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ABSTRACT
Individual chemically active drops suspended in a surfactant solution were observed to self-propel spontaneously with straight,
helical, or chaotic trajectories. To elucidate how these drops can exhibit such strikingly different dynamics and “decide” what
to do, we propose a minimal axisymmetric model of a spherical active drop, and show that simple and linear interface prop-
erties can lead to both steady self-propulsion of the droplet as well as chaotic behavior. The model includes two different
mobility mechanisms, namely, diffusiophoresis and the Marangoni effect, which convert self-generated gradients of surfac-
tant concentration into the flow at the droplet surface. In turn, surface-driven flow initiates surfactant advection that is the
only nonlinear mechanism and, thus, the only source of dynamical complexity in our model. Numerical investigation of the fully
coupled hydrodynamic and advection-diffusion problems reveals that strong advection (e.g., large droplet size) may destabilize
a steadily self-propelling drop; once destabilized, the droplet spontaneously stops and a symmetric extensile flow emerges. If
advection is strengthened even further in comparison with molecular diffusion, the droplet may perform chaotic oscillations.
Our results indicate that the thresholds of these instabilities depend heavily on the balance between diffusiophoresis and the
Marangoni effect. Using linear stability analysis, we demonstrate that diffusiophoresis promotes the onset of high-order modes
of monotonic instability of the motionless drop. We argue that diffusiophoresis has a similar effect on the instabilities of a moving
drop.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5080539

I. INTRODUCTION

Self-propulsion of chemically active systems has recently
emerged as a canonical system of active colloids to study
the behavior of active matter, where energy is introduced
at the microcopic scale in the self-propulsion of individ-
ual agents.1 Among the many systems considered, catalytic
(phoretic) rigid particles2 and chemically active droplets3 have
received a particular attention both experimentally and theo-
retically. Because of their small size, phoretic particles can be
significantly influenced by Brownian fluctuations, and a par-
ticular research focus on such systems can be found in their
collective self-organization.4

In contrast, a fascinating feature of chemically active
droplets lies in their ability to exhibit complex dynamical

behavior at the individual level as well. Solitary active drops
were observed to self-propel spontaneously with straight,
helical, or chaotic trajectories, where the choice of a par-
ticular trajectory depends on the phase of the liquid crystal
constituting the drop,5 on the size of the droplet, and on the
intensity of the chemical reaction fueling the motion,6 as well
as on the geometrical constraints.7 Self-deformation and divi-
sion were shown to occur when drops are impregnated with
surfactant8 so that active droplets were also recently consid-
ered as minimal model for synthetic cells.9 At the collective
level, and similarly to phoretic particles, active droplets can
self-organize in complex clusters10 in the presence of chem-
ically active species. Multiple active drops “feel” each other’s
presence and adjust their behavior: they may form ordered
clusters,11 repel,12 or avoid crossing each other’s trails.5
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Experimental observations of active drops typically
employ relatively small droplets with radius ∼100 µm or less.
At those length scales, liquid drops are usually highly symmet-
ric, and, in the absence of external forcing, any kind of motion
of a solitary active drop must originate from a symmetry-
breaking bifurcation.13,14 The properties of this bifurcation (or
bifurcations) are yet not well understood. In particular, it is
still unclear how multiple dynamical behaviors can arise for a
single drop (e.g., straight or chaotic trajectories), and how a
particular type of self-propelling mode is selected. The
physico-chemical complexity of the different experimental
systems considered (including the saturation of the droplet’s
surface by surfactant molecules or the nematic nature of the
inner fluid) further leaves open several possible and poten-
tially coupled origins for such complex dynamics. Instead of
focusing on the detailed description of a particular experi-
mental system, the present work aims to demonstrate, using
a minimal yet generic model, that surface properties and, in
particular, its mechanical response to self-generated physico-
chemical gradients can provide the droplet with the ability to
exhibit both steady and chaotic self-propulsion.

Symmetry-breaking at the onset of drop self-propulsion
originates from a self-induced concentration gradient at the
droplet interface of a chemical species, which is maintained
despite diffusion by advective transport with the flow field
generated by the droplet.3,15,16 For a general interface, and in
contrast with strictly rigid particles, this flow field results from
a mechanical forcing at the droplet’s interface under the effect
of the chemical gradient, through a combination of Marangoni
effect and diffusiophoresis.17 For fluid droplets, it is typically
assumed that Marangoni effect prevails, while diffusiophore-
sis is negligible,3,13,16 due to the separation of scales between
the drop’s radius and the thickness of the interaction layer
between the chemical species and the interface. This assump-
tion is not always applicable since some nanoparticle surfac-
tants were observed to form a disordered, jammed assembly
at the interface, thus rendering it immobile.18 In the case of
an immobile interface (or large droplet viscosity), a droplet
can be considered as a particle and diffusiophoresis remains
the only source of its mobility. In the present paper, we con-
sider the general case including both diffusiophoresis and the
Marangoni effect, and investigate how this dual behavior of the
interface and the ratio of these two effects may influence the
dynamics of the chemically active drop.

The paper is organized as follows: The minimal generic
model for the self-propulsion of a chemically active drop is
presented in Sec. II. In Sec. III, we outline and validate the
methods of numerical analysis, and the numerical results are
presented in Sec. IV. The main findings of the paper are finally
discussed in Sec. V.

II. PROBLEM STATEMENT
A. Modelling active droplets

We consider the dynamics of a force-free spherical
droplet of radius R suspended in the bulk of a surfactant
solution. In recent experiments, active droplets with R ∼ 1
–10 µm were shown to spontaneously swim with velocities

U ∼ 10–50 µm s−1,6,12,16 so that inertial forces in the fluid
phases are negligible (i.e., the Reynolds number Re = URρo/ηo
is exceedingly small, with ηo and ρo are the viscosity and den-
sity of the outer phase, respectively). The flow field, u, and
pressure, P, therefore satisfy the equations of Stokes flow,

∇ · ui = 0, ∇Pi = ηi∇
2ui, (1)

∇ · uo = 0, ∇Po = ηo∇
2uo, (2)

with subscripts i and o denoting the corresponding quan-
tity inside and outside of the droplet, respectively. Assuming
that surfactant molecules do not penetrate into the droplet,
the concentration of surfactant molecules C outside the drop
satisfy the following advection-diffusion equation:

∂C
∂t

+ uo · ∇C = D∇2C, (3)

where D is the molecular diffusivity of the surfactant.
The physico-chemical activity of swimming droplets can

involve several mechanisms, including micellar and molecu-
lar pathways to the droplet dissolution.6,12,13,16 The former
involves the dissolution of the droplet by micelles present
in the surfactant-saturated outer phase,16 while in the lat-
ter, droplet dissolution is achieved through the formation of
swollen micelles from the surfactant molecules present in the
outer phase.12 In the following, we specifically consider the
molecular pathway, although the formalism presented here
could easily be extended to account for other dissolution
mechanisms. In this framework, the drop undergoes gradual
dissolution sustained by a chemical reaction at the fluid-fluid
interface. In the simplest possible case, the reaction rate is
fixed and the drop consumes surfactant molecules at a fixed
rate A > 0,

Dn · ∇C =A at r = R. (4)

The mobility of the drop arises from inhomogeneity in
surfactant concentration and, in general, may come from two
distinct interfacial mechanisms. The first is diffusiophoresis,
taken into account by a nonzero slip velocity at the droplet
interface

ui − uo =M(I − nn) · ∇C at r = R, (5)

where M is the mobility coefficient, n is the outward nor-
mal to the droplet surface, and I is the identity tensor. Since
surfactant molecules are attracted to the interface during
micellar dissolution, we assume that any repulsive interactions
between the droplet interface and the surfactant molecules
are negligible and postulate that M ≥ 0.17 The second mech-
anism is the Marangoni effect, stemming from uneven sur-
face tension at the fluid-fluid interface. In particular, we
assume that surface tension depends linearly on the surfactant
concentration at the interface

γ = γ0 − γC(C − C∞ + AR), (6)

where γ0 denotes the reference value of surface tension mea-
sured at C = C∞ −AR, whereas γC is a positive constant. Note
that our initial assumption of a spherical droplet requires cap-
illary pressures to dominate hydrodynamic stresses so that
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the typical capillary number, Ca = ηoU/γ0, is very small—see
Ref. 19 for a generalization of this framework to deformable
droplets.

Uneven surface tension contributes to the balance of
stresses at the interface. In the limit of a nondeformable
droplet, it is sufficient to only consider the balance of tangen-
tial stresses

n · (σi −σo) = −γC(I − nn)∇C at r = R, (7)

where σi and σo denote the stress tensor of the fluid within
and outside of the drop. Fundamental differences between
the two mobility mechanisms included in the model are
highlighted in Fig. 1: mobility due to the Marangoni effect
is characterized by a continuous velocity field and discon-
tinuous interfacial stresses, while diffusiophoresis results
in discontinuous velocity field and continuous interfacial
stresses.

Far away from the droplet, the flow velocity in the frame
of reference of the droplet and the surfactant concentration
attain constant values

uo = −U∞ez, C = C∞, (8)

where ez is the unit vector directed along the symmetry axis
of the problem and U∞ez corresponds to the droplet self-
propulsion velocity determined from the condition that the
total hydrodynamic force on the droplet vanishes∫

r=R
σo · ndS = 0. (9)

It is easy to see that in the limit of ηi → ∞, the Stokes
equation within the drop reads ∇2ui = 0, while the balance of
stresses reduces to n·σi = 0. Naturally, ui = 0 in this limit,
and the problem statement becomes identical to the model
considered by Michelin et al.20

FIG. 1. Sketch of the flow field established by each mobility mechanism in
response to a surfactant concentration disturbance, C+ > C−. The flow is shown
in the reference frame of a quiescent drop. (a) Marangoni effect: a concentra-
tion disturbance results in uneven surface tension, γ+ > γ− and discontinuous
tangential stresses, while the flow velocity remains continuous at the interface.
(b) Diffusiophoresis: hydrodynamic stresses are continuous (no interfacial stress),
but a discontinuity in flow velocity arises from the concentration contrast. Note
that direction of the flow within the drop depends on the dominating interfacial
mechanism, as demonstrated in Eq. (17).

B. Nondimensionalization
In what follows, all quantities are nondimensionalized,

using the droplet’s radius R as characteristic length scale, and
scaling the relative concentration of surfactant (i.e., C − C∞)
by AR/D. We further define the velocity scale as the terminal
velocity of the droplet moving in a surfactant gradient A/D
due to both diffusiophoresis and the Marangoni effect,17

V ≡ A(γCR + 3ηiM)
D(2ηo + 3ηi)

. (10)

Finally, the characteristic time scale is chosen as R/V.
Dimensionless form of Eqs. (1)–(5) and (7) includes three

dimensionless parameters,

Pe ≡
VR
D , η ≡

ηi
ηo

, m ≡
ηiM
γCR

, (11)

which are, respectively, (i) the Péclet number, Pe, which mea-
sures the relative influence of advection and diffusion in sur-
factant transport but can also be seen as a measure of the
droplet’s size, (ii) the viscosity contrast η between the inner
and outer phases, and (iii) the mobility contrast m ≥ 0 which
compares the terminal velocity of the drop driven exclusively
by diffusiophoresis to its counterpart achieved in response to
the Marangoni effect. Therefore, m = 0 corresponds to the
motion driven purely by the Marangoni effect, while the drop
self-propelling by diffusiophoresis only features m→∞.

C. Axisymmetric Stokes flow
In the following, we focus on a single droplet in an infi-

nite fluid domain. For simplicity, we thus assume that the flow
field within and around the spherical drop is axisymmetric
and, thus, can be expressed in axisymmetric spherical coor-
dinates in terms of a stream function ψi ,o(t, r, µ) with µ = cos θ.
In this case, the general solution of the Stokes equations (1)
and (2) is given by the Lamb solution21–23 with the flow out-
side the droplet converging to a finite unidirectional flow as
r → ∞, while the flow within the drop is regular at the origin,
namely,

ψi(t, r,µ) =
∞∑
n=1

ai,n(t)rn+1
(
1 − r2

) (
1 − µ2

)
L′n(µ), (12)

ψo(t, r,µ) =
∞∑
n=1

ao,n(t)Ψn(r)
(
1 − µ2

)
L′n(µ), (13)

with Ψn(r) =




1
r
− r2, n = 1

1 − r2

rn
, n > 1,

(14)

where Ln(µ) is the nth Legendre polynomial, the prime denotes
the derivative, and ai ,n(t) and ao ,n(t) are unknown functions of
time. Naturally, the Stokeslet term is omitted in (13) since the
droplet is force-free.24 Also note that Eqs. (12) and (13) imply
that the flow velocity decreases away from the interface both
within and outside of the drop, as expected since the fluid and
droplet motions results from an interfacial forcing.
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III. NUMERICAL MODELING OF THE NONLINEAR
DYNAMICS
A. Presentation of the numerical method

In this section, we present the numerical methods used
to solve jointly for the hydrodynamic problem and surfactant
dynamics. Following Michelin and Lauga, we expand the sur-
factant distribution around the droplet as a truncated series
of Legendre harmonics,25

C(t, r,µ) =
N∑

n=0

Cn(t, r)Ln(µ), (15)

with N sufficiently large so as to ensure proper convergence
of the description of the surfactant dynamics. Substitution of
approximation (15) along with expansions (12) and (13) into the
dimensionless form of the boundary conditions (5) and (7) and
subsequent projection of the result onto the nth Legendre
polynomial provides a direct one-to-one relationship at each
order n between the amplitudes of the hydrodynamic modes,
ai ,n(t) and ao ,n(t), and the value of the concentration modes at
the drop’s surface, Cn(t, 1),

ai,n(t) = Ai,nCn(t, 1), ao,n(t) = Ao,nCn(t, 1), (16)

where the transfer coefficients Ai ,n and Ao ,n are given by

Ai,n =




η − 2 m
2η(1 + 3 m)

, n = 1

(η −m[2n + 1])(2 + 3η)
2η(2n + 1)(1 + η)(1 + 3 m)

, n > 1,
(17)

Ao,n =




1/3, n = 1

(1 + m[2n + 1])(2 + 3η)
2(2n + 1)(1 + η)(1 + 3 m)

, n > 1.
(18)

Equations (17) and (18) display two important features. First,
for m > η/2, all coefficients Ai ,n become negative and the flow
direction within the drop is reversed, as illustrated in Figs. 1(a)
and 1(b). Such flow reversal is a typical feature of the drops
propelled by phoretic effects.26

Second, in contrast to the pure Marangoni case (where
m = 0 and Ai ,n, Ao ,n → 0 as n → ∞), there is no natu-
ral “damping” of higher-order Legendre modes in the pres-
ence of diffusiophoresis: for m , 0, transfer coefficients Ai ,n
and Ao ,n remain finite as n → ∞. In other words, the ampli-
tude of higher-order modes typically increases with m. In the
Appendix, we elucidate this effect by means of linear stability
analysis and demonstrate that monotonic instability thresh-
olds decrease with m as shown in Fig. 6. Note that the hydro-
dynamic and concentration mode amplitudes ai ,n, ao ,n, and Cn
still asymptotically decay for n→∞, ensuring the convergence
of the expansion in Eq. (15).

We substitute solution (16) into the projection of the
dimensionless form of the advection-diffusion equation (3)
onto the nth Legendre polynomial and obtain a set of N cou-
pled differential equations describing the evolution of Cn(t, r),
namely,

∂Cn

∂t
= Pe−1

(
∂2Cn

∂r2
+

2
r
∂Cn

∂r
−
n(n + 1)Cn

r2

)
−

2n + 1
2r2

×

N∑
j=1

N∑
k=0

Ao,jCj
���r=1

[
j(j + 1)IjknΨj

∂Ck

∂r
+ Jjkn

dΨj
dr

Ck

]
, (19)

with

Ijkn ≡

1∫
−1

Lj(µ)Lk(µ)Ln(µ)dµ, (20)

Jjkn ≡

1∫
−1

(
1 − µ2

)
L′j(µ)L′k(µ)Ln(µ)dµ. (21)

Boundary conditions for Eq. (19) are given by projection of
Eqs. (4) and (8) onto the basis of Legendre polynomials

∂Cn

∂r

�����r=1
=

{
1, n = 0
0, n > 0 , Cn |r→∞ = 0. (22)

Similarly to Refs. 25 and 27, we solve the set of evolu-
tion equations (19) numerically, using an explicit time-stepping
scheme for the advective term and the Crank-Nicholson

FIG. 2. (a) Evolution of the self-propulsion velocity U∞ with the Péclet number for m = 2 and η = 1. Dashed line represents the result of asymptotic analysis,
U∞ = (Pe − 4)/16. For chaotic oscillations (Pe ≥ 80), the range of velocities is shown. (b) Dynamical regime observed in the computations for the varying Péclet number Pe
and mobility ratio m: steady self-propulsion (◦), steady symmetric extensile flow (×), and chaotic oscillations (�).
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scheme for the diffusive term. We employ an exponentially
stretched spatial grid, namely, r = eξ

3−1, where ξ is evenly
spaced. In our computations, we use spatial grids with 60 and
120 nodes and the time step of 0.05 and 0.02, respectively. We
further ensure the convergence of the modal approximation
(15) by repeating all of the computations for N = 30, 35, and 40
modes.

B. Validation of the numerical method
The numerical method presented above is first validated

against the predictions of the asymptotic analysis for the onset
of self-propulsion and saturated velocity near the thresh-
old, as carried out in the Appendix. In particular, this analy-
sis reveals that (i) Pe1 = 4 is the instability threshold corre-
sponding to the onset of spontaneous self-propulsion and (ii)
in vicinity of the threshold self-propulsion velocity is
U∞ = (Pe − Pe1)/16 (see also Ref. 19).

These two findings are compared to the results of the
nonlinear numerical simulations as follows: Setting m = 2 and
η = 1, for a discrete set of values of Pe (Pe = 3.5, 3.8, 4.2, 4.5,
5, 5.5, and 6), the numerical simulation is initiated by adding
to the isotropic steady state (A1) a small asymmetric perturba-
tion. For Pe > 4, after a transient characterized by an exponen-
tial growth of the swimming velocity, a new anisotropic steady
state is reached, and the terminal velocity of the drop in these
computations agrees well with the theoretical predictions, as
shown in the left part of Fig. 2(a).

IV. NONLINEAR DYNAMICS OF AN ACTIVE DROPLET
The dimensionless form of Eqs. (1)–(9) describes the joint

dynamics of the surfactant concentration and flow fields and
allows for a trivial isotropic solution where the droplet is
stationary and no fluid motion arises as the concentration
distribution is isotropic. This isotropic state loses stability
when advection of the surfactant concentration is sufficiently
large, i.e., beyond a critical Pe (see the Appendix, and Refs. 16
and 20).

The main goal of the present work, and the central pur-
pose of this section, is to investigate the droplet dynamics
away from the instability threshold. To this end, we perform
the computations with m = 2, η = 1, and sequentially increasing
values of the Péclet number, where each computation employs
the limit regime achieved at the previous value of Pe as an ini-
tial condition (steady solution obtained in Sec. III B for Pe = 6
is used to initialize the first computation). This continuation
procedure yields a set of dynamical regimes which we discuss
below.

A. Steady self-propulsion
For Pe ≥ 4 and up to Pe = 70, the long-time dynamics is

that of a steadily self-propelling drop (i.e., U∞ , 0). Similarly
to the numerical results of Refs. 16 and 20, the droplet self-
propulsion velocity reaches a maximum value around Pe = 10
and then decreases gradually with increasing Pe. Decrease in
self-propulsion velocity suggests that strong advection hin-
ders the formation of the concentration gradient propelling

the drop, a feature that was already identified in the propul-
sion of chemically-asymmetric particles at finite and large
Pe.27–29

In Figs. 3(a) and 3(b), we demonstrate that at a high Péclet
number, the surfactant concentration at the droplet surface
resulting from the advection-diffusion dynamics is almost uni-
form at the front of the propelling drop, while the rear surface
of the droplet experiences larger concentration gradients, and
thus stronger mechanical forcing: as a result, the recircula-
tion vortex within the drop is pushed towards its back as Pe
increases.

This can be further understood as follows. The flow veloc-
ity outside the droplet is characterized by two stagnation
points in the front and at the back of the droplet. Near the
rear stagnation point, the flow leaves the droplet and for
large Pe, the significant advection of the surfactant results in
an enhanced surfactant-depleted wake. In contrast, near the
front of the droplet, advection of surfactant-rich fluid toward
the droplet’s surface maintains a rather large and uniform
concentration level.

We further conduct additional computations with Pe = 8,
m = 0.1, and η = 1 in order to demonstrate that asymmetry of
the flow within the drop depends on the value of mobility con-
trast. As we argued in the discussion of Eqs. (17) and (18), the
values of the higher-order transfer coefficients Ai ,n and Ao ,n
increase with m. Naturally, an increase of the transfer coef-
ficients results in an enhanced flow field for a given concen-
tration distribution and, thus, enhanced advection by higher-
order azimuthal modes. As a result, the flow field observed at

FIG. 3. Concentration distribution around the drop (color map) and stream lines
(lines and arrows) for m = 2, η = 1, and increasing Péclet number: (a) Pe = 4.5, (b)
Pe = 70—drop self-propelling to the right, and (c) Pe = 75—stationary drop stirring
a symmetric flow. Flow field is shown in the reference frame of the drop. In this
paper, the flow and concentration fields are assumed axisymmetric; thus, only half
of the spherical drop is shown. Vertical axis corresponds to the distance from the
axis of symmetry.
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FIG. 4. Concentration distribution around the drop (color map) and stream
lines (lines and arrows) for Pe = 8, η = 1, and increasing mobility contrast
m. The flow field is shown in the reference frame of the drop. The drop
self-propels to the right in both panels. In this paper, the flow and concen-
tration fields are assumed axisymmetric, and thus, only half of the spherical
drop is shown. The vertical axis corresponds to the distance from the axis of
symmetry.

m = 0.1 [Fig. 4(a)] appears more symmetric than its counter-
part obtained at m = 2 [Fig. 4(b)], for which a larger signature
of the higher order modes is observed in the focusing of the
recirculation zone at the back of the droplet. Figure 4 also
demonstrates the reversal in the direction of flow circula-
tion within the droplet when m is increased: in a Marangoni-
dominated regime [m = 0.1, Fig. 4(a)], the flow velocity on
both sides of the interface is oriented toward the back of the
droplet and a Marangoni stress is exerted from the back of
the droplet. When diffusiophoresis becomes significant [m = 2,
Fig. 4(b)], the discontinuity of the flow velocity at the surface
arising from the surface concentration gradient becomes large
enough to drive the flow within the droplet in the opposite
direction (see also Fig. 1).

B. Steady symmetric extensile flow
Using the continuation method, the results of our com-

putations at Pe = 75 are in stark contrast to the self-propelled
state described above and instead result in a steady symmet-
ric extensile flow with the concentration distribution shown

in Fig. 3(c). We argue that the steady self-propulsion regime
becomes unstable at this point due to the nonlinear advective
coupling, and the system reaches a different branch of steady
states characterized by no net propulsion and a dominance of
the n = 2 azimuthal mode. Specifically, strong advection skews
surfactant distribution around the drop: surfactant concen-
tration at the front part of the drop becomes almost constant,
while a small depleted zone is pushed towards the back. In
turn, the region of constant surfactant concentration is asso-
ciated with locally weakened interfacial flow that becomes
unstable with respect to higher-order, symmetric modes of
instability.

The threshold (i.e., critical Pe) for spontaneous flow sym-
metrization further depends on the value of the mobility con-
trast m, as demonstrated by repeating this analysis for m = 1,
m = 4, and m = 1000, using the continuation procedure
described in Sec. IV. Our results, summarized in Fig. 2(b),
indeed indicate that the spontaneous symmetrization thresh-
old decreases with m; however, the rate of the decrease is
reduced drastically when m � 1. Based on these results, we
hypothesize that spontaneous flow symmetrization relies on
the higher-order terms of the modal expansion (13) which
are effectively damped when m < 1, as argued in the dis-
cussion of Eqs. (17) and (18). In Fig. 2(b), the results are pre-
sented for Péclet numbers smaller than Pe = 80; beyond Pe
= 80, convergence of the expansion in Eq. (15) requires an
increase in the number of azimuthal modes considered, and
as a result, the computational cost is sharply increased in that
region.

C. Chaotic oscillations
For η = 1 and m ≥ 2, increase of the Péclet number

beyond the spontaneous symmetrization threshold results in
the onset of chaotic oscillations illustrated in Fig. 5. The
oscillations are characterized by short intervals of a larger
self-propulsion velocity in random directions. This demon-
strates that the interplay of diffusiophoresis and Marangoni
propulsion is sufficient to trigger complex transition toward
spontaneously-reversing regimes in this minimal axisymmet-
ric system, due to the strong nonlinearity introduced by
the surfactant’s advection by the chemically driven flow
field.

FIG. 5. Chaotic oscillations observed beyond the threshold of spontaneous symmetrization at Pe = 80 for m = 2 and η = 1. (a) Typical unsteady evolution of the drop velocity.
(b) Autocorrelation of the drop velocity. (c) Mean square displacement (MSD) of the drop performing chaotic oscillations.
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The full characterization of this oscillating regime is
beyond the scope of the present analysis. Yet some prelimi-
nary features can be identified. In Fig. 5(b), we use autocorre-
lation function to demonstrate that the typical duration of a
single self-propulsion spurt is .100 time units. At long times,
erratic oscillations cancel out and the droplet transport is due
to a small drift with an average dimensionless velocity ∼10−4.
To illustrate the presence of the drift in chaotic oscillations
observed at Pe = 80, m = 2, and η = 1, we plot droplets mean
square displacement (MSD) in Fig. 5(c) and show that MSD
∼ t2 at long times. Yet, at this stage, it is unclear whether
this identifies a persistent and preferred direction of motion
in this regime or whether this slow drift is simply due to
the excitation of low frequency subharmonics. Discriminating
these two effects and a full characterization of this chaotic
regime requires much longer computations and is left for
future research.

V. DISCUSSION
The goal of this work is to elucidate how complex

dynamical behavior, such as steady or chaotic propulsion,
arises in individual chemically active drops. To this end, we
proposed a minimal axisymmetric model of a solitary chem-
ically active drop that stirs the flow in the bulk of sur-
rounding surfactant solution due to a combined action of
diffusiophoresis and the Marangoni effect. Our model allows
for a fully-resolved description of the coupled hydrodynamic
and advection-diffusion problems. We postulate that the drop
features constant and isotropic chemical activity with a pre-
scribed value of the flux of surfactant particles at its sur-
face. The resulting droplet dynamics is characterized using
both numerical simulations based on an azimuthal spec-
tral decomposition of the concentration field and asymp-
totic analysis near the onset of self-propulsion. Surfactant
advection by the surface-driven flows is the only nonlinear
ingredient in this model, and is shown to be sufficient to
enable not only the onset of self-propulsion from an isotropic
steady state but also complex transitions between dif-
ferent dynamic behaviors, including steady-self-propulsion,
stationary stirring of the flow, and chaotic unsteady
self-propulsion.

More specifically, our key results are as follows:

(i) Strong advection (e.g., large droplet size) may desta-
bilize a steadily self-propelling drop. In this case, the
droplet spontaneously stops and a symmetric exten-
sile flow emerges, as shown in Figs. 2(a) and 3(c). If
advection is strengthened even further (i.e., increas-
ing Pe), the symmetric state loses its stability and the
droplet enters chaotic oscillations illustrated in Fig. 5,
characterized by random reversal of the direction of
propulsion and short excursions of the velocity mag-
nitude. This transition from steady self-propulsion to
chaotic motion when Pe is increased is reminiscent of
the experimental observations of Ref. 6 for the succes-
sive behavior of a gradually-dissolving droplet, at least
in the framework of the axisymmetric assumption of
our approach.

(ii) The thresholds corresponding to transitions between
the dynamical regimes depend on the balance between
diffusiophoresis and the Marangoni effect, quantified
by the mobility contrast m. More specifically, these
thresholds are observed to decrease (and saturate)
with increasing m. Within the considered range of Pe,
flow symmetrisation and chaotic oscillations are only
observed for a large enough mobility ratio m: when dif-
fusiophoresis is weak, a large value of Pe is required
for such complex dynamical states to develop. These
results suggest that chaotic oscillations may not arise
for pure Marangoni propulsion (m � 1) and that a small
amount of diffusiophoretic behavior is needed. Yet, to
confirm these results, numerical simulations using a
different approach might be needed as the spectral
azimuthal expansion of the concentration converges
slowly with the number of Legendre modes for large Pe,
rendering the present approach prohibitively expensive
computationally.

(iii) Linear stability analysis reveals that diffusiophoresis
promotes the onset of higher-order modes of instabil-
ity, as shown in Fig. 6.

We argue that the sensitivity of the droplet nonlinear
dynamics to the mobility contrast is corroborated by the pre-
dictions of linear stability analysis. In particular, the effect
captured in Fig. 6 is echoed by Eqs. (17) and (18) that link
the Stokes flow with the concentration filed near the droplet
interface. We note that in the pure Marangoni case, m = 0, the
transfer coefficients relating the concentration and hydrody-
namic modes decay asymptotically Ai ,n, Ao ,n → 0 as n → ∞,
while in the presence of diffusiophoresis (m , 0), these trans-
fer coefficients remain finite as n→∞. That is, the Marangoni
effect damps the onset of higher-order modes in the expan-
sion (15), thus hindering flow symmetrization and subsequent
onset of chaos.

In contrast with the experimental results, self-propulsion
of the drop seems to always slow down drastically after the
onset of chaos in the present model, a feature which may well
be a by-product of the axisymmetric assumption. In this case,
only two opposite directions of self-propulsion are allowed;

FIG. 6. Thresholds of the first eight modes of monotonic instability.
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thus, to change the direction of motion, the drop has to first
stop and then reverse its course. In turn, a motionless drop
corresponds to the trivial solution of the problem (A1), and
system dynamics must be slow in vicinity of this fixed point
solution. In contrast, in experimental systems, the direction of
motion is not restricted, so active drops observed experimen-
tally can change the direction of their self-propulsion without
stopping. Three-dimensional dynamics of the concentration
field and reorientation of the drop within the entire angular
space may therefore open the possibility for other dynamical
regimes such as rotation and spiralling motion as observed in
experiments.

In addition, by introducing the competing effect of dif-
fusiophoresis and Marangoni forcing, we demonstrated that
the detailed behavior of the droplet’s surface in response to
a concentration gradient may sharply modify the properties
of the flow field within the droplet. For instance, we demon-
strated that the direction of the flow within the drop depends
on the mobility contrast as well. Specifically, for m > η/2,
the recirculation within the drop is reversed, compared to
the pure Marangoni case. We note that such flow reversal is
a typical feature of the drops propelled by phoretic effects26

and hypothesize that this feature may serve as an indicator
in experiments to gather the information about the physi-
cal mechanisms enabling active droplets mobility and might
also be present for more complex interface properties (e.g.,
viscoelastic properties or liquid-crystal droplets).

We emphasized here that the axisymmetric assumption,
at the heart of the modeling followed here for a single drop,
imposes some significant restriction in the dynamical behav-
ior, and a natural, albeit challenging, extension of the present
work resides in the analysis of the system’s bifurcation when
this assumption is relaxed.
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APPENDIX: ASYMPTOTIC ANALYSIS
The problem formulated by the dimensionless form of

Eqs. (1)–(5), (7), and (8) allows for a trivial solution,

ψi = ψo = 0, C = −
1
r

, (A1)

corresponding to a motionless drop with isotropic concen-
tration distribution and no fluid motion. This steady isotropic
state is known to become unstable for finite Pe when m = 0
and m � 1,16,20 and it is therefore expected that this transition
to self-propulsion is a generic feature for all m.

In this the asymptotic analysis of the steady flows emerg-
ing near the base state (A1) is carried out, with the goal to elu-
cidate the system dynamics near the onset of self-propulsion.
Since the analysis follows the logic of our earlier work,19 we
keep the technical details to a minimum.

In the vicinity of the base state, the steady flow field is
weak and the stream function can be expanded as follows:

(ψi,ψo)(r,µ) = ε
(
ψ

(1)
i ,ψ(1)

o

)
+ ε2

(
ψ

(2)
i ,ψ(2)

o

)
+ · · · , (A2)

where ε � 1. Since the flow field is small, advection is weak
and surfactant concentration distribution features a boundary
layer at r→∞.30 Accordingly, we employ matched asymptotic
expansion of the concentration field

C(r,µ) = −
1
r

+ εC(1) + ε2C(2) + · · · , (A3)

H(ρ,µ) = εH(1) + ε2H(2) + · · · , (A4)

where ρ ≡ r/ε ∼ 1 (r � 1) and H denotes the concentra-
tion of surfactant far from the drop and satisfies the rescaled
advection/diffusion equation given by

−εPe
(
∂ψo

∂µ

∂H
∂ρ
−
∂ψo

∂ρ

∂H
∂µ

)
=

∂

∂ρ

(
ρ2 ∂H
∂ρ

)
+
∂

∂µ

((
1 − µ2

) ∂H
∂µ

)
. (A5)

We now substitute expansions (A2) and (A3) into the
dimensionless form of Eqs. (1)–(5), (7), and (8) and in Eq. (A4)
and collect the terms at the same order of ε , thus obtaining
a sequence of linear problems. In the following, we solve the
first two problems in the sequence and extract the threshold
of spontaneous self-propulsion as well as the self-propulsion
velocity.

1. Problem at ε

The first problem in the sequence, the problem at ε , reads
in the near field,

∇2C(1) = −
Pe
r4

∂ψ
(1)
o

∂µ
, (A6)

∂C(1)

∂r
= 1,

∂ψ
(1)
i

∂µ
=
∂ψ

(1)
o

∂µ
= 0, (A7)

∂ψ
(1)
i

∂r
−
∂ψ

(1)
o

∂r
=

2 + 3η
η(3 + 1/m)

(
1 − µ2

) ∂C(1)

∂µ
, (A8)

(
∂2

∂r2
− 2

∂

∂r
−

(
1 − µ2

) ∂2

∂µ2

) (
ψ

(1)
o − ηψ

(1)
i

)

=
2 + 3η
1 + 3 m

(
1 − µ2

) ∂C(1)

∂µ
at r = 1, (A9)

and in the far field,

2Pe a(1)
o,1

(
µ
∂H(1)

∂ρ
+

1 − µ2

ρ

∂H(1)

∂µ

)

+
1
ρ2

[
∂

∂ρ

(
ρ2 ∂H
∂ρ

)
+
∂

∂µ

((
1 − µ2

) ∂H
∂µ

)]
= 0, (A10)

withH→ 0 as ρ → ∞. (A11)
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Naturally, collecting the terms at ε is equivalent to lineariza-
tion of the problem near the base state (A1). Recall that we
consider steady flows, so the linearized problem at hand yields
a set of neutrally stable eigenmodes of the droplet.

Following Ref. 19, we assume the solution of Eqs. (A6) and
(A10) in the form,

C(1)(r,µ) =
∞∑

n=0

C(1)
n (r)Ln(µ), (A12)

H(1)(ρ,µ) =
e−ρsµ√
|ρs |

∞∑
n=0

h(1)
n Kn+1/2( |ρs |)Ln(µ) (A13)

and find the following expressions for C(1)
n (r)

C(1)
0 (r) =

c(1)
0

r
+ d(1)

0 , (A14)

C(1)
1 (r) =

c(1)
1

r2
+ d(1)

1 r + Pea(1)
o,1

1 + 2r3

2r3
, (A15)

C(1)
n (r)���n>1

=
c(1)
n

rn+1
+ d(1)

n rn + Pea(1)
o,n

n + (n + 1)r2

2rn+2
. (A16)

We employ Van Dyke’s matching rule31 to match C(1) and
H(1) in the region ε � ρ � 1 and then substitute ψ(1)

i , ψ(1)
o , and

C(1) given by (12), (13), and (A12)–(A16), respectively, into the
boundary conditions (A7)–(A9). Since we consider the case of
a steady flow, projection of the result onto the nth Legendre
polynomial yields a sequence of sets of homogeneous linear
algebraic equations for the constant amplitudes a(1)

i,n, a(1)
o,n, and

c(1)
n . The solvability condition of the nth set of equations reads

Pe = Pen ≡




4, n = 1,

4(n + 1)(1 + η)(1 + 3 m)

(2 + 3η)
(
[2n + 1]−1 + m

) , n > 1.
(A17)

In essence, condition (A17) establishes that nth neutrally
stable eigenmode of the linearized problem exists at a dis-
tinct point Pe = Pen. As a result, in vicinity of the point
Pe = Pen, only the nth eigenmode may be excited near the
base state (A1), and thus, Pen represents the threshold of the
nth mode of monotonic instability. Thresholds of the first
eight instability modes are shown in Fig. 6. Recall that m = 0
corresponds to Marangoni-dominated flow, whereas diffusio-
phoresis prevails in the limit of m → ∞. It is easy to see that
although the threshold of the first mode, Pe1 = 4 remains con-
stant, diffusiophoresis promotes the onset of higher instability
modes which is crucial for the droplet dynamics away from the
threshold.

2. Problem at ε2

We now aim to obtain the terminal velocity of the drop
near the instability threshold. To this end, we focus on the

mode with n = 1 (i.e., the only mode featuring nonzero velocity
as r→∞) given by

a(1)
i,0 = 3A1

η − 2 m
2η(1 + 3 m)

, c(1)
0 = 0, (A18)

d(1)
0 = Pe1A1, c(1)

1 = −
3Pe1A1

4
, d(1)

1 = 0, (A19)

where A1 is an unknown constant. Following Refs. 19, we
assume that the Péclet number is close to Pe1, namely,

Pe = Pe1 + εδ, (A20)

and obtain the solvability condition of the problem at ε2,

A1(A1 − δ/32) = 0, (A21)

and we conclude that in vicinity of Pe1, the droplet is either
quiescent (A = 0 or self-propels with the terminal velocity
U∞ = δ/16. Note that due to the choice of dimensionless
velocity, dimensionless U∞ does not depend on m.
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