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Abstract

We study here the linear stability of N identical flexible plates with clamped–free boundary conditions forced by a

uniform parallel flow. Flow viscosity and elastic damping are neglected, and the flow around the plates is assumed

potential. The shedding of vorticity from the plates’ trailing edges is accounted for by introducing a force-free wake

behind each plate. A Galerkin method is used to compute the eigenmodes of the system. We are interested in the effects

of the number of plates and their relative distance on the stability property of the state of rest, as well as in the nature

and structure of the coupled states. Detailed results are presented for the cases N ¼ 2, N ¼ 3 and Nb1.

r 2009 Elsevier Ltd. All rights reserved.

PACS: 46.70.De; 46.40.�f; 47.20.Cq
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1. Introduction

The flapping motion of flexible plates or flags placed in a parallel imposed flow has been the subject of a large number

of both experimental (Zhang et al., 2000; Shelley et al., 2005) and numerical studies (Connell and Yue, 2007; Zhu and

Peskin, 2002). The flapping motion results from the fluttering instability of the plate’s straight position under the

competing effects of solid inertia, aerodynamic pressure forcing and solid flexural rigidity. In that regard, the nature of

the instability is similar to that of flow-conveying pipes (Paı̈doussis, 1998). Beyond the fundamental interest of this

instability and the resulting flapping motions, this mechanism is at the origin of the flapping of flags in the wind and is

also of interest for engineering (Watanabe et al., 2002) and biomedical applications (Huang, 1995; Balint and Lucey,

2005). Hydroelastic instabilities of parallel-plate assemblies are also important in the study of industrial cooling

systems, as found in some nuclear reactors (Miller, 1960; Kim and Davis, 1995; Guo and Paı̈doussis, 2000a).
Several models have been proposed to understand the instability threshold in the case of a single elastic plate. Shelley

et al. (2005) considered the one-dimensional linear stability of a flag of infinite span and length under parallel flow
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forcing. Lemaitre et al. (2005) used a slender-body approximation to study the linear stability of long elastic ribbons.

Kornecki et al. (1976) studied the linear stability of a finite-length cantilevered plate of infinite span, using a

representation of the vortical wake as a vortex sheet (Theodorsen, 1935; Bisplinghoff et al., 1955), and Argentina and

Mahadevan (2005) used a similar approach to study the influence of in-plane tension and finite span on the stability

threshold. Guo and Paı̈doussis (2000b) considered the stability of a finite-length two-dimensional plate in a channel

with various boundary conditions, using a simpler representation of the wake. Eloy et al. (2007) used the same

approach to investigate the influence of three-dimensional effects on the stability of a finite-length cantilevered plate.

In the case of multiple parallel elastic plates, the imposed flow acts both as a forcing and a coupling mechanism

between the motion of the plates. When the distance between the plates is of the order of or less than their length, it is

expected that their dynamics will be strongly coupled. Zhang et al. (2000) generalized their soap-film experiment to two

parallel filaments and showed that the filaments’ dynamics became coupled and that, depending on their relative

distance, in-phase and out-of-phase modes could be observed (Fig. 1). This observation was confirmed by Jia et al.

(2007) who also considered filaments of various lengths. Depending on the length of the filaments, they observed either

a transition from out-of-phase to in-phase flapping when bringing the filaments close together, or a persistence of the

out-of-phase mode even at small separation. These results suggest that the nature of the observed regime is strongly

dependent on more than just the relative distance between the different plates or filaments. Numerical simulations (Zhu

and Peskin, 2003; Farnell et al., 2004; Huang et al., 2007; Michelin and Llewellyn Smith, 2009) have also reported the

existence of these two classes of regimes. Tang and Paı̈doussis (2009) presented a numerical study of the stability criteria

for the in-phase and out-of-phase modes. More recently, Schouveiler and Eloy (2009, private communication)

considered three and more coupled plates in a wind-tunnel experiment and observed various mode structures (Fig. 1). In

particular, in the symmetric mode, the middle plate was observed to remain still. Guo and Paı̈doussis (2000a) studied
the linear stability of an infinite number of parallel plates of finite aspect ratio, clamped on their side edges and free at

the leading and trailing edges. They however focused only on one particular type of modes (the out-of-phase mode,

where the motions of two consecutive plates are always opposite), using the resulting symmetries to significantly reduce

the complexity of the system.

The purpose of the present study is to propose a linear stability analysis of N coupled flexible plates of infinite span,

clamped at their leading edge in a uniform imposed flow. We investigate the existence and nature of coupled modes,

that were previously observed experimentally and numerically (Zhang et al., 2000; Zhu and Peskin, 2003; Jia et al.,

2007), as well as the influence of the plates’ separation on the stability of the trivial state of rest and the structure of the

linearly dominant flapping modes. In Section 2, the double-wake method used in Guo and Paı̈doussis (2000b) and Eloy

et al. (2007) for a single plate is extended to the case of an arbitrary number of equidistant parallel plates. In Sections 3

and 4, results on the linear stability of respectively two and three plates and the structure of the most unstable modes are

discussed. Section 5 proposes an overview of expected results at larger N as well as a discussion of the influence of N on
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Fig. 1. (Top) Sketch of the in-phase and out-of-phase modes observed experimentally for two plates (Zhang et al., 2000; Jia et al.,

2007). (Bottom) Sketch of the in-phase, out-of-phase and symmetric modes observed experimentally for three plates (Schouveiler and

Eloy, 2009, private communication).
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the critical stability curve for a fixed distance between the plates, and the nature of the corresponding dominant modes.

Finally, conclusions are drawn in Section 6.

2. Aerodynamic coupling of N flexible plates

2.1. Description of the problem

We are interested here in the linear stability of N horizontal identical flexible and inextensible plates, placed in a

parallel imposed flow along the horizontal direction. The plates’ span is assumed to be infinite so that the flow and

plates’ displacements can be considered two-dimensional. The plates are clamped at their leading edge and are equally

spaced along the vertical axis at a distance D from each other: the leading edge of plate j (1 � j � N) is located at

ð0; ðj � 1ÞDÞ. All plates have length L in the streamwise direction, mass per unit area rs and flexural rigidity B ¼

Eh3=½12ð1� n2Þ� (per unit length in the third dimension). Here, E and n are respectively the Young modulus and Poisson

ratio of the plates, and h is the plate’s thickness (h5L). The velocity and density of the imposed flow are r and U1. The

problem is characterized by three nondimensional parameters ðM�;U�; dÞ defined as

M� ¼
rL

rs

; U� ¼ U1L

ffiffiffiffiffi
rs

B

r
; d ¼

D

L
. (1)

In the following, all quantities are nondimensionalized using r, U1 and L as reference values: positions are

nondimensionalized by L, time is nondimensionalized by L=U1, velocity by U1 and pressure by rU2
1. We are

interested in the linear stability of the state of rest for which all the plates are horizontal and parallel to the incoming

flow.

Assuming that the displacement of each plate from its state of rest is small, the geometry of plate j is described by the

vertical displacement yðjÞðx; tÞ of the point located at a distance x along plate j in the state of rest. We are interested in

the stability of infinitesimal perturbations, therefore jyðjÞj51. We assume that the plate is inextensible: any plate element

must conserve its length at all time. Therefore, if xðjÞðx; tÞ is the horizontal displacement of the point located at a distance

x along plate j in the state of rest, the inextensibility of the plate can be expressed as

1þ
@xðjÞ

@x

 !2

þ
@yðjÞ

@x

� �2

¼ 1. (2)

This relation implies that if yðjÞ is of order � (with �51), then the horizontal displacement xðjÞðx; tÞ is of order �2, and we

neglect this horizontal displacement here. Assuming that the dynamics is governed by the Euler–Bernoulli equation

with clamped–free boundary conditions, and keeping only the dominant terms, the equation of motion of plate j is

obtained as

@2yðjÞ

@t2
¼ �

1

U�2
@4yðjÞ

@x4
�M�½p�ðjÞðxÞ; yðjÞð0; tÞ ¼ yðjÞx ð0; tÞ ¼ yðjÞxxð1; tÞ ¼ yðjÞxxxð1; tÞ ¼ 0, (3)

where ½p�ðjÞ is the pressure difference between the upper and lower sides of plate j.

2.2. Potential flow and wake representation

The fluid domain is divided into N þ 1 domains (see Fig. 2):

(i) Domain 0: yo0,

(ii) Domain j (1 � j � N � 1): ðj � 1Þdoyojd,

(iii) Domain N: y4Nd.

We assume that the flow is potential in all domains, and the flow potential is continuously differentiable in each

domain. In (3), we have ½p�ðjÞðxÞ ¼ pðjÞðx; ðj � 1ÞdþÞ � pðj�1Þðx; ðj � 1Þd�Þ.

From the Bernoulli equation, the pressure in domain j is given by

pðjÞðx; yÞ ¼ �
@FðjÞ

@t
�

1

2
jrFðjÞj2, (4)
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where FðjÞ is the total flow potential, which can be decomposed as

FðjÞðx; yÞ ¼ xþ fðjÞðx; yÞ (5)

with fðjÞ the perturbation of the potential due to the motion of the plates away from their state of rest (jrfðjÞj51).

Keeping only the linear terms, the pressure forcing on each plate becomes

½p�ðjÞðxÞ ¼ �
@

@t
þ
@

@x

� �
ðfðjÞ � fðj�1ÞÞ, (6)

evaluated at y ¼ ðj � 1Þd.

The major difficulty in such situations is the representation of the wake. In the case of one single flapping plate,

several models have been proposed. Using Theodorsen’s (1935) theory (Bisplinghoff et al., 1955), Kornecki et al. (1976)

represented the wake of a single flexible plate as a distribution of vorticity along the horizontal axis advected at leading

order by the imposed flow. The intensity of the vorticity shed at each time was such that the regularity condition is

enforced at the trailing edge. In the following, we refer to this method as the vortex sheet (VS) method. Computations

with better accuracy using the same method and assumptions were reported recently (Eloy et al., 2008). The vortex sheet

method was recently compared successfully to experimental and numerical results (Eloy et al., 2008; Michelin et al.,

2008).

This elegant method is, however, difficult to generalize to two plates or one plate close to a wall, as it is based on the

possibility of isolating the contribution of the frequency to the circulatory pressure with the so-called Theodorsen’s

function (Bisplinghoff et al., 1955). An alternative approach has been proposed, representing the presence of the wake

by the continuity of the pressure across the horizontal axis downstream from the plate (½p�ðjÞðxÞ ¼ 0 for x41); Guo and

Paı̈doussis (2000b) and Eloy et al. (2007) used this method to study, respectively, the two-dimensional stability of a

plate with infinite span in an inviscid channel flow and the three-dimensional stability of a finite-span plate in an

unbounded flow. In this method, the pressure distribution is solved in Fourier space and the absence of singularities at

both edges is assumed, thereby introducing an ‘‘upstream wake’’ to deal with the leading edge singularity. In the

following, we shall therefore refer to this method as the double wake (DW) approach.

Although this double-wake assumption is not based on any physical argument, it was observed that in the case of a

single plate, it leads to a good prediction of the critical velocity for flutter instability (Eloy et al., 2007; Watanabe et al.,

2002), particularly for lighter plates (M� � 1). Fig. 3 shows that the velocity threshold obtained using the DW method

is in good agreement with the prediction of the VS method for M� � 1. Both methods (VS and DW) also predict the

existence of different branches in the stability curve, each branch corresponding to different mode structures being most
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Fig. 2. Horizontal flow over N parallel plates. The plates index ðjÞ is indicated as well as the N þ 1 domains in which the fluid is

partitioned. On each plate, the continuity of the normal velocity is enforced. Continuity of pressure is enforced upstream and

downstream along the direction of each plate.
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unstable. The first branch corresponds to a mode 2 (one-neck mode), the second branch to a mode 3 (two-neck mode),

and so on. Fig. 3(b) shows the superposition of the stability curves obtained with each method, and the maximum

growth rate observed using the DW representation. This provides some insight on the behavior at small M�. The VS

model predicts a stable flat state while the DW predicts unstable behavior. However, the associated growth rates

(obtained with the DW method) are very small in the region of disagreement between the two theories.

The difference between the two approaches resides solely in the treatment of the wake. At high values of M�, the

dominant modes have shorter wavelengths and it is therefore expected that their dynamics are less influenced by the

wake and more by the local displacement of the plate. Conversely, the first branch has a characteristic spatial scale of

the order of the length of the plate, and is strongly influenced by the description of the wake.

2.3. Computation of the pressure forcing

We follow the DW method to compute the pressure forcing on each plate (Guo and Paı̈doussis, 2000b; Eloy et al.,

2007). Each plate’s displacement is decomposed into normal modes yðjÞðx; tÞ ¼ Re½zðjÞðxÞeiot� with o a priori complex.

ReðoÞ and �ImðoÞ are respectively the mode’s frequency and growth rate. Unstable modes correspond to positive

growth rate (ImðoÞo0) and stable modes to negative growth rate (ImðoÞ40). All quantities (pressure, potential) are

also proportional to eiot, and in the following the time-dependence eiot will be implicit. The flow potential must satisfy

the following system:

r2fðjÞ ¼
@2fðjÞ

@x2
þ
@2fðjÞ

@y2
¼ 0; 0 � j � N, (7a)

rfð0Þjy!�1 ¼ rf
ðNÞ
jy!1 ¼ 0, (7b)

@fðj�1Þ

@y
ðx; y ¼ ðj � 1ÞdÞ ¼

@fðjÞ

@y
ðx; y ¼ ðj � 1ÞdÞ ¼ iozðjÞ þ

dzðjÞ

dx
for 0 � x � 1, (7c)

½p�ðjÞðxÞ ¼ 0 for x � 0 and x � 1, (7d)

with the pressure jump obtained from Bernoulli’s equation (6) as

½p�ðjÞðxÞ ¼ � ioþ
d

dx

� �
½fðjÞðx; ðj � 1ÞdÞ � fðj�1Þðx; ðj � 1ÞdÞ�. (8)

Eq. (7b) prescribes the correct decay of the flow perturbation: far from the plates in domain ð0Þ and ðNÞ, the velocity is

dominated by the imposed unit parallel flow, and the perturbation velocity becomes negligible. Condition (7c) enforces

the slip boundary condition on each plate: on each side of the plate, the normal velocity of the flow must be equal to the

plate’s normal velocity. Eq. (7d) is the regularity condition introduced by the wake downstream of the plates and the

fictitious upstream wake: from (8), we see that it is equivalent to the advection by the mean flow of a discontinuity in

the flow potential, or equivalently of a vorticity distribution on the horizontal axis (Eloy et al., 2007).
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Fig. 3. (a) Critical stability curve of a single cantilevered flexible plate of infinite span using the double wake (DW) representation

(solid) and using the vortex sheet (VS) wake model (dashed). (b) Stability curves of (a) superimposed on the maximum growth rate

observed with the double wake representation.
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Using the Fourier transform in x, we look for solutions of the form

fðjÞðx; yÞ ¼
Z 1
�1

f̃ðjÞðk; yÞeikx dk, (9)

and from (7a) the function f̃ðjÞðk; yÞ must satisfy

@2f̃ðjÞ

@y2
� k2f̃ðjÞ ¼ 0, (10)

whose general solution can be written as

f̃ðjÞðk; yÞ ¼ AðjÞðkÞe�jkjy þ BðjÞðkÞejkjy. (11)

From (7c), we obtain

BðjÞðkÞ � AðjÞðkÞe�2jkjðj�1Þd ¼ Bðj�1ÞðkÞ � Aðj�1ÞðkÞe�2jkjðj�1Þd for 1 � j � N. (12)

The pressure difference at y ¼ ðj � 1Þd is then computed from (8) and (12) as

½p�ðjÞðxÞ ¼ � 2i

Z 1
�1

ðoþ kÞ½AðjÞðkÞ � Aðj�1ÞðkÞ�e�jkjðj�1Þdeikx dk (13a)

¼ � 2i

Z 1
�1

ðoþ kÞ½BðjÞðkÞ � Bðj�1ÞðkÞ�ejkjðj�1Þdeikx dk. (13b)

Differentiating (13) with respect to x and using the inverse Fourier transform and (7d), we obtain

AðjÞðkÞ � Aðj�1ÞðkÞ ¼
ejkjðj�1Þd

4pkðoþ kÞ

Z 1

0

½p�
0ðjÞðxÞe�ikx dx, (14a)

BðjÞðkÞ � Bðj�1ÞðkÞ ¼
e�jkjðj�1Þd

4pkðoþ kÞ

Z 1

0

½p�
0ðjÞðxÞe�ikx dx, (14b)

where the prime denotes a derivative with respect to x (½p�
0ðjÞ is therefore the horizontal gradient of the pressure jump on

plate j). Using (7b), Að0Þ ¼ BðNÞ ¼ 0 and therefore

AðjÞðkÞ ¼
1

4pkðoþ kÞ

Xj

l¼1

ejkjðl�1Þd
Z 1

0

½p�
0ðlÞðxÞe�ikx dx, (15a)

BðjÞðkÞ ¼
�1

4pkðoþ kÞ

XN

l¼jþ1

e�jkjðl�1Þd
Z 1

0

½p�
0ðlÞðxÞe�ikx dx. (15b)

Finally, applying the operator ðioþ d=dxÞ to (7c), and using (11) and (15),

�o2zðjÞ þ 2io
dzðjÞ

dx
þ

d2zðjÞ

dx2
¼ i

Z 1
�1

jkjðoþ kÞðBðjÞejkjðj�1Þd � AðjÞe�jkjðj�1Þd Þeikx dk

¼ �
i

4p

Z 1
�1

sgnðkÞ
XN

l¼1

e�jkðj�lÞjd

Z 1

0

½p�
0ðlÞðxÞeikðx�xÞ dxdk

¼
1

2p

XN

l¼1

Z 1

0

Kj;lðx� xÞ½p�
0ðlÞðxÞdx (16)

with

Kj;lðuÞ ¼ �
i

2

Z 1
�1

sgnðkÞe�jkðj�lÞjdeiku dk. (17)

Using the following pair of Fourier transforms:

�
i

2
sgnðkÞ !

1

u
; e�jkja !

2a
a2 þ u2

, (18)

we obtain

Kj;lðuÞ ¼
u

u2 þ ðj � lÞ2d2
for 1 � fj; lg � N. (19)
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We therefore have to solve the following system of integral equations for the pressure gradients along each plate ½p�
0ðjÞ:

1

2p

Z 1

0

½p�
0ðjÞðxÞdx
x� x

þ
1

2p

X
laj

Z 1

0

x� x

ðx� xÞ2 þ ðj � lÞ2d2
½p�
0ðlÞðxÞdx ¼ �o2zðjÞ þ 2io

dzðjÞ

dx
þ

d2zðjÞ

dx2
, (20)

for 1 � j � N, with the additional constraints that ½p�ðjÞ ¼ 0 at x ¼ f0; 1g so that
R 1
0 ½p�

0ðjÞ dx ¼ 0. In (20), we have

purposedly isolated the term j ¼ l which gives a Cauchy-type singular kernel. The first integral is understood as the

Cauchy principal value. The linearity and form of (20) suggests to look for a solution of this system of integral

equations in the following form (see for example Eloy et al., 2007):

½p�ðjÞðxÞ ¼ ½pðKÞ�ðjÞðxÞ þ 2io½pðGÞ�ðjÞðxÞ � o2½pðMÞ�ðjÞðxÞ (21)

with 0 � x � 1 and 1 � j � N. The pressure forcings ½pðKÞ�ðjÞ, ½pðGÞ�ðjÞ and ½pðMÞ�ðjÞ are solutions of

1

2p

Z 1

0

½pðKÞ�
0ðjÞðxÞdx

x� x
þ

1

2p

X
laj

Z 1

0

x� x

ðx� xÞ2 þ ðj � lÞ2d2
½pðKÞ�

0ðlÞðxÞdx ¼
d2zðjÞ

dx2
with

Z 1

0

½pðKÞ�
0ðjÞ dx ¼ 0, (22a)

1

2p

Z 1

0

½pðGÞ�
0ðjÞðxÞdx

x� x
þ

1

2p

X
laj

Z 1

0

x� x

ðx� xÞ2 þ ðj � lÞ2d2
½pðGÞ�

0ðlÞðxÞdx ¼
dzðjÞ

dx
with

Z 1

0

½pðGÞ�
0ðjÞ dx ¼ 0, (22b)

1

2p

Z 1

0

½pðMÞ�
0ðjÞðxÞdx

x� x
þ

1

2p

X
laj

Z 1

0

x� x

ðx� xÞ2 þ ðj � lÞ2d2
½pðMÞ�

0ðlÞðxÞdx ¼ zðjÞ with

Z 1

0

½pðMÞ�
0ðjÞ dx ¼ 0. (22c)

In (21) and (22), the pressure contributions with superscripts K, G and M correspond respectively to added rigidity,

gyroscopic and added inertia effects (Paı̈doussis, 2004).

2.4. Galerkin decomposition

The stability problem is then investigated using the Galerkin method. The displacement of each plate is decomposed

onto the Q first normal modes of the clamped–free beam in vacuum

zðjÞðxÞ ¼
XQ

n¼1

aðjÞn cnðxÞ; cnðxÞ ¼ coshðlnxÞ � cosðlnxÞ þ
sinðlnÞ � sinhðlnÞ

cosðlnÞ þ coshðlnÞ
½sinhðlnxÞ � sinðlnxÞ�, (23)

and ln are the successive positive roots of

1þ cos ln cosh ln ¼ 0. (24)

These modes are solutions of the following problem:

d4cn

dx4
¼ l4ncn; cnð0Þ ¼ c0nð0Þ ¼ c00nð1Þ ¼ c000n ð1Þ ¼ 0. (25)

From this basis for one plate, we can easily build the basis for the N-plate problem by considering the modes Cm

(1 � m � N �Q) defined as follows: mode ði � 1ÞQþ q (with 1 � q � Q and 1 � i � N) corresponds to a displacement

equal to cq for plate i, all the other plates being held fixed. (In other words, if w is the matrix of the value of the modes

(23) at a set of points x, the basis W for the N-plate problem is block-diagonal with N diagonal blocks equal to w.)

From (21), for each mode Cm, we obtain the pressure gradient P0m as the following superposition:

P0m ¼ P
0ðKÞ
m þ 2ioP

0ðGÞ
m � o2P

0ðMÞ
m , (26)

with PðKÞm ¼ ½½p
ðKÞ�ð1Þm ; ½p

ðKÞ�ð2Þm ; . . . ; ½p
ðKÞ�ðNÞm �

T and from (22),

1

2p

Z 1

0

½pðKÞ�
0ðjÞ
m ðxÞdx

x� x
þ

1

2p

X
laj

Z 1

0

x� x

ðx� xÞ2 þ ðj � lÞ2d2
½pðKÞ�

0ðlÞ
m ðxÞdx ¼

d2CðjÞm

dx2
,

Z 1

0

½pðKÞ�
0ðjÞ
m ðxÞdx ¼ 0 (27)

with CðjÞ
ði�1ÞQþqðxÞ ¼ dijcqðxÞ. P

0ðGÞ
m and P

0ðMÞ
m are obtained in the same way from (22), and the different pressure fields are

then recovered by integration from the leading edge.
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For the N plates, Eq. (3) becomes (noting that most of the coefficients of each Cm are zero):

XN�Q

m¼1

am �o2Cm þ
1

U�2
d4Cm

dx4
þM�ð�o2PðMÞm þ 2ioPðGÞm þ PðKÞm Þ

� �
¼ 0. (28)

We define the scalar product h�i of F ¼ ½f ð1ÞðxÞ; . . . ; f ðNÞðxÞ�T and G ¼ ½gð1ÞðxÞ; . . . ; gðNÞðxÞ�T as

hF ;Gi ¼
XN

j¼1

Z 1

0

f ðjÞðxÞgðjÞðxÞdx. (29)

Taking the scalar product of (28) with Cn, we obtain a nonlinear eigenvalue problem in o:

�o2ðMþM�FðMÞÞ þ 2ioM�FðGÞ þ
1

U�2
KþM�FðKÞ

� �
� a ¼ 0, (30)

where

Mmn ¼ hCm;Cni; Kmn ¼
d4Cm

dx4
;Cn

� �
,

F ðMÞmn ¼ hP
ðMÞ
m ;Cni; F ðGÞmn ¼ hP

ðGÞ
m ;Cni; F ðKÞmn ¼ hP

ðKÞ
m ;Cni. (31)

Because CðjÞ
ði�1ÞQþq ¼ dijcpðxÞ, and the natural modes of the clamped–free beam are orthogonal and satisfy (25), M is the

identity matrix and K is diagonal with

K ði�1ÞQþq ¼ l4q for 1 � i � N and 1 � q � Q, (32)

with lq defined in (24).

2.5. Numerical solution

The main task consists in determining the matrices FðMÞ, FðGÞ and FðKÞ. The results presented thereafter were obtained

using Q ¼ 24 modes for each plate. A large enough number of Galerkin modes must be used to properly resolve the

structure, growth rate and frequency of the physical modes [see for example Lemaitre et al. (2005)], and tests with

Q ¼ 48 and 96 were performed to ensure a proper convergence. Eq. (30) has Ntot ¼ 2N �Q eigenmodes and the modes

with largest frequency arise from the Galerkin decomposition and are not physical. We therefore chose to retain only

the N tot=4 modes with smallest frequency in the remainder of the paper (12N modes for Q ¼ 24) to ensure we are

studying only physical modes. This choice might lead us to discard some physical modes, but such discarded modes

would have a very high frequency and short wavelength. Therefore, we expect these modes to have a negligible effect in

the analysis of the real problem, as flow viscosity and material damping (both neglected in the present potential flow

approach) would lead to a rapid dissipation of the energy in those modes.

Each function cnðxÞ is evaluated on Np ¼ 200 Gauss–Chebyshev points, and expanded using the first Np Chebyshev

polynomials of the first kind. Using this discretization is particularly well-suited for the solution of the coupled singular

integral equations (22). The procedure for solving (22) is detailed in Appendix A. Once the different ½pðKÞ�ðjÞ, ½pðGÞ�ðjÞ and

½pðMÞ�ðjÞ have been obtained, the matrix coefficients are computed using (29) and a Gauss–Chebyshev quadrature

(Pozrikidis, 1998).

Once the matrices FðMÞ, FðGÞ and FðKÞ have been obtained for a given value of d, the nonlinear eigenvalue problem (30)

is solved for given values of M� and U�.

We first note that, in (30), o always appears as powers of io and all matrices are real. Therefore, if o is a solution, �ō
is as well, with the same mode structure characteristics (the eigenfunctions are conjugate pairs). This result is a direct

consequence of the choice made for the modal decomposition: yðjÞðx; tÞ ¼ Re½zðjÞðxÞeiot�. The eigenvalues are therefore of

two kinds: purely imaginary and pairs of eigenvalues with the same imaginary parts but opposite real parts. Because of

this structure, in the following we will only discuss the eigenvalue with positive real part, keeping in mind that when this

real part is strictly positive, an associated eigenvalue also exists with opposite real part.

In the following, we study successively the stability properties of N ¼ 2, N ¼ 3 and Nb1 parallel elastic plates. In

several places, we will consider the most unstable mode to determine for example the dominant mode’s nature. We must

point out here that this mode is dominant in the linear regime. Although several numerical and experimental studies on

flexible flags have reported a good agreement between the structure of the observed dominant mode and the prediction

of linear stability analysis [e.g. Eloy et al. (2008), Michelin et al. (2008)], in the fully developed regime, nonlinear

phenomena such as mode competition could modify the nature or properties of the dominant mode (e.g. frequency).
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This will therefore limit our ability to perform a quantitative comparison of our linear stability results to the

experimental work of Zhang et al. (2000) and Jia et al. (2007), as the motion of the filaments observed in these

experiments correspond to a fully developed nonlinear regime. Furthermore, although soap-film experiments represent

a good approximation of two-dimensional flows, this approximation is only valid far from the filaments: the wetting of

the filaments creates a bulge of fluid whose influence on the inertia and rigidity of the filament can only be estimated

roughly [see Zhu and Peskin (2003)]. A qualitative comparison of the mode nature and properties with the experimental

observations can however be performed.

3. Stability of two coupled plates

In this section, we focus on the case of two identical flexible plates placed at a relative distance d from each other. The

method outlined in the previous section is used setting N ¼ 2.

3.1. Influence of d on the stability of the flat state of rest

One question of interest when approaching two flexible plates to each other is whether and how the presence of the

other plate will influence the stability threshold of the state of rest (flat and parallel to the imposed flow). The critical

stability curve is plotted in Fig. 4 for various values of the relative distance between the plates’ leading edges. Below the

critical curve, the state of rest is a stable equilibrium; above it, this state of rest is unstable and flapping can develop.

As a general result, we observe that the hydrodynamic coupling between the plates tends to destabilize the state of

rest, as the stable range of parameter values ðM�;U�Þ shrinks with decreasing d. We observe that this reduction of the

stability threshold UcðM
�; dÞ with d (or the minimum U� above which the state of rest becomes unstable) is not uniform

with respect to M�. Heavy flags (M� � 1) are destabilized for distances between the plates as large as three times their

lengths, while the stability of light plates (M� � 5) is not affected until do0:5.
This is confirmed by looking at the growth rate of the most unstable mode, plotted in Fig. 5(a) for several values of

the relative distance between the plates. Two effects are evident from this picture. As expected for a particular distance

d, the growth rate increases above the critical stability curve for increasing U�: increasing U� corresponds to an

increasing forcing flow or a relatively smaller rigidity of the plates. More kinetic energy is then transferred from the

outside flow to the plates’ motion.

For small d, the dominant mode’s stability properties are modified the most for small M�: in that case, a significant

increase of the dominant mode’s growth rate is observed for decreasing d. The comparison of the different pictures in

Fig. 5(a) also shows the evolution with d of the location of branches with reduced instability (light colors) in the

ðM�;U�Þ-plane, information that is not available when only the critical stability curve is considered. These regions are

the most susceptible to become stable if a small amount of dissipation is added to the system.
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Fig. 4. Critical stability curve of the state of rest of two plates in the ðM�;U�Þ-plane for d ¼ 0:1 (circle), d ¼ 0:2 (thin solid), d ¼ 0:5
(dashed), d ¼ 1 (dotted) and d ¼ 3 (dash-dotted). The thick solid line is the stability curve for one flag only using the same approach

(Eloy et al., 2007) and is equivalent to d ¼ 1.
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This difference of behavior between small M� and large M� is illustrated in Fig. 6 where the dominant mode

characteristics are studied in the ðU�; dÞ-plane. For M� ¼ 2, the dominant mode stability, nature, growth rate and

frequency depend strongly on d, while for M� ¼ 4, d has a much weaker influence and the frequency and growth rate

variations are due to changes in the dominant mode rather than a modification of a particular mode’s properties with d.
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Fig. 5. (a) Growth rate and (b) nature of the most unstable mode plotted in the ðM�;U�Þ-plane for (from top to bottom) d ¼ 0:2, 0:5, 1
and 3. On the right column, the stability region of the state of rest is shown in black, while grey (resp. white) regions correspond to an

out-of-phase (resp. in-phase) dominant mode.
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One interpretation of the preferential destabilization of flags with low M� lies in the mode structure associated with

each branch on the stability curves in Figs. 3 and 4. The most unstable branch at low M� corresponds to modes with

longer wavelengths than the subsequent branches. Modes with shorter wavelengths are expected to be less influenced by

the presence of the second plate as the relevant aspect ratio is l=D rather than L=D for this particular mode, with l the

wavelength of the mode.

3.2. In-phase and out-of-phase modes

For two coupled plates, eigenmodes can be of two natures: in-phase (the two plates having the same motion) and out-

of-phase (the two plates having symmetric motions with respect to the horizontal axis) as illustrated in Figs. 1 and 7.

The nature of the mode is determined by computing the correlation between the spatial structure of the mode

component along each plate. For a particular mode o, each plate’s displacement can be defined as yðjÞðx; tÞ ¼
Re½zðjÞðxÞeiot� with the same complex frequency o. The correlation coefficient for the motion of plates m and n is defined

ARTICLE IN PRESS

d

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5
5

10

15

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

35

2.4 7

6.
5

7.58
8.5

4.85

5.4

6

6.5
7

8

9
10
11

4.
6

5

2.6

2.8
3

3.4

4

5

6

7
8

70

80
90

45

50

55
60

70

80

40

50

60

35

45

12
13

2.4

2.4

2.8

2.8

2.6

3

3.23.4
3.8

3.6
4

4.8

3.2
3.6

7

5.2

4.8

4.4

4

3.4

450

4.
6

60
70

80
90

50
55

U
*

d

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5
5

10

15

U
*

d

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5
5

10

15

U
*

d

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5
5

10

15

U
*

d

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5
5

10

15

U
*

d

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5
5

10

15

U
*

Fig. 6. Evolution of the dominant mode properties in the ðd;U�Þ-plane for M� ¼ 2 (left) and M� ¼ 4 (right). (Top) Regime observed

(with the same color code as in Fig. 5). (Center) Growth rate of the most unstable mode (stable regions are indicated with a zero growth

rate). (Bottom) Frequency of the dominant mode.
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as the average value in x of the time correlation of these plates’ displacement at x:

rmn ¼

Z 1

0

Re½zðmÞðxÞzðnÞðxÞ�

jzðmÞðxÞzðnÞðxÞj
dx, (33)

where the integrand is just the relative phase between zðmÞðxÞ and zðnÞðxÞ. This definition remains valid for the case of

multiple plates. Here there are only two plates and only one correlation r ¼ r12. In practice, within each mode of the

two-plate system, the displacements of the plates were found either equal or opposite and a symmetry argument for this

is given in Section 5. Therefore, the correlation coefficient r is equal to 	1. A mode with r ¼ 1 (resp. r ¼ �1) is called

thereafter an in-phase (resp. out-of-phase) mode. Fig. 5(b) shows for given values of d, the nature of the most unstable

mode in the ðM�;U�Þ-plane. Alternatively, Fig. 6 shows the evolution of the nature of the dominant mode in the

ðd;U�Þ-plane for given M�, thereby giving some insight on the influence of d.

In the following, modes will be referenced by their nature (I for in-phase modes and O for out-of-phase modes) and

numbered by increasing frequencies at large d, to correspond for convenience to the numbering of the one-plate case (it

is therefore possible for a mode 2 to have a higher frequency than a mode 3 at shorter distances).

These maps show that for increasing d, the domain of stability of the flat state of rest increases, as observed in the

previous section. From Figs. 5 and 6, we also observe that for given values of M� and U�, it is possible to observe an in-

phase mode at small distances d and a transition to an out-of-phase regime for increasing plate separation (see for

example the case M� ¼ 4 and U� ¼ 13 in Fig. 6 and in more detail in Fig. 8). This transition from in-phase to out-of-

phase modes with increasing separation was observed experimentally (Zhang et al., 2000; Jia et al., 2007).
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While it is clear from Fig. 5(b) that the in-phase flapping modes are more often dominant at small distances than at

larger distances, this transition is not always observed: in-phase flapping can be observed for large d (up to five times the

plate’s length for M� ¼ 4 and U� ¼ 12:5 as seen in Fig. 6) and out-of-phase flapping can be observed for all values of d

(for small inertia ratio M�, the dominant mode is always out-of-phase). This is consistent with the soap-film

experiments reported in Jia et al. (2007), which observed an out-of-phase mode at small and large distances for the

shortest filament length (corresponding to smaller M� and U�, if all other properties are kept constant). It is also

consistent with the results of Tang and Paı̈doussis (2009), who observed that the velocity threshold of the fluttering

instability was always lower for out-of-phase modes than for in-phase modes in their study of plates with M� ¼ 0:2.

3.3. Influence of d on the mode properties

Figs. 8 and 9 show the evolution with d of the frequency ReðoÞ and growth rate Imð�oÞ of the lowest frequency in-

phase and out-of-phase modes for two different sets of values of ðM�;U�Þ. The branches on each of these plots

correspond to continuous variations of the eigenvalue o. Note also that the nature of the mode (in-phase/out-of-phase)

remains unchanged on a particular branch for all d-values (the correlation coefficient for each branch remains very close

to either 1 or �1).

The structure of the mode (e.g. number of necks) can however vary with d, although we note that the most unstable

modes preserve their general structure throughout the d-domain (Fig. 10). Other more damped modes can however

experience a strong modification of their structure as can be seen for mode O1b for example in Fig. 10. The existence of

a zero in the envelope corresponds to a standing wave mode (ReðoÞ ¼ 0).

At large distances, we observe the pairing of in-phase and out-of-phase branches. Within each pair, the mode

frequencies, growth rates and mode structures become identical and approach asymptotically the mode characteristics

obtained in the case of a single plate (Figs. 8 and 10). Within each pair, the two modes differ however by the values of

the correlation coefficient r (or the phase difference between the plates’ motion) which are opposite.

We showed that the variations of the modes’ growth rate with d, M� and U� can induce a sudden change of the

dominant mode nature as one parameter is varied (corresponding to the different domain boundaries in Figs. 5(b) and

6). If the most linearly unstable mode determines the properties of the observed flapping in experiments and numerical

simulations, then by varying one of the parameters (by either changing the separation D or the flow velocity U1 for

example), one will experience a sudden change in the observed properties (for example, the flapping mode shape or its

frequency). For M� ¼ 4 and U� ¼ 13, the dominant mode is an in-phase flapping at short distances (do0:15) and an

out-of-phase flapping at larger distances (Fig. 8). At the transition, the structure of the dominant mode (and therefore

its characteristic wavelength) is also modified from a 2-neck mode (I3) to a 3-neck mode (O4) (see Fig. 7), and a

frequency jump is observed from o ¼ 2:68 (mode I3) to o ¼ 4:96 (mode I4). This frequency switch was also reported in

previous experimental and numerical studies (Zhang et al., 2000; Farnell et al., 2004; Jia et al., 2007).

The frequency jump can be observed even when a transition occurs between two modes of the same nature. Fig. 9

illustrates this with a case where an out-of-phase mode is always dominant for M� ¼ 2 and U� ¼ 10. Mode O4 is

dominant for small distances d, while O3 is dominant at larger distances. The mode switch at d
0:13 leads to a negative

dominant frequency switch from o ¼ 8:1 to 3:7.

ARTICLE IN PRESS

10−1 100

0

2

4

6

8

10

d

M
od

e 
fre

qu
en

cy

I1a+bO2a+b
I1a  O1
I2  O2aI2

O3

I3

I4

O4

O1

−4

−3

−2

−1

0

1

d

G
ro

w
th

 ra
te

O2a
O2a+b

I4  O4

O1O2b

I1b

I1a

O3O4

I2

I3

10010−1

Fig. 9. Same as Fig. 8 for M� ¼ 2 and U� ¼ 10.

S. Michelin, S.G. Llewellyn Smith / Journal of Fluids and Structures 25 (2009) 1136–11571148



Author's personal copy

This frequency jump and its variability with the parameter values are clearly visible in Fig. 6. The frequency plots

show some large variations of the dominant frequency with M� and U� for given d. Large frequency values can be

achieved at low U� (for large value of the plates’ rigidity). We must point out that these frequencies occur mostly in the

stability region where all modes have negative growth rates. In some situations, large dominant frequencies can also

occur for unstable configurations but at very small separation distance (typically less than 5% of the plates’ length as

seen for M� ¼ 2 in Fig. 6). In the presence of a small amount of material damping or flow viscosity (neglected here), we

expect these high-frequency modes to be the most affected.

4. Stability of three coupled plates

In the case of three evenly spaced identical plates, three different types of modes are obtained that correspond to the

mode types observed experimentally (see Fig. 1):

(i) an in-phase mode (I) where all three plates flap in phase; the correlation coefficients as defined in (33) satisfy

r12 ¼ r13 ¼ r23 ¼ 1 and the outer plates have the same motion;
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Fig. 10. Evolution with d of the envelope of the least stable in-phase and out-of-phase modes for M� ¼ 4 and U� ¼ 13. The indexing

of the modes corresponds to Fig. 8. The envelope is computed as the maximum vertical deflection achieved for 0 � x � 1, for one of the

two flags after normalizing the mode amplitude so that the amplitude at the trailing edge is always unity.
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(ii) an out-of-phase mode (O) where the outer plates flap in phase with the same amplitude and the middle plate flaps

with a phase equal to p with respect to the other plates (r12 ¼ r23 ¼ �1 and r13 ¼ 1);

(iii) a symmetric mode (S) where the outer plates have opposite vertical displacements and the middle plate remains

still: r13 ¼ �1 and zð2ÞðxÞ ¼ 0.

A symmetry argument for the existence of mode (S) will be given in Section 5. The same symmetry argument will also

prove that plates 1 and 3 always have equal or opposite motions, therefore their relative motion amplitude is equal to 1.

However, in modes I and O, the motion of the center plate is in general not of the same amplitude as the two others’

(although it was observed that it had the same x dependence leading to a correlation coefficient of 	1).

For a given value of M�, Fig. 11 shows the evolution of the mode properties in the ðd;U�Þ-plane. We observe that at

short distances and for light plates (large M�), the dominant mode structure is highly sensitive to the problem

parameters, with the presence of finger-shaped regions of dominance of the (O) and (S) modes. At large distances the

out-of-phase mode (O) prevails as for two plates. However for large d, the modes group in triplets. Within each triplet,
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Fig. 11. Evolution of the dominant mode properties for three plates with M� ¼ 3 (left) and M� ¼ 10 (right). (Top) The nature of the

dominant mode is given in the ðd;U�Þ-plane: stability region (black), symmetric mode S (dark gray), out-of-phase mode O (light gray)

and in-phase mode I (white). (Center) The maximum growth rate is plotted in the ðd;U�Þ-plane. Stability regions correspond to a zero

growth rate for clarity. (Bottom) Contours of the dominant mode’s frequency in the ðd;U�Þ-plane.
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one finds a mode of each kind (I, O and S) with frequency, growth rate and envelope asymptotically equal to the values

for one plate only (Fig. 12). For the particular choice M� ¼ 3 and U� ¼ 13, we observe that for increasing d, the

dominant mode takes alternatively each of the three possible natures (Fig. 12). As for two plates, a switch in the

dominant mode can lead to a sudden change of all the following: mode nature (I,O,S), mode structure and frequency.

5. Results for larger N

5.1. Symmetry argument

In the previous sections, we have observed that all the modes are always symmetric or antisymmetric in structure with

respect to the axis of symmetry (between the two plates for N ¼ 2 or on the middle plate for N ¼ 3). We attempt here to

provide a physical argument for this observation. A mathematical proof involving the structure of the matrices in (30) is

presented in Appendix B.

The orientation of the horizontal axis is physically determined by the forcing flow. The orientation of the vertical axis

is however purely arbitrary. For a particular mode, define zðjÞðxÞ the displacement of the plate clamped at y ¼ ðj � 1Þd.

Defining a new y-coordinate y0 as y0 ¼ ðN � 1Þd � y and a new indexing of the plates j0 ¼ N þ 1� j will leave the

problem absolutely unchanged. In this new situation, the displacement of the plate sitting at y0 ¼ ðj � 1Þd in a particular

mode will be �zðNþ1�jÞ
ðxÞ. However, the physical problem is unchanged and the mode itself cannot have been modified,

therefore there must exist a constant l such that

zðjÞðxÞ ¼ �lzðNþ1�jÞ
ðxÞ for all 1 � j � N. (34)

Considering the previous equality for any pair j ¼ p and j ¼ N þ 1� p (1 � p � N), we see that l ¼ 	1. In a particular

mode, the displacements of plates j and N þ 1� j must therefore be equal or opposite.

The correlation coefficient of the two plates as defined in (33) must be equal to 	1. Therefore, the motion of the N

plates must be symmetric or antisymmetric with respect to the plane located between plates N=2 and N=2þ 1 (resp. on

plate ðN þ 1Þ=2) for even N (resp. odd N).

One consequence of this result is that for odd values of N, symmetric modes correspond to a center plate at rest, as

was observed for the case of three plates in Section 4.

5.2. The limit N !1

We now consider the limit case of a large number of plates N. This geometry is particularly relevant in the study of

plate assemblies as found in cooling systems or in some nuclear reactors (Miller, 1960; Kim and Davis, 1995; Guo and

Paı̈doussis, 2000a). Since the problem is invariant by a translation of d along the vertical axis, we look for solutions of
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(7) in which the displacement zðnÞ and pressure perturbation ½p�ðnÞ of plate n (�1ono1) are of the form

zðnÞðxÞ ¼ zð0ÞðxÞeinj; ½p�ðnÞðxÞ ¼ ½p�ð0ÞðxÞeinj (35)

with the phase j being arbitrary between 0 and 2p. From (20), we obtain ½p�ð0Þ from zð0Þ as

1

2p

Z 1

0

K1ðx� x;jÞ½p�
0ð0ÞðxÞdx ¼ �o2zð0Þ þ 2io

dzð0Þ

dx
þ

d2zð0Þ

dx2
;

Z 1

0

½p�
0ð0ÞðxÞdx ¼ 0 (36)

with the modified kernel K1 given by

K1ðu;jÞ ¼
1

u
þ 2

X1
n¼1

u cos nj

u2 þ n2d2
. (37)

We note here that K1 is an even function of j (as expected since the problem is invariant by reversing the labeling

order of the plates). In the following, we therefore restrict our study to 0 � j � p. Using Fourier series, we can

determine K1 explicitly as

K1ðu;jÞ ¼
p
d

cosh
u

d
ðp� jÞ

h i
sinh

pu

d

	 
 for 0 � j � p. (38)

The case j ¼ 0 will correspond to a purely in-phase mode (all the plates will have the same motion) and the case j ¼ p
corresponds to the purely out-of-phase mode (any two consecutive plates have opposite vertical displacements). Guo

and Paı̈doussis (2000a) studied the latter mode exclusively by assuming the symmetry property to simplify the potential

flow problem. They also used a different geometry with free boundary conditions applied at the leading and trailing

edges, the side edges of the plate being clamped to a rigid wall. Here, we do not assume a priori a particular phase

difference j but instead consider all possible values of j to determine the most unstable mode and its nature.

5.2.1. Stability threshold at large N

For a given j, we can use the same approach as in Section 2 and decompose zð0Þ over the first Q fundamental modes

of the clamped–free beam. For each mode zð0Þm , we then obtain from (36) and (21) the pressure gradients ½pðMÞ�
0ð0Þ
m ,

½pðGÞ�
0ð0Þ
m and ½pðKÞ�

0ð0Þ
m . For each value of j, we compute the critical stability curve in the ðM�;U�Þ plane of the modes with

a phase difference j between successive plates, and obtain the absolute stability curve by taking the intersection of the

stability domains. The results are shown in Fig. 13 for two values of the relative distance of the plates d ¼ 0:2 and 0:5,
and compared to the results obtained using the method of Section 2 with an increasing number of plates. We observe

that the results obtained for increasing values of N converge well to this limit boundary as N !1. We also observe

that the stability curve converges rather fast toward this limit for both values of d. Most of the limit stability curve is

obtained with a very good approximation for N � 5.
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5.2.2. Properties of the dominant mode in the N !1 limit

Using the same method, we can compute the frequency and growth rate of the modes with a phase difference equal to

j. For a given value of M�, U� and d, we search over all the possible values of j for the most unstable mode. The

properties of the dominant mode are shown in Fig. 14: the phase difference between two consecutive plates in that

mode, as well as this mode’s frequency and growth rate, are successively studied. While the out-of-phase mode (j ¼ p)
tends to dominate for lower values of M� and larger values of d, it is not necessarily the case. In particular, for large

values of M� or small values of d, the in-phase mode can be dominant. We also note that the transition from j ¼ 0 to

j ¼ p in the dominant mode is not necessarily discontinuous but that dominant modes with any value of j can be

found for a particular value of M�, U� or d. This seems to contradict the assumption of Guo and Paı̈doussis (2000a)
that the out-of-phase mode is dominant in the linear regime. We must, however, point out that Guo and Paı̈doussis
(2000a) considered free–free boundary conditions, while the present work considers clamped–free plates. The change in
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Fig. 14. Evolution in the ðM�;U�Þ-plane of the properties of the dominant mode for an infinite number of equally spaced plates

positioned at a distance d ¼ 0:2 (left) and d ¼ 0:5 (right) from each other. (Top) Relative phase j between two consecutive plates
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j=p ¼ 0 corresponds to the in-phase mode where all plates flap in phase. For reference, the stability curve of Fig. 13 is also plotted

(thick black line). (Center) Growth rate of the dominant mode. (Bottom) Frequency of the dominant mode.
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boundary conditions is expected to have a significant impact on the position of the critical stability curve in the

ðM�;U�Þ-plane (Guo and Paı̈doussis, 2000b).
We noted previously that the convergence of the stability curve with increasing N is a rather fast but inhomogeneous

process; some parts of the curve are obtained with a very good approximation for N as low 4 or 5, while others require a

larger number of plates (Fig. 13). From the top panel of Fig. 14, we observe that the zones of fast convergence

correspond to regions of the parameter space where the purely out-of-phase mode is dominant (j ¼ p), while the

slowest converging regions correspond to smaller values of j. Physically, a mode with a phase difference j between two

successive plates can be seen as a wave traveling along the vertical axis with a wavelength equal to 2pd=j and the

number of plates necessary to describe that mode is of the order of 2p=j. For j
p, the instability is well described by

the motion of a plate coupled to its two nearest neighbors, while for small j, a large number of plates is necessary to

describe the structure of the mode accurately. The stability and properties of local modes (those described by a small

number of plates) are less influenced by the total number of plates in the system.

6. Conclusions

Using the double-wake approach, we have performed the linear stability analysis of an array of N parallel and

identical flexible plates clamped at their leading edge in a horizontal flow. The behavior of two and three plates was

discussed in more detail, as well as the limit of an infinite number of plates.

This method allows one to reproduce important properties of the coupled motion of two plates observed in numerical

and experimental studies. For a finite relative distance d between the plates, two types of modes are observed,

corresponding to in-phase or out-of-phase motions of the plates. The linear stability framework allows one to obtain a

map of the dominant modes in the ðM�;U�; dÞ-space, and we observed that, while it is possible to observe a transition

from in-phase to out-of-phase for increasing d and a particular choice of ðM�;U�Þ, in some situations the in-phase or

the out-of-phase modes are dominant for all d, consistent with some recent experiments (Jia et al., 2007). In general, the

presence of a second plate was shown to destabilize the straight rest position. The destabilizing effect was observed to be

most significant for heavy or short flags (small M�). This preferential destabilization for small M� was also observed in

Guo and Paı̈doussis (2000b) for the stability of a single plate in a channel, linking this destabilization to confinement

effects. Our analysis also shows that the dominant mode properties are strongly influenced by the fluid–solid inertia

ratio M�: the out-of-phase mode is linearly dominant for all values of d for heavy plates (small M�), as observed

numerically by Tang and Paı̈doussis (2009), while the in-phase mode can be dominant for larger values of M�.

In the case of N ¼ 3 plates, three types of modes (symmetric, in-phase and out-of-phase) were observed, consistently

with recent wind-tunnel experiments by Schouveiler and Eloy. The case of an infinite number of plates was then

discussed. The stability curve was obtained as well as the properties of the most unstable mode. The out-of-phase mode

(with two consecutive plates having opposite displacements) was shown to be the most unstable for low M� and larger

values of d. However, modes with any value of the phase difference j 2 ½0; p� were shown to exist for some parameter

values. The phase difference of the most unstable mode (or equivalently the number of plates necessary to describe this

mode) was observed to condition the convergence of the stability curve for increasing N.

The advantage of the present approach over the one-dimensional approach developed in Jia et al. (2007) and Shelley

et al. (2005) lies in its ability to take into account the finite length of the plate and the presence of a wake enforcing a

trailing edge regularity condition. However, additional modeling work is needed to include a more accurate

representation of the vortical wake. From the comparison between the present double-wake approach and the vortex

sheet representation for one plate, we expect the former to behave relatively well for larger values of M�. For shorter or

heavier flags, the influence of the wake is expected to be more important and we anticipate some discrepancies.
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Appendix A. Numerical solution of a singular Cauchy-like integral equation

We are interested here in the numerical solution of a integral equations for k1ðxÞ and k2ðxÞ of the form

1

2p

Z 1

0

k1ðx0Þdx0

x� x0
þ

Z 1

0

Kðx; x0Þk2ðx0Þdx0 ¼ f 1ðxÞ, (39a)
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Z 1

0

Kðx; x0Þk1ðx0Þdx0 þ
1

2p

Z 1

0

k2ðx0Þdx0

x� x0
¼ f 2ðxÞ, (39b)

Z 1

0

k1ðx0Þdx0 ¼

Z 1

0

k2ðx0Þdx0 ¼ 0, (39c)

where the kernel Kðx; x0Þ is regular for 1 � fx; x0g � 1. Eq. (39c) is necessary for the system to be well-posed because of

the Cauchy nature of the kernels involved in the integral equation (Tuck, 1980).

Following Tuck (1980), both integral equations are then integrated in x

1

2p

Z 1

0

k1ðx0Þ log jx� x0jdx0 þ

Z 1

0

Lðx; x0Þk2ðx0Þdx0 ¼ g1ðxÞ þ g1, (40a)

Z 1

0

Lðx; x0Þk1ðx0Þdx0 þ
1

2p

Z 1

0

k2ðx0Þ log jx� x0jdx0 ¼ g2ðxÞ þ g2, (40b)

where Kðx; x0Þ ¼ @L=@x and f jðxÞ ¼ g0jðxÞ, and gj are unknown constants. Because of the logarithmic nature of the

kernel, we expect kj to have square-root singularities at both ends of the interval of integration. We therefore define the

regularized functions k̃jðxÞ ¼ kjðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p
.

Take Np Gauss–Chebyshev points defined as

xp ¼
1� cos yp

2
; yp ¼

ðp� 1
2
Þp

Np

; 1 � p � Np. (41)

We denote by j̃j the vector of the values of k̃jðxpÞ. Using the change of variables x0 ¼ ð1� cos y0Þ=2 in (40) leads to

(remembering that
R 1
0 kjðx

0Þdx0 ¼
R p
0 k̃jðy

0
Þdy0 ¼ 0)

1

2p

Z p

0

k̃1ðy0Þ log j2x� ð1� cos y0Þjdy0 þ
Z p

0

Lðx; y0Þk̃2ðy0Þdy0 ¼ g1ðxÞ þ g1, (42a)Z p

0

Lðx; y0Þk̃1ðy0Þdy0 þ
1

2p

Z p

0

k̃2ðy0Þ log j2x� ð1� cos y0Þjdy0 ¼ g2ðxÞ þ g2, (42b)

where for convenience of notation we understand k̃ðy0Þ to mean k̃ðxðy0ÞÞ. The previous system is then evaluated at

x ¼ xp and the different integrals in y0 are divided into Np intervals of equal length centered on yp. For example, for the

regular kernel L,

Z p

0

Lðxp; y
0
Þk̃jðy

0
Þdy0 ¼

XNp

n¼1

Z yc
nþ1

yc
n

Lðxp; y
0
Þk̃jðy

0
Þdy0


XNp

n¼1

k̃jðynÞ

Z yc
nþ1

yc
n

Lðxp; y
0
Þdy0 (43)

with yc
n ¼ ðn� 1Þp=Np for 1 � n � Np þ 1, and therefore yp ¼ ðy

c
p þ yc

pþ1Þ=2. The evaluation of the integral involving

the logarithmic kernel is more subtle. The integral can still be split over the Np equal intervals, and evaluated as

previously for nap. We evaluate separately the case n ¼ p. Using the definition of xp in terms of yp:Z yc
pþ1

yc
p

k̃jðy
0
Þ log 2xp � ð1� cos y0Þ

�� ��dy0 ¼ Z yc
pþ1

yc
p

k̃jðy
0
Þ log cos y0 � cos yp

�� ��dy0. (44)

On this interval, jy0 � ypj � Dy=2 with Dy ¼ p=Np. Assuming this interval is small, we can expand k̃ðy0Þ and cos y0 �
cos yp about yp. Keeping only the dominant terms in Dy, we obtainZ yc

pþ1

yc
p

k̃jðy
0
Þ log 2xp � ð1� cos y0Þ

�� ��dy0
k̃jðypÞDy log
sin yp Dy

2

����
����� 1

� �
. (45)

Using these results, Eq. (40) is approximated as

C �
j̃1

j̃2

 !
¼

Cð1Þ Cð2Þ

Cð2Þ Cð1Þ

 !
�

j̃1

j̃2

 !
¼

g1

g2

 !
þ g1

1

0

� �
þ g2

0

1

� �
(46)

with 1 and 0 the column vectors of Np elements all equal respectively to 1 and 0. The influence coefficient matrices Cð1Þ

and Cð2Þ have coefficients

Cð1Þmn ¼
1

2p

Z yc
nþ1

yc
n

log j2xm � 1þ cos y0jdx0; Cð2Þmn ¼

Z yc
nþ1

yc
n

Lðxm; y0Þdy0. (47)
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All the terms of Cð2Þ and the nondiagonal terms of Cð1Þ are obtained using the trapezoidal rule. Diagonal terms of Cð1Þ

are obtained using (45). The integration in x to obtain L and gj is done using a Gauss–Chebyshev quadrature [see for

example Pozrikidis (1998)].

The matrix C is nonsingular and can be inverted:

j̃1

j̃2

 !
¼ C�1:

g1

g2

 !
þ g1

1

0

� �
þ g2

0

1

� �" #
, (48)

and the constants g1 and g2 are obtained by enforcing
R p
0 k̃jðy

0
Þdy0 ¼ 0. Note that the case

R 1
0 kiðxÞdx ¼ ai with ai a

nonzero (known) constant is handled just as easily using this method. The approach is also easily transposed to the case

of N functions kj as in (20).

Appendix B. Symmetry of the modes

We provide here a more rigorous mathematical argument for the symmetry or antisymmetry of all the modes with

respect to the middle plane (understood as the plane y ¼ ðN � 1Þd=2). For N plates, the problem is doubly symmetric in

the following sense: the effect of an arbitrary displacement, velocity or acceleration of plate i on the pressure jump on

plate j is exactly equal to the effect of the same arbitrary displacement, velocity or acceleration of plate j on the pressure

jump on plate i, and is also equal to the effect of the same displacement, velocity or acceleration of plate N þ 1� i on

the pressure forcing on plate N þ 1� j. Mathematically, this is expressed by the symmetry and structure of the operator

acting on the vector ð½p�ð1Þ; ½p�ð2Þ; . . . ; ½p�ðNÞÞ in Eq. (20). If we rewrite Eq. (20) as

P:

½p�ð1Þ

..

.

½p�ðNÞ

0
BB@

1
CCA ¼ � � � with Pijðf ÞðxÞ ¼

1

2p

Z 1

0

ðx� xÞf ðxÞdx

ðx� xÞ2 þ ði � jÞ2d2
, (49)

then the operator matrix P is such that Pij only depends on ji � jj. Then one can prove easily that its inverse Q satisfies

Qij ¼ QN�i;N�j . (50)

A close look at the definition of the five different matrices defined in (30) will show that they satisfy the same symmetry

by block, and we explain here what we mean by that. Let B be the matrix in bracket in (30), and define the block

matrices B̃
ðijÞ

with 1 � fi; jg � N such that Bði�1ÞQþq;ðj�1ÞQþs ¼ B̃
ðijÞ

qs for 1 � fq; sg � Q, then

B̃
ðijÞ
¼ B̃

ðNþ1�j;Nþ1�iÞ
. (51)

Decomposing in the same way the eigenvector a in blocks ã: aðj�1ÞQþs ¼ ãðjÞs , Eq. (30) becomes

XN

j¼1

XQ

s¼1

B̃
ðijÞ

qs ã
ðjÞ
s ¼ 0, (52)

for 1 � i � N and 1 � q � Q. But, through (51) we also have

XN

j¼1

XQ

s¼1

B̃
ðijÞ

qs ã
ðNþ1�jÞ
s ¼

XN

j0¼1

XQ

s¼1

B̃
ði;Nþ1�j0Þ

qs ãðj
0 Þ

s ¼
XN

j0¼1

XQ

s¼1

B̃
ðNþ1�i;j0Þ
qs ãðj

0Þ
s ¼ 0, (53)

for 1 � i � N and 1 � q � Q. The vector b defined as bðj�1ÞQþs ¼ ãðNþ1�jÞ
s is also an eigenvector of B. It is therefore

proportional to a and

ãðjÞs ¼ lãðNþ1�jÞ
s for 1 � j � N and 1 � s � Q. (54)

Applying this relationship twice, we find immediately that l2 ¼ 1 and l ¼ 	1. a gives the decomposition of the

eigenmode along the basis built from the free modes. This symmetry property therefore immediately transfers to the

displacement of the plates in a particular mode zðjÞm ðxÞ with 1 � j � N and 1 � m � N �Q:

zðjÞm ðxÞ ¼ 	z
ðNþ1�jÞ
m ðxÞ. (55)
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