant should only be taken
into account outside of the drop,

∂tC+ uo · ∇C=D∇2C, (2.3)

where ∂t denotes the partial derivative with respect to time t, uo is the flow velocity
outside of the drop, and D denotes the molecular diffusivity of the surfactant in the
outer fluid. Naturally, far away from the droplet, surfactant concentration reaches a
constant value,

C→ C∞ for r→∞. (2.4)
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716 M. Morozov and S. Michelin

The presence of surfactant at the droplet’s surface modifies its interfacial tension γ .
Assuming that adsorption/desorption of surfactant molecules at the fluid–fluid interface
occurs instantaneously compared to its transport in the outer fluid, the concentration of
the adsorbed surfactants is ∝C|r=R (Baret 1969). We further linearize the relationship
between γ and C|r=R,

γ = γ0 − γC(C|r=R − C∞ +AR0/D), (2.5)

and note that γC ≡−(dγ /dC)|C=C∞−AR0/D > 0 with C∞ −AR0/D corresponding to the
surfactant concentration at r = R in the absence of flow. The stress balance at the
interface can then be written in vector form (i.e. accounting for both normal and
tangential stresses) as

(σo − σi) · n+∇ · [(I − nn)γ ] = 0 at r= R, (2.6)

where I is the identity tensor, σi,o = −Pi,oI + τi,o is the hydrodynamic stress tensor
with τi,o = ηi,o(∇ui,o + ∇uT

i,o) its viscous part. The continuity of the fluid’s velocity
and impermeability of the droplet’s surface is written as

R0
∂ξ

∂t
− R0

√
1−µ2

r
∂ξ

∂µ
(uo · eθ)= uo · er, uo = ui at r= R. (2.7)

In experiments, typical droplet sizes and velocities are respectively R0∼ 10 µm and
V ∼ 10 µm s−1 (Izri et al. 2014; Moerman et al. 2017), so that the Reynolds number
Re= ρoVR0/ηo is small and inertia can essentially be neglected so that the velocity ui,o
and pressure Pi,o, both inside and outside the droplet, satisfy the Stokes equations

∇ · ui,o = 0, ∇Pi,o = ηi,o∇
2ui,o, (2.8a,b)

with subscripts i and o referring to the inner and outer fluids, respectively. In the
reference frame of the droplet’s centre considered here, the flow at infinity is opposite
to the droplet’s translation,

u→−U∞ez for r→∞, (2.9)

and the system of equations above is closed by enforcing the mechanical equilibrium
of the droplet in the absence of inertia, i.e. the force-free condition∫

r=R
σo · n dS= 0. (2.10)

2.2. Axisymmetric Stokes flow
Axisymmetric Stokes flows inside and outside the droplet can be recast in terms of a
streamfunction ψi,o(t, r, µ), such that

u=−
1
r2

∂ψ

∂µ
er −

1

r
√

1−µ2

∂ψ

∂r
eθ . (2.11)

The general solution of the Stokes equations (2.8) for the inner and outer flows in
axisymmetric spherical coordinates is given by a superposition of orthogonal modes,
the so-called Lamb solution (Lamb 1945; Happel & Brenner 1983; Leal 2007).
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The flow outside the droplet must converge to a finite unidirectional flow as r→∞,
and the flow inside the droplet must be regular at the origin, so the streamfunction
and pressure can be written generally in the outer fluid as

ψo(t, r, µ)=
(

ao,1(t)
r
− bo,1(t)r2

)
(1−µ2)+

∞∑
n=2

(
ao,n(t)

rn
−

bo,n(t)
rn−2

)
(1−µ2)L′n(µ),

(2.12)

Po(t, r, µ)= ηo

∞∑
n=2

2n(1− 2n)bo,n(t)
Ln(µ)

rn+1
, (2.13)

and within the droplet as

ψi(t, r, µ) =
∞∑

n=1

(ai,n(t)rn+1
− bi,n(t)rn+3)(1−µ2)L′n(µ), (2.14)

Pi(t, r, µ) = −2ηi

∞∑
n=0

bi,n(t)(n+ 1)(2n+ 3)rnLn(µ), (2.15)

where Ln denotes the nth Legendre polynomial and the prime denotes the derivative.
Note that the Stokeslet term is omitted in (2.12) since the droplet is force-free (Blake
1971), which effectively enforces (2.10) automatically. The different modes in (2.12)
correspond to singularities of increasing order in the hydrodynamic signature of the
swimming droplet, and are associated with specific physical characteristics of the
self-propulsion and associated fluid motion. For instance, the mode with n= 1 carries
information about the droplet self-propulsion velocity (since it is the only mode
with non-zero velocity as r→∞), the mode with n= 2 corresponds to a symmetric
extensile flow akin to the flow excited by a force dipole (i.e. a stresslet), and so
on. Note that the inner and outer hydrodynamic problems are fully determined by
computing the intensity of the different modes (an,i, bn,i) and (an,o, bn,o), respectively.

2.3. Non-dimensionalization
In the following, all quantities are non-dimensionalized using R0, AR0/D and R0/V as
reference scales for length, relative concentration of surfactant (i.e. C−C∞) and time,
respectively. Here, V is the typical Marangoni velocity of a droplet in a surfactant
gradient A (Anderson 1989):

V ≡
γCAR0

D(2ηo + 3ηi)
. (2.16)

The pressure and viscous stress tensors are further rescaled as

Pi→ P∞ +
2γ0

R0
+
ηoV
R0
ηPi, Po→ P∞ +

ηoV
R0

Po, (τi, τo)→
ηoV
R0
(ητi, τo),

(2.17a−c)

where P∞ is the constant background pressure, γ0 the surface tension of the same
spherical droplet in the absence of flow, and η≡ηi/ηo is the viscosity ratio. We further
denote by U∞≡U∞/V the swimming velocity of the droplet. Besides η, the physical
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problem is entirely characterized by two additional non-dimensional parameters, the
Péclet and capillary numbers,

Pe≡
VR0

D
, Ca≡

γCAR0

Dγ0
, (2.18a,b)

that characterize the relative magnitude of surfactant advection and diffusion, and the
relative magnitude of Marangoni and Laplace stresses, respectively.

2.4. Isotropic motionless base state
Equations (2.1)–(2.10) feature a motionless isotropic steady state given by

ξ̄ = 0, ūi = ūo = 0, P̄i = P̄o = 0, C̄=−1/r. (2.19a−d)

Note that this solution (2.19) exists for any values of Pe, Ca and η; it features an
isotropic surfactant distribution, no Marangoni stresses and, therefore, no droplet
motion. In the following, we are interested in the existence and stability of additional
non-isotropic steady states emerging in the vicinity of the base state (2.19). This
amounts mathematically to finding the fundamental eigenmodes of the system. The
next section focuses on finding these eigenmodes and their existence condition (i.e.
the corresponding value of Pe for given Ca and η), while in § 4 we investigate the
steady flows sustained by nonlinear saturation of the eigenmodes. Finally, § 5 analyses
the stability of the trivial state (2.19) – the stability of the non-isotropic steady state
is presented in appendix B.

3. Neutrally stable eigenmodes of the linearized problem
We now carry out a linear analysis of the problem stated in § 2. Specifically, the

dimensionless form of the problem formulated in (2.1)–(2.10) is linearized about the
base state (2.19) in the case of a steady flow (i.e. ∂/∂t = 0). The solution of the
resulting linear problem constitutes a linear stability analysis of the base state in the
limit of vanishing perturbation growth rates. By definition, perturbation growth rates
vanish at the threshold of monotonic instability. Therefore, solution of the linearized
problem allows us to (i) identify the instability threshold and (ii) obtain the set of
neutrally stable eigenmodes. At the next stage of analysis, these eigenmodes are used
to construct the steady flows emerging above the instability threshold (§ 4).

3.1. Linearized equations
The linearized advection–diffusion equation reads

∇
2C(1)
=−

Pe
r4

∂ψ (1)
o

∂µ
, (3.1)

and linearized boundary conditions at the droplet interface can be written using
domain perturbation, i.e. f |r=R ≈ f |r=1 + ξ f ′|r=1, as

∂C(1)

∂r
− 2ξ (1) = 0, ψ

(1)
i =ψ

(1)
o = 0,

∂ψ
(1)
i

∂r
=
∂ψ (1)

o

∂r
, (3.2a−c)(

∂2

∂r2
− 2

∂

∂r
− (1−µ2)

∂2

∂µ2

)
(ψ (1)

o − ηψ
(1)
i )= (2+ 3η)(1−µ2)

∂

∂µ
(C(1)
+ ξ (1)),

(3.3)
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Marangoni self-propulsion of deformable active droplets 719

Ca
2+ 3η

[
−ηP(1)i + P(1)o + 2

(
∂

∂r∂µ
− 2

∂

∂µ

)
(ψ (1)

o − ηψ
(1)
i )

− 2(2+ 3η)(C(1)
− 2ξ (1))

]
= 2ξ (1) − 2µ

∂ξ (1)

∂µ
+ (1−µ2)

∂2ξ (1)

∂µ2
, (3.4)

where superscript (1) denotes small perturbations of the base state. Because of the
linearity of the Stokes equations, ψ (1)

i,o and P(1)i,o assume the same form as (2.12)–(2.15).
The streamfunction and pressure fields can be decomposed into orthogonal

modes (2.12)–(2.15). The form of the linearized equations (3.1)–(3.4) suggests that
the linearized concentration C(1)(r, µ) and displacement ξ (1)(µ) also decompose in
orthogonal modes of the form

C(1)(r, µ)=
∞∑

n=0

C(1)
n (r)Ln(µ), ξ (1)(µ)= ξ

(1)
0 +

∞∑
n=2

ξ (1)n Ln(µ), (3.5a,b)

where the radial part of the basis functions of the concentration field C(1)
n (r) and

constant amplitudes ξ (1)n , together with the coefficients (a(1)n,i , b(1)n,o, b(1)n,i , a(1)n,o) are to be
determined below and characterize each orthogonal eigenmode. In the expansion of
ξ (1)(µ) presented in (3.5), we deliberately ignore the term ∝ L1(µ), since in the limit
of small deformations this term corresponds to translation of the droplet, rather than
deformation.

3.2. Asymptotic structure of the concentration field

Substitution of (2.12) and (3.5) into (3.1) yields an equation for C(1)
n (r) admitting the

following solution:

C(1)
0 (r)=

c(1)0

r
+ d(1)0 , C(1)

1 (r)=
c(1)1

r2
+ d(1)1 r+ Pe

a(1)o,1 + 2b(1)o,1r3

2r3
, (3.6a,b)

C(1)
n (r)

∣∣
n>1 =

c(1)n

rn+1
+ d(1)n rn

+ Pe
na(1)o,n + (n+ 1)b(1)o,nr2

2rn+2
, (3.7)

where c(1)n and d(1)n are unknown constants. In the case of a self-propelling drop
(i.e. b(1)o,1 6= 0), this solution explicitly violates the far-field boundary condition (2.9).
This is a well-known feature of advection–diffusion problems in the presence of a
weak advective far-field flow: Acrivos & Taylor (1962) used matching asymptotic
expansions to demonstrate that perturbations of the solute concentration field due to
particle motion are dissipated in a boundary layer located at r ∼ 1/ε � 1, where
0< ε� 1 quantifies the velocity of the particle with respect to the surrounding fluid.
This framework applies here, since asymptotically small perturbations of a motionless
base state are considered, and we thus aim to construct a composite solution for the
concentration field consisting of two parts: (i) a near-field part, corresponding to the
immediate surroundings of the drop, r∼ 1,

C(r, µ)=−1/r+ εC(1)
+ ε2C(2)

+ · · · , (3.8)

and (ii) a far-field part valid away from the drop, ρ ≡ r/ε ∼ 1 (r� 1),

H(ρ, µ)= εH(1)
+ ε2H(2)

+ · · · , (3.9)
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Matching
C ¡ H

1 ≪ r ≪ ´-1 r ¡ ´-1 rr ¡ 1

Near field
C(r, µ)Co

nc
en

tra
tio

n
Far field
H(r, µ)

FIGURE 2. (Colour online) Asymptotic structure of the surfactant concentration field
around the droplet. The near-field solution C(r, µ) is matched with the far-field solution
H(r, µ) in the intermediate region where 1� r� ε−1.

as shown in figure 2. Here H(ρ, µ) satisfies the rescaled advection–diffusion equation,
namely,

−εPe
(
∂ψo

∂µ

∂H
∂ρ
−
∂ψo

∂ρ

∂H
∂µ

)
=
∂

∂ρ

(
ρ2 ∂H
∂ρ

)
+

∂

∂µ

(
(1−µ2)

∂H
∂µ

)
. (3.10)

Here ε is a small parameter that quantifies the distance to the isotropic steady
state. Similarly to the work of Acrivos & Taylor (1962), C(r, µ) encapsulates the
dynamics of the droplet interface, whereas H(ρ, µ) is determined by advection of the
concentration disturbances imparted by the droplet. Naturally, C(r, µ) and H(ρ, µ)
must yield identical results in the matching region occurring at 1 � r � 1/ε (or,
equivalently, ε � ρ � 1) (Holmes 1995). Note that although (3.8) and (3.9) include
higher-order terms in ε, only C(1) and H(1) are relevant in the context of linear
analysis.

3.3. Concentration field far from the translating drop and asymptotic matching
Linearization of the rescaled advection–diffusion equation (3.10) about the base state,
namely, about H̄ = 0, yields

F(H(1)) ≡ 2Pe b(1)o,1

(
µ
∂H(1)

∂ρ
+

1−µ2

ρ

∂H(1)

∂µ

)
+

1
ρ2

[
∂

∂ρ

(
ρ2 ∂H
∂ρ

)
+

∂

∂µ

(
(1−µ2)

∂H
∂µ

)]
= 0. (3.11)

Its solution that decays as ρ→∞ can be written as (Acrivos & Taylor 1962)

H(1)(ρ, µ)=
e−ρsµ

√
|ρs|

∞∑
n=0

h(1)n Kn+1/2(|ρs|)Ln(µ), (3.12)

where h(1)n are unknown constants to be determined in the matching process with the
inner solution, ρs ≡ Pe b(1)o,1ρ, and Kn(x) denotes the modified Bessel function of the
second kind of order n. We note that the direction of the droplet motion along the
symmetry axis is determined by the sign of the constant amplitude b(1)o,1. Since there
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Marangoni self-propulsion of deformable active droplets 721

is no physical difference between the two directions of motion, we assume b(1)o,1 > 0 in
what follows.

We use Van Dyke’s matching rule (Holmes 1995) to match solutions (3.6), (3.7)
and (3.12) in the region ε� ρ� 1. More specifically, C(r,µ) is expressed in terms of
ρ and both C and H are expanded in powers of ρ� 1. Note that only the terms linear
in ε, ρ or ε/ρ can be matched at the leading order of expansion. As a consequence,

d(1)0 = Pe b(1)o,1, h(1)0 =−

√
2
π

Pe b(1)o,1, d(1)n = h(1)n = 0 for n> 0. (3.13a−c)

3.4. Solvability condition

Substitution of ψ (1)
i , ψ (1)

o and C(1) given by (2.12), (2.14), (3.6) and (3.7) into the
boundary conditions (3.2)–(3.4) and subsequent projection of the result onto the
nth Legendre polynomial yields a sequence of sets of homogeneous linear algebraic
equations for the amplitudes a(1)i,n , b(1)i,n , a(1)o,n, b(1)o,n, c(1)n and ξ (1)n . For given n, the
solvability condition, i.e. the existence condition for a non-trivial solution to the
linearized problem, reads

Pe= Pen ≡

4, n= 1,
4

2+ 3η

[
(n+ 1)(2n+ 1)(1+ η)−Ca

(
1+ η

n− 1
n+ 2

)]
, n> 1.

(3.14)

Equations (3.14) determine when the linearized problem yields a non-trivial
time-independent (i.e. neutrally stable) solution. In § 5, we will show that Pen is
the minimum Péclet number below (respectively above) which the isotropic state is
linearly stable (respectively unstable) to perturbations along the nth mode presented
above. In other words, Pen represents the threshold of the nth mode of monotonic
instability. This motivates referring to Pen as the instability threshold for mode n
in the following. Depending on the value of the capillary number Ca, one of the
first two modes in (3.14) features the lowest instability threshold. As a consequence,
the next stages of the analysis are focused exclusively on these first two instability
modes, namely, the cases of n= 1 and n= 2, shown in figure 3.

The first eigenmode (n= 1, Pe1 = 4) reads

b(1)i,0 =
Pe1A1

3η
(2+ 3η),

3
2

a(1)i,1 =
3
2

b(1)i,1 = a(1)o,1 = b(1)o,1 = A1, (3.15a,b)

c(1)0 = 0, d(1)0 = Pe1A1, c(1)1 =−
3Pe1A1

4
, d(1)1 = 0, (3.16a−d)

and physically corresponds to a polar concentration field at the surface of the droplet
C(1)
∝ µ, which maintains its steady translation. The corresponding flow field is that

of a translating droplet, i.e. the superposition of a steady flow with a source dipole
singularity to enforce the impermeability condition. Note that the instability threshold
Pe1= 4 does not include the viscosity ratio η, since we define dimensionless velocity
based on the terminal velocity of a droplet in an imposed gradient of surfactant
concentration (2.16) (Anderson 1989).
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(a) (b)

5

10
n = 1

15
n = 2

20

25

Pen z

xCa
1 2 3 4

-1.0

-0.5

0

0.5

1.0

1.5 n = 1:
self-propulsion

n = 2: symmetric
extensile flow

0 0.5 1.0 1.5 2.0 2.5
x

-1.0

-0.5

0

0.5

1.0

1.5

0 0.5 1.0 1.5 2.0 2.5

FIGURE 3. (Colour online) Two instability modes competing for the minimal value of
the instability threshold Pen. (a) Evolution of the critical Péclet number with the capillary
number for η = 1. (b) Flow field corresponding to the first and the second mode of
instability, respectively.

The second eigenmode (n= 2) can be written as

a(1)i,2 = b(1)i,2 = a(1)o,2 = b(1)o,2 = A2, ξ
(1)
2 =Ca A2

4+ η
2(2+ 3η)

, (3.17a,b)

c(1)2 =−
A2

3

(
7Pe2 +Ca

4+ η
2+ 3η

)
, d(1)2 = 0. (3.18a,b)

In that case, the concentration field C(1)
∝ L2(µ) is front–back symmetric and cannot

drive any net droplet motion. Instead, an extensile flow is forced by the Marangoni
stress. Outside the droplet, it takes the same form as the second mode of the classical
squirmer model (Blake 1971) and consists of a stresslet singularity (i.e. symmetric
force dipole) and source quadrupole.

The amplitudes of the eigenmodes of the system, A1 > 0 in (3.15), (3.16) or A2
in (3.17), (3.18), remain naturally undetermined within this linear framework. The
weakly nonlinear analysis, which is the focus of the next section, will provide these
saturation amplitudes in the vicinity of the critical conditions Pe= Pen.

Finally, we note that (3.14) echoes the result of the stability analysis in the case of
chemically active isotropic particles developed by Michelin et al. (2013). In particular,
Michelin et al. have demonstrated that the onset of spontaneous self-propulsion of
active spherical particles also corresponds to Pe = 4. We argue that the persisting
value of the instability threshold is related to the choice of dimensionless velocity.
Both this paper and the work of Michelin et al. (2013) define dimensionless velocity
based on the velocity of an active drop/particle in an external concentration gradient
A/D. In both cases, self-propulsion and the resulting advection of the concentration
field generates a front–back concentration contrast. The onset of the drop or particle
motion then corresponds in both cases to a fixed ratio of advective (i.e. destabilizing)
and diffusive (i.e. stabilizing) terms, resulting in a fixed value of the Péclet number,
Pe= 4.

4. Weakly nonlinear analysis
Each of the neutrally stable eigenmodes obtained in § 3 exists at a distinct value

of Pe given by (3.14). To determine the saturation properties of the eigenmodes, we
now successively analyse the behaviour of the different modes near the corresponding
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Marangoni self-propulsion of deformable active droplets 723

critical Péclet number. Formally speaking, higher-order terms of the asymptotic
expansion established in (3.8) and (3.9) are now included to investigate whether
nonlinear terms allow for the saturation of growing perturbations, thus enabling a
steady flow. Below, we focus specifically on the first two modes (which present the
lowest critical Péclet number) and demonstrate that the two competing modes of
instability shown in figure 3 spawn two families of steady flows.

To study the nonlinear behaviour of the neutral modes shown in figure 3, we assume
that the Péclet number is close to the corresponding critical value,

Pe= Pen + εδ, (4.1)

where εδ measures the distance to the critical Péclet number and δ = O(1). The
concentration field is expanded as in (3.8) and (3.9), whereas the flow field and
droplet shape are expanded near the isotropic steady state as

(ψi, ψo, ξ)= ε(ψ
(1)
i , ψ (1)

o , ξ (1))+ ε2(ψ
(2)
i , ψ (2)

o , ξ (2))+ · · · . (4.2)

At each order, approximation ξ ( j) is given by a superposition of Legendre polynomials,
as shown in (3.5), and the streamfunctions are expanded as in (2.12) and (2.14).
Substituting the expansions (3.8), (3.9), (4.1) and (4.2) into the dimensionless form
of (2.2)–(2.10), a sequence of problems is obtained at successive orders of ε. The
first problem in the sequence comprises O(ε) terms and is identical to the linearized
problem considered in § 3. The rest of this section is devoted to the higher-order
problems in ε.

4.1. Steady self-propulsion (n= 1)
In the case of n = 1, Pe1 ≡ 4 and the leading-order flow is given by the first
squirming mode with coefficients presented in (3.15) and (3.16). This squirming
mode corresponds to a self-propelling droplet and, to determine the self-propulsion
velocity, we now consider the problem at ε2 featuring quadratic interactions of the
flow and concentration fields obtained at ε.

4.1.1. Concentration field around the droplet
The quadratic approximation of the advection–diffusion equation (i.e. retaining only

O(ε2) terms) reads

−Pen
1
r4

∂ψ (2)
o

∂µ
−∇

2C(2)
=

Pen

r2

(
∂ψ (1)

o

∂µ

∂C(1)

∂r
−
∂ψ (1)

o

∂r
∂C(1)

∂µ

)
+
δ

r4

∂ψ (1)
o

∂µ
. (4.3)

Using (3.15), (3.16) and the resulting forms of C(1) and ψ
(1)
i,o , the inhomogeneous

right-hand side of (4.3) includes non-zero projections onto the zeroth, first and second
Legendre harmonics. Accordingly, the angular component of C(2)(r, µ) is given by the
first three Legendre polynomials, namely, C(2)(r, µ)=

∑2
n=0 C(2)

n (r)Ln(µ), with

C(2)
0 (r)=

c(2)0

r
+ d(2)0 − Pe2

1A2
1
8− 15r+ 20r3

+ 80r6

120r5
, (4.4)

C(2)
1 (r)=

c(2)1

r2
+ d(2)1 r+ δA1

1+ 2r3

2r3
+ Pe1

a(2)o,1 + 2b(2)o,1r3

2r3
, (4.5)
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C(2)
2 (r)=

c(2)2

r3
+ d(2)2 r2

+ Pe1
2a(2)o,2 + 3b(2)o,2r2

2r4
− Pe2

1A2
1
10− 21r+ 70r3

− 42r4
+ 28r6

84r5
,

(4.6)

where c(2)n and d(2)n are unknown constant amplitudes to be determined in the matching
process with the far-field boundary layer.

Equation (3.10) reads at O(ε2) as

F(H(2))=−2(Pe1b(2)o,1 + δA1)

(
µ
∂H(1)

∂ρ
+

1−µ2

ρ

∂H(1)

∂µ

)
, (4.7)

where the linear operator F is defined in (3.11). Since A1 > 0, the solution of (4.7)
which decays as ρ→∞ reads

H(2)(ρ, µ) =
Pe1b(2)o,1 + δA1

2

(
2(1+µ)+ 3µ

1+ ρs

ρ2
s

)
e−ρs(1+µ)

+
e−ρsµ

√
ρs

∞∑
n=0

h(2)n Kn+1/2(ρs)Ln(µ), (4.8)

where h(2)n are unknown constant amplitudes to be determined in the matching process,
and ρs ≡ Pe1A1ρ > 0.

Asymptotic matching of C(r, µ) and H(r, µ) at O(ε2) in the region ε� ρ� 1 is
achieved by expressing C(r, µ)=−1/r+ εC(1)

+ ε2C(2) in terms of ρ, and expanding
both C(ρ, µ) and H(ρ, µ) in powers of ρ. Linear and quadratic terms in ε, ρ or ε/ρ
must now be matched, leading to

d(2)0 = Pe1b(2)o,1 + δA1, d(2)1 =−Pe2
1A2

1, d(2)n = 0 for n> 1, (4.9a−c)

h(2)1 =−3
Pe1b(2)o,1 + δA1
√

2π
, h(2)n = 0 for n 6= 1. (4.10a,b)

4.1.2. Solvability condition
Combination of (4.9) and (4.4)–(4.6) yields C(2)(r, µ). Expanding the boundary

conditions (2.2), (2.6) and (2.7) at O(ε2) and projecting the result onto the first three
Legendre polynomials provides a set of inhomogeneous linear algebraic equations for
the amplitudes a(2)i,n , b(2)i,n , a(2)o,n, b(2)o,n, c(2)n and ξ (2)n . The solvability condition of this set
of equations reads

A1(δ − 32A1)= 0. (4.11)

Equation (4.11) implies that two branches of steady solutions of the nonlinear
problem (2.3)–(2.10) exist near Pe1: the first branch, given by A1 = 0, corresponds
to a motionless droplet and is in fact simply the isotropic steady state (2.19) already
discussed; the second branch describes a self-propelling drop with finite velocity
(A1 = δ/32> 0). Note that in the case of self-propulsion, the velocity of the droplet
grows linearly with Pe − Pe1 (i.e. A1 ∝ δ), suggesting that the onset of the droplet
motion is a transcritical bifurcation. Also recall that the self-propelling mode is
associated with no droplet deformation. As a result, the solvability condition (4.11)
does not include Ca, i.e. in the leading order, deformability does not affect droplet
self-propulsion velocity.
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Marangoni self-propulsion of deformable active droplets 725

Following the steps of the analysis above, it is easy to demonstrate that, in the case
of A1 6 0, the counterpart of the solvability condition (4.11) reads

A1(δ + 32A1)= 0, (4.12)

implying that, similarly to the case of A1 > 0, the steady problem is solvable either
for A1 = 0 or for δ > 0, i.e. above the threshold of the Marangoni instability.

4.1.3. Effect of deformability on the droplet’s self-propulsion
Equation (4.11) provides the leading-order evolution of the droplet velocity for the

self-propelled steady state near the onset of propulsion, Pe=Pe1, and was obtained by
considering the solvability condition of the problem including corrections up to O(ε2).
We now use the same approach to extend the expansion of the different equations up
to O(ε3) and obtain the quadratic correction for the self-propulsion velocity.

When the solvability condition (4.11) is satisfied, the non-trivial solution of the
problem at O(ε2) can be written as

b(2)i,0 =
(2+ 3η)(29δ2

+ 10240B1)

7680η
,

3
2

a(2)i,1 =
3
2

b(2)i,1 = a(2)o,1 = b(2)o,1 = B1, (4.13a,b)

a(2)i,2 = b(2)i,2 = a(2)o,2 = b(2)o,2 =−
33δ2

896(Pe2 − 4)
, ξ

(2)
2 =−

33Caδ2(4+ η)
1792(2+ 3η)(Pe2 − 4)

,

(4.14a,b)

c(2)0 =−
δ2

128
, d(2)0 = 4B1 +

δ2

32
, c(2)1 =−

(
δ2

32
+ 3B1

)
, d(2)1 =−

δ2

64
,

(4.15a−d)

c(2)2 = 3δ2 20(12+ 17η)+ 3Ca(4+ η)
896(2+ 3η)(Pe2 − 4)

, d(2)2 = 0, (4.16a,b)

where the remaining unknown constant B1 is determined from the solvability condition
at O(ε3). It should be noted in (4.13)–(4.16) that the leading-order deformation of the
self-propelling droplet is O(ε2) (recall that ξ (1) = 0) and always corresponds to an
oblate shape (ξ (2)2 < 0). The leading-order volume change is O(ε4), so that volume
conservation is automatically enforced up to quartic order in ε.

To obtain a correction to the droplet self-propulsion velocity, the weakly nonlinear
analysis must be carried out up to the cubic order. The solution procedure of the
problem at ε3 remains exactly the same as for the lower-order problems, and several
intermediate results of the derivation are provided in appendix A. As for the ε2

problem, the solvability condition at ε3 provides information about the O(ε2) droplet
velocity, namely,

U∞ = 2(εA1 + ε
2B1)

=
Pe− 4

16

−
(Pe− 4)2[4(2+ 3η)(343 073+ 325 872η)− 35Ca(4+ η)(932+ 2883η)]

1254 400(2+ 3η)2(Pe2 − 4)
,

(4.17)
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U∞

Pe
4.0 4.2 4.4 4.6 4.8 5.0 5.2

Ca = 0

Ca = 10, ˙ = 2

Ca = 10, ˙ = 0.5

FIGURE 4. Effect of deformability (Ca) and relative viscosity (η) on the self-propulsion
velocity of an active droplet near the onset of the Marangoni instability as given in (4.17).
The solid line represents the case of a non-deformable droplet (Ca= 0) with η = 0.5 or
η= 2 (the two cases are essentially indistinguishable due to weak dependence of U∞ on η
in the limit of Ca= 0). The dotted and dashed lines represent deformable droplets (Ca=
10), with η= 0.5 and η= 2, respectively.

with Pe2(Ca, η)= [60(1+ η)−Ca(4+ η)]/(2+ 3η) (see (3.14)). One can immediately
observe that at this order ∂CaU∞ > 0 (respectively ∂CaU∞ < 0) when η > 1.0134
(respectively η < 1.0134). The deformability of the droplet’s interface therefore
affects differently the self-propulsion of droplets that are more or less viscous than
the surrounding fluid: roughly speaking, (4.17) states that deformability enhances
self-propulsion of viscous droplets, but hinders propulsion of drops that are less
viscous than the surrounding fluid (figure 4).

This result can be interpreted as follows. Steady self-propulsion of the droplet
occurs when the Stokes drag balances the thrust generated by Marangoni stresses,
which result from concentration gradients at the surface. In our analysis, this balance
is represented by a saturated self-propelling eigenmode, where the saturation comes
from nonlinear terms implementing weakly nonlinear interaction of the different
components of the solution. At ε3, the cumulative Marangoni stress on the drop is
∝C(3)

1 (r = 1), see (A 2), which includes the term ∝ 1/(Pe2 − 4) resulting from the
interaction of the front–back symmetric component (n= 2) of the O(ε2) concentration
mode with the leading-order (i.e. O(ε)) flow associated with self-propulsion. The
second critical Péclet number Pe2 is a decreasing function of Ca; thus increasing
deformability enhances the term ∝ 1/(Pe2 − 4); moreover, when r = 1, this term is
positive (respectively negative) for η < 39/29 (respectively η > 39/29). That is, an
increase in capillary number tends to increase the front–back concentration gradient
of surfactant (and Marangoni forcing) for viscous droplets, while deformability tends
to reduce them for less viscous droplets.

In addition, (4.13)–(4.16) establish that self-propulsion at Ca> 0 is always
accompanied by droplet deformations of order ε2 with an oblate shape, ξ (2) < 0.
Oblate deformations are known to increase the Stokes drag on a steadily moving
droplet (Matunobu 1966), namely,

FD ∝ 1− ε2ξ
(2)
2

3η2
− η+ 8

5(1+ η)(2+ 3η)
. (4.18)

In our case, the magnitude of droplet deformations given by |ξ (2)| decreases with
increasing η, i.e. less viscous droplets deform more and experience higher drag and a
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Marangoni self-propulsion of deformable active droplets 727

lower velocity for a given Marangoni forcing. Both effects of Ca (modified Marangoni
forcing and modified viscous drag) therefore reinforce each other: drops with smaller
η deform more than their viscous counterparts and, thus, experience higher drag, and
they also experience a reduced Marangoni forcing, leading to the non-monotonic effect
of deformability illustrated in figure 4. Interestingly, oblate deformations of active
droplets were also predicted in the limit of Pe� 1 by Golovin et al. (1989) and in the
presence of a chemical reaction in the bulk fluid by Yoshinaga (2014). An alternative
approach based on reaction–diffusion equations also yields oblate deformations of the
reacting domain (Shitara et al. 2011).

4.2. Symmetric extensile flow (n= 2)
The previous section focused on the analysis of the self-propelling mode of instability
(n = 1). The present section focuses now on the second mode characterized by
a symmetric extensile flow (see figure 3). In the case of n = 2, the solvability
condition (3.14) yields Pe = Pe2, and the leading-order flow is given by the second
squirming mode with an unknown amplitude A2 introduced in (3.17) and (3.18).
In order to determine A2, the solvability condition must be established for the ε2

problem featuring quadratic interactions of the flow and concentration fields obtained
in § 3.

4.2.1. Concentration distribution around the droplet
For n = 2, C(1)(r, µ)∝ L2(µ), and quadratic nonlinearities in (4.3) produce non-

zero projections of the O(ε2) concentration field onto the zeroth, second and fourth
Legendre harmonics, that is,

C(2)(r, µ)=
∑2

n=0 C(2)
2n (r)L2n(µ), (4.19)

with

C(2)
0 (r) =

c(2)0

r
− Pe2

2A2
2
180− 490r+ 126r2

+ 735r3
− 630r4

1050r7

+Pe2Ca A2
2
(4+ η)(2− 3r2)

30r6(2+ 3η)
, (4.20)

C(2)
2 (r) =

c(2)2

r3
+ δA2

2+ 3r2

2r4
+ Pe2

2a(2)o,2 + 3b(2)o,2r2

2r4
+ 2Pe2Ca A2

2
(4+ η)(1− 3r2)

21r6(2+ 3η)

−Pe2
2A2

2
875− 2450r+ 225r2

+ 7350r3
+ 756r4

+ 3780r4 log r
3675r7

, (4.21)

C(2)
4 (r) =

c(2)4

r5
+ Pe2

4a(2)o,4 + 5b(2)o,4r2

2r6
+ 3Pe2Ca A2

2
(4+ η)(4+ 9r2)

70r6(2+ 3η)

−Pe2
2A2

2
2016− 6468r+ 616r2

− 14 553r3
+ 3564r4

+ 5544r2 log r
5390r7

, (4.22)

where c(2)n are constant amplitudes to be determined. In the absence of any translation
of the droplet, the rescaled advection–diffusion equation (3.10) at ε2 reduces to
Laplace’s equation, implying that for n= 2 advection of the perturbations in the far
field is negligible (i.e. no boundary layer is needed here). Equivalently, it is now
possible to satisfy the far-field and near-field boundary conditions for C(2)(r, µ),
which must decay as r→∞.
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728 M. Morozov and S. Michelin

4.2.2. Boundary and solvability conditions
Expanding the boundary conditions (2.2) and (2.6), (2.7) up to O(ε2), and

substituting for C(1), C(2) and the corresponding flow field, projection of the result
onto the first five Legendre polynomials provides a set of inhomogeneous linear
algebraic equations for the amplitudes a(2)i,n , b(2)i,n , a(2)o,n, b(2)o,n, c(2)n and ξ (2)n . In particular,
projection of the kinematic boundary condition onto L0(µ) yields

Ca A2
2

6(4+ η)
5(2+ 3η)

= 0. (4.23)

That is, a symmetric steady flow field around an active droplet is not possible for
Ca=O(1), but may exist in the limit of a weakly deformable droplet, i.e. Ca∼O(ε).
Indeed, a weakly deformable droplet is spherical in the leading order, ξ (1) = 0, and
features instability thresholds independent of Ca. In the particular case of Ca∼ ε, the
O(Ca) terms are pushed to the next order of asymptotic expansion. For instance, the
O(Ca) terms in (3.2)–(3.4) appear in the corresponding boundary conditions of the
problem at ε2. Consequently, the solvability condition of the ε2 problem is

A2(49δ(2+ 3η)2 + 49Ca(4+ η)(2+ 3η)+ 16 320A2(1+ η)2)= 0. (4.24)

Equation (4.24) establishes that in the limit of a weakly deformable active droplet,
two branches of steady solutions exist in the ε-neighbourhood of Pe2: the first
branch, given by A2 = 0, corresponds to a motionless state; whereas the second,
featuring A2 < 0, describes a symmetric extensional flow field akin to that of a force
dipole. Recall that (3.18) connects the coefficient A2 with a particular type of droplet
deformation: A2 > 0 (respectively A2 < 0) corresponds to prolate (respectively oblate)
deformations. In general, prolate and oblate deformations are not symmetric, so it is
natural that our analysis yields A2 with a particular sign.

4.3. Simultaneous onset of the two dominant instability modes (Pe1 ∼ Pe2)
The definition of the instability thresholds (3.14) implies that for

Ca= 4(13+ 12η)/(4+ η)+O(ε) (4.25)

the thresholds of the first two eigenmodes coincide, namely, |Pe1 − Pe2| =O(ε). The
purpose of this section is to investigate how the potential interaction of these two
modes may impact the self-propulsion of the droplet. In this case, the leading-order
flow field is given by the first two squirming modes with coefficients presented
in (3.15)–(3.18), respectively. We now consider the problem at ε2 featuring quadratic
interactions of the two instability modes shown in figure 3.

The weakly nonlinear dynamics of the system is investigated in the case of

Ca= 4(13+ 12η)/(4+ η)+ εCa1, (4.26)

where the system admits two linearly independent eigenmodes and C(1)(r, µ) is
represented by a combination of L0(µ), L1(µ) and L2(µ). Thus, at ε2 quadratic
nonlinearities in (4.3) produce non-zero projections onto the first five Legendre
harmonics. Following the steps of the analysis presented in §§ 4.1 and 4.2, the
rescaled advection–diffusion equation (3.10) reduces at ε2 to (4.7) with a solution
given by (4.8), and the near- and far-field solutions match in the region ε� ρ� 1,
when conditions (4.9) are met.
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Marangoni self-propulsion of deformable active droplets 729

Expanding the boundary conditions at the droplet interface to O(ε2), the projection
of the kinematic boundary condition onto L0(µ) yields

24(13+ 12η)
5(2+ 3η)

A2
2 = 0, (4.27)

and can only be satisfied when A2= 0, as for the case of mode n= 2 alone, see (4.23).
Consequently, the solvability condition for the problem at ε2 in the case of Pe1∼Pe2
reads

A1 = 0. (4.28)

No non-trivial solution can be found within the O(ε) neighbourhood of Pe1∼Pe2, and
in particular the regime of steady self-propulsion discussed in § 4.1 ceases to exist due
to the competition between the first and the second modes of the Marangoni instability.
In other words, we have arrived at a conclusion that deformability may cause a
qualitative change in droplet dynamics: droplets with Ca< 4(13+ 12η)/(4+ η)
exhibit a regime of steady self-propulsion with U∞ ∝ Pe− Pe1, whereas highly
deformable drops with Ca > 4(13+ 12η)/(4+ η) have no steady regime to reach in
the vicinity of the base state (2.19). As demonstrated in the following section, this
qualitative change in droplet behaviour can be linked to the asymptotic disparity of
the time scales associated with the first two modes of the Marangoni instability.

5. Linear stability analysis and growth rates
The analysis developed so far was focused on the steady flows emerging due

to saturation of neutrally stable modes. To gain further insight into the different
transitions identified and the stability of each of these states (including the isotropic
base state), the linear stability analysis of the system is now carried out in the vicinity
of the steady solutions obtained in the previous section. We focus primarily on the
linear stability of the isotropic base state (2.19), the stability of the self-propelled
mode being presented in appendix B. Specifically, we obtain the growth rates of
the system’s eigenmodes identified in (3.15), (3.16) and (3.17), (3.18) and shown
in figure 3. This analysis finally demonstrates that, near their respective instability
threshold, the second instability mode grows asymptotically faster than the first one.
This disparity results in fact from these modes being associated with fundamentally
different physical phenomena: the first mode is intrinsically linked to the symmetry
breaking of the advective boundary layer far from the droplet, whereas the second
mode depends only on the interfacial dynamics of the drop.

Equations (2.1)–(2.10) are first linearized around the isotropic base state (2.19)
introducing the time-dependent normal perturbations

(ψi, Pi, ψo, Po)(t, r, µ)= eλt(ψ̃i, P̃i, ψ̃o, P̃o)(r, µ), (5.1a)

C(t, r, µ)=−
1
r
+ eλtC̃(r, µ), H(t, ρ, µ)=−

ε

ρ
+ eλtH̃(ρ, µ), ξ(t, µ)= eλtξ̃ (µ),

(5.1b−d)

where the tilde denotes the perturbations and λ is the perturbation growth rate.
For simplicity, we only consider the monotonically unstable case, namely, λ > 0.
Linearization for fixed values of Pe, Ca and η produces a linear eigenvalue problem
for λ and the associated eigenmode (ψ̃i, P̃i, ψ̃o, P̃o, C̃, H̃, ξ̃ ). Note that this is in
fact simply the generalization of (3.1)–(3.4) to the time-dependent perturbations.
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730 M. Morozov and S. Michelin

As for the steady linear analysis, orthogonal eigenmodes take the form in (2.12),
(2.14) and (3.5). In particular, projecting the linearized advection–diffusion equation
along the first two Legendre polynomials leads to

∂

∂r

(
r2 ∂C̃1

∂r

)
− (Pe λr2

+ 2)C̃1 = 2Pe
ão,1 − b̃o,1r3

r3
, (5.2)

∂

∂r

(
r2 ∂C̃2

∂r

)
− (Pe λr2

+ 6)C̃2 = 6Pe
ão,2 − b̃o,2r2

r4
, (5.3)

where C̃n denotes the nth eigenmode of C̃, and ão,1, b̃o,1, ão,2 and b̃o,2 denote the
amplitudes of the first two squirming modes in the expansion of ψ̃o.

Unlike their steady counterparts, (5.2) and (5.3), which govern the radial component
of C̃1 and C̃2, allow for an exponential decay of the surfactant concentration as r→∞.
Therefore, there is no need to consider a far-field solution separately. Combined with
the far-field boundary condition, (5.2) and (5.3) yield the following expressions for
the first two eigenmodes of C̃:

C̃1 = c̃1e−λsr 1+ λsr
r2
+

Pe ão,1

2r3
+

2b̃o,1

λr2

−
Pe λsão,1

8r2
[(1+ λsr)e−λsrEi(λsr)− (1− λsr)eλsrEi(−λsr)], (5.4)

C̃2 = c̃2e−λsr 3+ 3λsr+ λ2
s r2

r3
+ Pe ão,2

8+ λ2
s r2

8r4
−

3Pe b̃o,2

4r2
+ Pe

6b̃o,2 − λ
2
s ão,2

16λsr3

×[(3+ 3λsr+ λ2
s r2)e−λsrEi(λsr)− (3− 3λsr+ λ2

s r2)eλsrEi(−λsr)], (5.5)

where λs ≡
√

Pe λ, Ei(x) denotes the exponential integral, and constants c̃n are to be
determined from the boundary conditions at the droplet interface.

Substituting the eigenmodes of ψ̃i, P̃i, ψ̃o and P̃o along with (5.4) and (5.5)
into the linearized boundary conditions (2.2), (2.6) and (2.7), two sets of linear
algebraic equations are obtained. In turn, the solvability conditions of these sets
determine the respective growth rate of the corresponding perturbation. In the case
of the first instability mode, the solvability condition is identical to equation (14) in
Michelin et al. (2013) and can be simplified for |Pe− Pe1| � Pe1 (recall that Pe1 = 4,
see (3.14)), resulting in the following leading-order behaviour for the growth rate of
the first mode:

λs,1 =
3(Pe− Pe1)

16
. (5.6)

Recall that we assumed λ > 0, that is, the solvability condition (5.6) holds only for
Pe>Pe1, where the motionless steady state becomes unstable with respect to the first
mode of instability.

The solvability condition of the second instability mode is also treated asymptotically
for |Pe− Pe2| � Pe2, with Pe2 defined in (3.14). A different leading-order scaling is
obtained this time, namely λs,2 ∝

√
Pe− Pe2, and the leading-order growth rate for

the second mode near Pe= Pe2 finally reads:

λs,2 =

√
24Pe2(2+ 3η)(Pe− Pe2)

38 400(1+ η)2 − 4Ca(4+ η)(292+ 283η)+Ca2(4+ η)(64+ 31η)
. (5.7)
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Marangoni self-propulsion of deformable active droplets 731

Equation (5.7) holds only for Pe > Pe2, when the motionless base state becomes
unstable with respect to the second mode of instability.

Equations (5.6) and (5.7) imply that, near their respective thresholds, the second
mode of instability grows asymptotically faster than the first one:

λs,2� λs,1. (5.8)

This result is particularly important in the case of Pe1 ∼ Pe2, when the first two
instability modes are excited simultaneously. In particular, (5.8) suggests that, for
Pe1 ∼ Pe2, saturation of the self-propelling mode is asymptotically slower, compared
to the excitation of the symmetric extensile flow associated with the second mode.
We argue that the fast excitation of an unsaturated extensile flow is the reason why
no non-trivial steady regimes were found in § 4.3. This result also highlights the
different physical nature of the first two instability modes: the self-propelling mode is
associated with the symmetry breaking of the advective boundary layer far from the
droplet, whereas the second mode encapsulates the interfacial dynamics of the drop.

The linear stability analysis indicates that Pe = Pen marks a transition from the
isotropic state being linearly stable (Pe < Pen) to this base state becoming unstable
(Pe > Pen). For n = 1, this instability is associated with the onset of self-propulsion
discussed in § 4.1. Beyond Pe = Pe1, this non-isotropic self-propelled state is itself
stable to linear perturbations (see appendix B), and Pe= Pe1 therefore corresponds to
an exchange of stability of the two modes as expected for a transcritical bifurcation.

6. Discussion

In order to elucidate how the deformability of chemically active droplets affects the
onset of their self-propulsion, the Marangoni instability of an active deformable drop
submerged in surfactant solution was analysed using matched asymptotics expansions
near the instability threshold. In this axisymmetric model, the instability is powered
by the constant isotropic activity of the droplet (i.e. absorption of surfactant molecules
to form swollen micelles) and the advection of the isotropic surfactant concentration
field by the fluid motion, while the nonlinear dynamics of the model is due to both
interface deformations and surfactant advection around the drop.

Two main results were obtained:

(i) Deformability was found to enhance self-propulsion of droplets that are more
viscous than the surrounding medium (specifically, droplets with viscosity ratio
η > 1.0134), while self-propulsion of less viscous drops (η < 1.0134) is hindered
by the droplet deformability.

(ii) Deformability affects the type of bifurcation leading to symmetry breaking;
in particular, moderately deformable droplets exhibit transcritical onset of
self-propulsion, while in the case of highly deformable drops, our results suggest
that the bifurcation becomes subcritical.

From a physical point of view, the first result (namely the increase of self-
propulsion velocity for viscous deformable droplets and the reduction of the velocity
for their less viscous counterparts) is the outcome of two different effects associated
with the droplet deformation, which is always found to generate oblate droplets,
namely an increase (respectively decrease) in hydrodynamic drag and reduction
(respectively enhancement) in the front–back surfactant concentration gradient for less
(respectively more) viscous droplets.
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732 M. Morozov and S. Michelin

Investigation of the neutrally stable eigenmodes of the linearized problem further
revealed that the interplay between surfactant advection and deformations of the
droplet interface results in two competing modes of monotonic instability: the first
sets in for a Péclet number above Pe1 ≡ 4 and corresponds to the onset of droplet self-
propulsion, whereas the second bifurcates at Pe2 ≡ [60(1+ η)−Ca(4+ η)]/(2+ 3η)
and is characterized by a symmetric extensile flow akin to a flow driven by a force
dipole. We argue that these modes reflect two different physical phenomena: the first
is associated with the symmetry breaking of the advective boundary layer far from
the droplet, whereas the second encapsulates the interfacial dynamics of the drop. The
latter is, however, also critically relevant for the self-propulsion, as it conditions the
hydrodynamic signature of the droplet, its interaction with its neighbours as well as
its effect on the macroscopic stress in the fluid (Batchelor 1970; Lauga & Michelin
2016).

Above Pe1, the motionless (isotropic) base state of the droplet (2.19) coexists with
a regime of finite steady self-propulsion, whose amplitude was determined up to
quadratic corrections. The base (motionless) state was observed to lose stability for
Pe > Pe1, while the new self-propelled mode is itself stable in that parameter range.
Moreover, in the leading order, the self-propulsion velocity is ∝Pe − 4, suggesting
that the onset of self-propulsion is a transcritical bifurcation. A similar approach
was used to demonstrate that the symmetric steady flow associated with the second
transition for Pe = Pe2 can only exist in the case of asymptotically small capillary
number, Ca=O(ε), i.e. in the limit of a weakly deformable droplet. Experimentally,
however, it should not be possible to observe this steady (motionless) state, since in
the case of Ca=O(ε), Pe1 < Pe2, and self-propulsion of the droplet always precedes
the onset of a symmetric flow.

Deformability can nevertheless affect self-propulsion itself fundamentally: for a
highly deformable droplet with Ca= 4(13+ 12η)/(4+ η)+O(ε), Pe1 ≈ Pe2 and
the two instability modes are excited simultaneously. Our results demonstrate that
competition between the modes eliminates the regime of steady self-propulsion. On
the other hand, we also established that steady extensile flows require Ca = O(ε)
and, thus, are also not compatible with high droplet deformability. Consequently, in
the case of Pe1 = Pe2, there are no steady flows to be found within the asymptotic
limit considered in this paper. This result may be related to an asymptotic disparity
in the time scales associated with the first two modes of instability. We presume that
unsaturated growth of the second mode hints at a subcritical nature of the interfacial
effects included in the model.

The present work therefore sheds some light on the fundamental role of deformability
on the self-propulsion of active droplets. In some recent experimental studies (e.g.
Izri et al. 2014; Moerman et al. 2017), the capillary number based on the droplet
swimming velocity (CaU = ηU/γ0) is typically very small (CaU ∼ 10−5) so that
the role of deformability is essentially negligible. Yet, deformability effects can
become significant for systems with lower surface tension. For example, spontaneous
deformation of chemically active drops due to Marangoni flows was experimentally
observed in millimetre-scale oil drops with an ultra-low surface tension of roughly
0.1 mN m−1 by Caschera, Rasmussen & Hanczyc (2013), so that CaU ∼ 10−2.
In this paper, we define the capillary number and dimensionless velocity based
on the speed of a drop in an imposed concentration gradient (2.16), since the
swimming velocity is not known a priori, resulting in a dimensionless terminal
velocity ∼ 0.01 (see figure 4). As a result Ca ∼ 100CaU and in an experimental
setting condition (4.25) corresponding to the onset of spontaneous deformations
should be met when CaU ∼ 0.1.
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Marangoni self-propulsion of deformable active droplets 733

Asymptotic methods provide significant insight into the interplay of several key
physical mechanisms in the dynamics of active droplets, such as surfactant advection
by the Marangoni flows or droplet deformation. Consequently, the present study is
intrinsically limited to the immediate vicinity of the instability threshold and does not
rule out further bifurcations in the dynamical behaviour of such active droplets, which
require further investigation.

Our findings indicate that the bifurcation structure of steady flows around an
active droplet depends on the value of capillary number, which quantifies droplet
deformability. In that regard, capillary number may be seen as a control parameter:
setting the value of Ca determines the nature of the corresponding symmetry-breaking
bifurcation. We conjecture that the effect of deformability on the dynamics of
chemically driven self-propulsion might be relevant in the context of biology. Indeed,
chemically active droplets are widely used to model the behaviour of cells (Nagasaka
et al. 2017) and it is well established that cells do change their elastic properties
dynamically to enhance adhesion and facilitate cell sorting (Winklbauer 2015). Further
investigation is thus necessary to elucidate the specific role that deformability plays
in cell dynamics.
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Appendix A. Details of the O(ε3) solution
In the near field, surfactant concentration is given by a superposition of Legendre

polynomials, C(3)(r, µ)=
∑3

n=0 C(3)
n (r)Ln(µ), with

C(3)
0 (r)=

c(3)0

r
+ d(3)0 − δB1

8− 15r+ 20r3
+ 80r6

120r5
− δ3 16− 35r+ 40r3

+ 160r6
− 20r7

30 720r5
,

(A 1)

C(3)
1 (r) =

c(3)1

r2
+ d(3)1 r+ δB1

1+ 2r3

2r3

+ 3δ3 3− 7r+ 12r2
+ 20r3

+ 28r4
+ 56r6

+ 84r7
+ 56r9

143 360r7

+
33δ3

627 200r6(Pe2 − 4)

(
115− 35r

24+ 31η
2+ 3η

+ 21r2
+ 455r3

− 210r5

)
, (A 2)

C(3)
2 (r) =

c(3)2

r3
+ d(3)2 r2

− δB1
10− 21r+ 70r3

− 42r4
+ 28r6

84r5

− δ3 20− 49r+ 140r3
− 112r4

+ 56r6

21 504r5
− 33δ3 2+ 3r2

1792r4(Pe2 − 4)
, (A 3)

C(3)
3 (r) =

c(3)3

r4
+ d(3)3 r3

+ δ3 8− 21r+ 81r2
− 126r4

+ 162r5
+ 168r6

− 63r7
+ 28r9

215 040r5

+
11δ3

1756 160r6(Pe2 − 4)

(
1274− 441r

24+ 31η
2+ 3η

+ 216r2
+ 1512r2 log r

+ 2058r3
− 1764r4 9+ 11η

2+ 3η
+ 1764r5

)
, (A 4)
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734 M. Morozov and S. Michelin

where c(3)n and d(3)n are unknown constant amplitudes to be determined in the matching
process with the far-field boundary layer.

The far-field solution can be written as

H(3)(ρ, µ) = e−ρs(1+µ)

(
−
δ3ρs

192
+ δB1

3+ 6ρs − 8ρ2
s

6ρs
−

256ρsB2
1

3δ
+ 2b(3)o,1

1+ 2ρs

ρs

+
µ

256δρ2
s

[δ4(3+ 3ρs − 2ρ3
s )+ 128δ2B1(9+ 9ρs + 2ρ2

s − 4ρ3
s )

× 2+ 16 384B2
1(3+ 3ρs − 2ρ3

s )+ 512δsb
(3)
o,1(3+ 3ρs + 2ρ2

s )]

+ L2(µ)
(δ2
+ 128B1)

2(45+ 45ρs + 15ρ2
s − 2ρ4

s )

768δρ3
s

)
+

e−ρsµ

√
ρs

∞∑
n=0

h(3)n Kn+1/2(ρs)Ln(µ), (A 5)

where h(3)n are unknown constant amplitudes and ρs ≡ Pe1A1ρ = δρ/8 > 0.
Matching of near- and far-field surfactant concentrations (A 1)–(A 5), and subsequent

substitution of the result into the boundary conditions (2.2), (2.6) and (2.7) expanded
at O(ε3) yields the solvability condition of the cubic problem providing a correction
to the droplet self-propulsion velocity (4.17).

Appendix B. Linear stability analysis of the steady state featuring self-propulsion
As a complement to the linear stability analysis of the isotropic base state near

Pe1 obtained in § 4.1, the stability of the non-trivial self-propelled mode obtained for
Pe > Pe1 is now investigated, in order to demonstrate further that the onset of self-
propulsion is a transcritical bifurcation.

As in § 5, infinitesimal normal perturbations of the anisotropic state are introduced:

ψi(t, r, µ)= εδ
3r2(1− r2)(1−µ2)

64
+ eλtψ̃i(r, µ), (B 1)

Pi(t, r, µ)=−εδ
4(2+ 3η)+ 15rµ

16η
+ eλtP̃i(r, µ), (B 2)

ψo(t, r, µ)= εδ
(1− r3)(1−µ2)

32r
+ eλtψ̃o(r, µ), (B 3)

Po(t, r, µ)= eλtP̃i(r, µ), ξ(t, µ)= eλtξ̃ (µ), (B 4a,b)

C(t, r, µ)=−
1
r
+
εδ

8

(
1+µ+µ

2− 3r
4r3

)
+ eλtC̃(r, µ), (B 5)

H(t, ρ, µ)=−
ε

ρ
e−δρ(1+µ)/8 + eλtH̃(ρ, µ), (B 6)

where the tilde denotes the perturbations, and λ is the perturbation growth rate.
Similarly to § 5, we focus on the monotonically unstable case, where λ > 0.
Using (B 1)–(B 5), the full nonlinear system (2.1)–(2.10) is linearized around the
self-propelling state with respect to perturbations, thus obtaining a linear eigenvalue
problem for λ the associated eigenvector (ψ̃i, P̃i, ψ̃o, P̃o, C̃, H̃, ξ̃ ). This problem is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

85
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

C 
Sa

n 
D

ie
go

 L
ib

ra
ry

, o
n 

11
 D

ec
 2

01
8 

at
 1

5:
57

:3
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.853
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Marangoni self-propulsion of deformable active droplets 735

tractable within the framework of the matched asymptotic expansions employed in
§§ 3 and 4 when λ is of the form

λ= ε2λ(1) + ε3λ(2) + · · · , (B 7)

and the corresponding eigenvector is expanded as f̃ = f (1) + εf (2) + · · · , with f being
any component of the eigenvector above. As a result, a sequence of linear problems
at ε0, ε1, . . . is obtained, where each of the problems in the sequence represents a
Stokes flow past a liquid sphere.

B.1. Leading-order problem
The leading-order problem is first analysed. In essence, we apply the algorithm
described in § 3 to the linearized problem at ε0. At ε0, the linearized advection–
diffusion equation is identical to (3.1), and C̃(1) is therefore given by (3.5), (3.6) and
(3.7) – with potentially different constants c(1)n and d(1)n in comparison with § 3. The
far-field solution is then obtained as

H̃(1)(ρ, µ)=
b(1)o,1e−δρ(1+µ)/8

4λ(1)

(
δ

ρ
+µ

8+ δρ
ρ2

)
+

e−δρµ/8
√
ρ

∞∑
n=0

h(1)n Kn+1/2(qρ/8)Ln(µ),

(B 8)

where q ≡
√
δ2 + 256λ(1). After matching the near- and far-field solutions, we solve

the set of algebraic equations emerging from the boundary conditions at the droplet
interface. For the self-propelling mode, the solution of the leading-order problem for
the perturbations reads

b(1)i,0 =
4A1

3η
(2+ 3η),

3
2

a(1)i,1 =
3
2

b(1)i,1 = a(1)o,1 = b(1)o,1 = A1, (B 9a,b)

c(1)0 = 0, d(1)0 = δA1
q− δ
32λ(1)

, c(1)1 =−3A1, d(1)1 = 0, (B 10a−d)

where q≡
√
δ2 + 256λ(1) and an unknown constant A1 will be determined from the

solvability condition at O(ε). Solution (B 9)–(B 10) is almost identical to the solution
of the linearized steady problem (3.15)–(3.16), with the exception of the coefficient
d(1)0 corresponding to the isotropic perturbation of the surfactant concentration. It is
easy to see that, in the case of positive perturbation growth rate, λ> 0, coefficient
d(1)0 carries the information about the growth rate to the next order of expansion.

B.2. Problem at ε
Turning now to the O(ε) problem for the perturbations around the self-propelled
steady state, we repeat the steps of the analysis developed in § 4.1. First, we obtain the
solution of the near-field advection–diffusion equation, C̃(2)(r, µ)=

∑2
n=0 C̃(2)

n (r)Ln(µ),
where

C̃(2)
0 (r)=

c(2)0

r
+ d(2)0 − δÃ1

(
2r
3
+

1
6r2
−

1
8r4
+

1
15r5

)
, (B 11)

C̃(2)
1 (r)=

c(2)1

r2
+ d(2)1 r+ δÃ1

1+ 2r3

2r3
+

2a(2)o,1 + 4b(2)o,1r3

r3
, (B 12)
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C̃(2)
2 (r)=

c(2)2

r3
+ d(2)2 r2

+
4a(2)o,2 + 6b(2)o,2r2

r4
− δÃ1

(
r
3
−

1
2r
+

5
6r2
−

1
4r4
+

5
42r5

)
.

(B 13)

Then the far-field solution is obtained as

H̃(2)(ρ, µ) =
Ã1e−ρ(q+δµ)/8

λ(1)

(
δ
δ3
+ 160δλ(1) + 384λ(2)

96q

+
µ

64
(δ3
+ 64δλ(1) + 256λ(2))+ δ2L2(µ)

8+ qρ
192ρ

)
−

Ã1e−δρ(1+µ)/8

3Pe1(λ(1))2

(
δ
δ3
+ 96δλ(1) + 384Pe1λ

(2)

384ρ

+ µ(δ3
+ 64δλ(1) + 256λ(2))

8+ δρ
256ρ2

+ δ2L2(µ)
192+ 24δρ + δ2ρ2

768ρ3

)
+

4b(2)o,1 + δÃ1

16λ(1)
e−δρ(1+µ)/8

(
δ

ρ
+µ

8+ δρ
ρ2

)
+

e−δρµ/8
√
ρ

∞∑
n=0

h(2)n Kn+1/2(qρ/8)Ln(µ). (B 14)

Finally, we match near- and far-field solutions and use the boundary conditions at the
droplet interface (2.2), (2.6) and (2.7) for the perturbation fields evaluated up to O(ε)
to obtain the solvability condition of the problem at ε, which reads

Ca2(Pe1 − Pe2)(2q2
− δq+ 5δ2)= 0. (B 15)

It is easy to see that (B 15) is satisfied only when Ca = O(ε). Indeed, the limit of
Pe1 = Pe2 is degenerate, since the steady self-propelling regime ceases to exist, while
(B 15) has no real solution for q above the instability threshold, Pe> Pe1 (recall that
a self-propelling steady state does not exist for Pe< Pe1).

We repeat the solution of the O(ε) problem for the perturbations of the self-
propelled steady state in the limit of a weakly deformable droplet, Ca = εCa1. In
this case, the near- and far-field solutions remain the same as in the case of finite
capillary number, while the solvability condition can be written as

Ca1(q2
− 2δq+ δ2)= 0. (B 16)

Again, (B 16) has no real solutions for q above the instability threshold,
Pe> Pe1, and thus can be satisfied only when Ca1� ε.

Repeating the solution of the O(ε) problem in the limit of non-deformable droplet,
Ca= 0, yields near- and far-field solutions given by (B 11)–(B 14) and the following
solvability condition

2q2
− δq+ 5δ2

= 0. (B 17)

Similarly to the solvability conditions (B 15) and (B 16), (B 17) has no real solutions
for q above the instability threshold, Pe > Pe1. Finally, we combine solvability
conditions (B 15)–(B 17) and establish that the perturbation growth rate λ(1) is strictly
negative and the steady state featuring self-propulsion is stable for Pe> Pe1.
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