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Artificial microswimmers, or ‘microbots’, have the potential to revolutionise non-
invasive medicine and microfluidics. Microbots that are powered by self-phoretic
mechanisms, such as Janus particles, often harness a solute fuel in their environment.
Traditionally, self-phoretic particles are point like, but slender phoretic rods have
become an increasingly prevalent design. While there has been substantial interest in
creating efficient asymptotic theories for slender phoretic rods, hitherto such theories
have been restricted to straight rods with axisymmetric patterning. However, modern
manufacturing methods will soon allow fabrication of slender phoretic filaments with
complex three-dimensional shapes. In this paper, we develop a slender body theory
for the solute of self-diffusiophoretic filaments of arbitrary three-dimensional shape
and patterning. We demonstrate analytically that, unlike other slender body theories,
first-order azimuthal variations arising from curvature and confinement can make a
leading-order contribution to the swimming kinematics.

Key words: slender-body theory, propulsion

1. Introduction
Artificial microscale swimmers (microbots) are a novel technology with promising

applications in medicine (Nelson, Kaliakatsos & Abbott 2010) and microfluidics
(Maggi et al. 2016). Microbots can be broadly classified by whether their propulsion
is externally actuated, or fuel based. Externally actuated microbots are typically
magnetised and actuated by a periodic magnetic field, for example rigid helical
filaments attached to a magnetised head (Ghosh & Fischer 2009; Zhang et al. 2009a,b;
Gao et al. 2010), and ‘sperm-like’ microbots, that move a flexible tail (Dreyfus et al.
2005). Other externally actuated microbots are powered by bubbles driven to oscillate
via applied ultrasound (Bertin et al. 2015). In contrast, fuel-based microbots harvest
fuel from their surroundings to self-propel (Paxton et al. 2004; Williams et al.
2014). One class of such fuel-based microbots are self-diffusiophoretic (autophoretic)
particles. In autophoresis, surface patterning of a particle with a catalyst gives rise to
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differential surface reaction, allowing the particle to self-generate solute concentration
gradients which drive a propulsive slip flow (Paxton et al. 2004).

Typically, autophoretic particles are spheroids, disks, rods and, recently, tori (Baker
et al. 2019), partially coated in a catalyst. Nature at the microscale is, in contrast,
proliferated by flexible active filaments. Such phoretic filaments could exhibit exciting
dynamic behaviours, such as spontaneous buckling and periodic oscillations, and even
be selectively controlled via targeted shape change. However, dynamic simulations
of slender objects can be computationally costly, owing to the need to accurately
resolve multiple length scales. As such, there has been a significant drive to develop a
slender body theory for autophoretic particles. Such theories not only have the benefit
of numerical efficiency, but are also able to provide analytical insight into dynamic
behaviours.

The development of slender body theories (SBT) of the dynamics of filaments in
viscous fluids represents a magnum opus in low Reynolds number research, spanning
nearly 70 years. SBT has provided the basis for numerous insights in bioactive flows,
for instance cilia-driven symmetry-breaking flow in vertebrates (Smith, Montenegro-
Johnson & Lopes 2019), mucociliary clearance (Smith, Gaffney & Blake 2008) and
sperm motility (Gaffney et al. 2011), amongst others. Indeed, SBT continues to be an
invaluable tool for dynamic fluid–filament interaction simulations (Hall-McNair et al.
2019; Schoeller et al. 2019; Walker et al. 2019) where boundary element methods
would prove prohibitively costly.

SBT was pioneered by Hancock (1953), who modelled the beating tails of
microorganisms via line distributions of Stokes flow singularities, from which resistive
force theory was soon after derived (Gray & Hancock 1955). This work was later
formalised into a framework of matched-asymptotic expansions (Cox 1970), with
the inner problem representing flow past a two-dimensional (2-D) cylinder, and
the outer problem a distribution of singularities. Improved, algebraically accurate,
SBTs were then developed (e.g. Johnson 1979), often using Chwang and Wu’s exact
singularity distribution for a prolate spheroid (Chwang & Wu 1975). For a more
detailed overview, see Lauga & Powers (2009). More recently, Koens & Lauga
(2018) showed that the boundary integral representation of Stokes flow contains SBT,
via asymptotic expansion of the integral kernels.

For phoretic particles, Yariv (2008) developed an SBT for the electrophoretic motion
of slender straight rods with a varying cross-section. A similar approach was used later
by Schnitzer & Yariv (2015) for studying slender self-diffusiophoretic particles with
axisymmetric chemical activity, and Ibrahim, Golestanian & Liverpool (2017) used
a matched-asymptotic expansion to examine how the end shape and cross-sectional
profile of straight slender catalytic rods affect swimming speed. Recently, Yariv (2019)
extended the work of Schnitzer & Yariv (2015) to more complex reaction kinetics that
depend on the Damköhler number.

In this paper, we extend this previous work to phoretic filaments of arbitrary 3-D
centreline, axisymmetric but varying cross-section and arbitrary chemical patterning,
by exploiting a matched-asymptotic expansion from a boundary integral representation
of Laplace’s equation, as developed by Koens & Lauga (2018) for slender bodies in
viscous flow. For axisymmetric particles, azimuthal variations in concentration, which
are sub-leading order, have a leading-order effect on the particle kinematics when the
particle centreline is curved. As such, our slender phoretic theory (SPT) is not only
fully three-dimensional, but also algebraically accurate to first order in the filament
slenderness. An interesting outcome of this analysis is that only centreline curvature,
and not torsion, can have this leading-order effect on the dynamics.
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We will focus herein on the derivation of this theory, its validation and the
resultant analytical insights that arise, rather than the potential computational gains
of our theory. The paper is organised as follows. In § 2, we present the slender
phoretic theory to obtain the surface distribution of chemical for a slender filament
of arbitrary 3-D centreline and surface chemical properties. This theory is then
coupled to the recent slender body theory of Koens & Lauga (2018) to obtain
the filament’s swimming velocity. Section 3 outlines the numerical solution of the
resulting integral equation. In § 4, we validate our leading-order concentration field
against analytical results for straight prolate spheroids, and in § 5 we validate the
first-order concentration calculation for curved planar filaments. In § 6, we examine
further the change in the dynamics from excluding azimuthal slip flows to curved
planar filaments. Section 7 demonstrates the 3-D capability of the theory with the
simple test case of an autophoretic helix, while § 8 concludes with a discussion.

2. Slender phoretic theory
2.1. Autophoretic propulsion

A phoretic swimmer achieves propulsion by catalysing a chemical reaction in
the surrounding solute fuel, denoted by its ‘activity’ A(x), for x a point on the
swimmer surface. The activity represents concentration flux and may vary across the
swimmer, with A> 0, A< 0 corresponding to release and or consumption of solute
respectively. Local concentration gradients arise from spatial variation in the activity
and confinement effects. These gradients result in local pressure imbalances in a thin
boundary layer at the swimmer surface, driving a surface slip flow (Anderson 1989;
Michelin & Lauga 2014). This slip flow is locally proportional to the concentration
gradient, with the swimmer’s ‘mobility’ M(x) as the (spatially varying) constant of
proportionality. The mobility may be positive or negative, depending on whether the
slip flow moves up or down the concentration gradient.

We consider neutral solute self-diffusiophoresis, where electrokinetic effects are
absent (Brown & Poon 2014; Ebbens et al. 2014), and work in the limit of zero
Péclet number (Golestanian, Liverpool & Ajdari 2007) where diffusion dominates
and advection of the solute due to flow can be neglected. This limit is appropriate
provided that the particle is smaller than rc=D/U, for D solute diffusivity and U the
typical phoretic velocity (Michelin & Lauga 2014). For platinum-coated Janus particles
in hydrogen peroxide solution, this critical radius corresponds to rc ≈ 10–100 µm
(Howse et al. 2007). For a detailed discussion of propulsion at finite Péclet number,
see Michelin & Lauga (2014).

At zero Péclet number, the solute dynamics decouples from the flow dynamics
at any instant, so that the concentration field c(x, t) is found by solving Laplace’s
equation

D∇2c= 0, (2.1)

in the region outside the swimmer, with surface S, subject to the boundary condition

−Dnf · ∇c|S =A(x)|S, (2.2)

with nf the outward normal to the swimmer’s surface, pointing into the fluid, and D
the solute diffusivity. The solution of the diffusion problem is then used to calculate
the surface slip velocity,

vslip|S =M(x)(1− nf nf ) · ∇c, (2.3)
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Problem set-up

−Dnf · ◊c|S = a(x)|S → D◊2c = 0   →   √slip = m(x)(1 -nfnf) · ◊c   →   µ◊2u = ◊p
◊ · u = 0

Chemical patterning Solute Phoretic slip Swimming

FIGURE 1. A schematic of a slender phoretic filament in three dimensions, in the shape
of a helix. Surface lines are used to emphasise curvature and torsion. Laplace’s equation
is solved in the bulk, with flux boundary condition on the surface of the filament S
determined by its activity A(x)|S. In later examples, we consider axisymmetric activity
in the form of catalytic end caps (demarcated here by the red) with an inert midpiece, so
that A(s)=−1, |s|> sc, A(s)= 0 otherwise.

which gives the body-frame boundary conditions for solving the Stokes flow problem

µ∇2u−∇p= 0, ∇ · u= 0. (2.4)

This slip flow will in general propel the swimmer with translational velocity Usw, and
angular velocity Ωsw, which are found by enforcing the constraints that no net force
or torque acts on the swimmer.

Thus, given an activity and mobility, the task of this paper is to find a convenient
slender body approximation for the concentration field, and slip flow that results from
its surface gradient. This flow will drive the kinematics of the filament, which will
change depending on its centreline shape. The set-up of the problem and governing
equations are shown in figure 1.

2.2. Filament geometry
We begin by describing the filament geometry, following the approach of Koens &
Lauga (2018). The filament centreline r(s) is parametrised by its arclength s∈ [−l, l],
where 2l is the total contour length. The centreline tangent t̂(s), normal n̂(s), and
binormal b̂(s) satisfy the Serret–Frenet equations,

∂ t̂
∂s
= κn̂,

∂n̂
∂s
=−κ t̂+ τ b̂,

∂ b̂
∂s
=−τ n̂, (2.5a−c)

where κ(s) and τ(s) are the curvature and torsion of the filament centreline,
respectively.

2.2.1. Parametrising the surface
The filament cross-sectional radius, which may vary along the filament, takes the

value rfρ(s) at s, where rf is the maximal radius and ρ(s)∈ [0, 1]. The surface of the
filament is then parametrised by s, rfρ(s), and the azimuthal angle of the cross-section,
θ ∈ [−π,π], by

S(s, θ)= r(s)+ rfρ(s)êρ(s, θ). (2.6)
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The local radial unit vector perpendicular to the centreline tangent, êρ(s, θ), is given
by

êρ(s, θ)= cos θm(s, θ)n̂(s)+ sin θm(s, θ)b̂(s), (2.7)
where θm(s, θ)= θ − θi(s), with θi(s), accounting for the torsion of the curve, chosen
to satisfy

∂θi

∂s
= τ(s), (2.8)

as in Koens & Lauga (2018). With this choice, the derivative of êρ with respect to s
simplifies to

∂ êρ
∂s
=−κ(s) cos θm(s, θ)t̂(s). (2.9)

2.2.2. Surface elements
To obtain the surface element, used later in our integrals, we calculate the

derivatives
∂S
∂s
= t̂(s)[1− rfρ(s)κ(s) cos θm(s, θ)]

+ rf
dρ(s)

ds
[cos θm(s, θ)n̂(s)+ sin θm(s, θ)b̂(s)], (2.10a)

∂S
∂θ
= rfρ(s)[−sin θm(s, θ)n̂(s)+ cos θm(s, θ)b̂(s)], (2.10b)

which gives the surface element as

∂S
∂s
×
∂S
∂θ
= rfρ(s)

(
rf

dρ(s)
ds

t̂(s)− [1− rfρ(s)κ(s) cos θm(s, θ)]êρ(s, θ)
)
, (2.11)

with magnitude∣∣∣∣∂S
∂s
×
∂S
∂θ

∣∣∣∣= rfρ(s)

√[
rf

dρ(s)
ds

]2

+ [1− rfρ(s)κ(s) cos θm(s, θ)]2. (2.12)

2.3. Boundary integral equation for the diffusion equation
We begin with the well-known Green’s function for Laplace’s equation in an
unconfined, three-dimensional region,

G(x, x̃)=
1

4π|x− x̃|
, (2.13)

which solves Laplace’s equation, forced by a point sink at x̃,

∇
2G(x, x̃)=−δ(x− x̃). (2.14)

Since in our unbounded domain we have translational invariance, we use the notation
G(x, x̃)= G(x− x̃)= 1/4π|R|, where R= x− x̃.

Using Green’s second identity for the functions c(x̃) and G(x̃ − x), in the body
of the fluid outside the filament V , bounded by filament surface S, with normal nf
pointing out of the filament, and the notation ∂/∂nf = nf · ∇x̃, we have∫

V
(c(x̃)∇2

x̃G(x̃− x)− G(x̃− x)∇2
x̃ c(x̃)) dV(x̃)

=−

∫
S

(
c(x̃)nf ·

∂G(x̃− x)
∂ x̃

− G(x̃− x)nf ·
∂c(x̃)
∂ x̃

)
dS(x̃), (2.15)
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which simplifies to the classic boundary integral formulation

λc(x)=
1

4π

∫
S

[
c(x̃)nf · (x− x̃)
|x− x̃|3

+
A(x̃)

D|x− x̃|

]
dS(x̃), (2.16)

where λ= 1/2 for x ∈ S, λ= 1 for x ∈ V , and λ= 0 for x /∈ V (Pozrikidis 1992).
We now substitute the filament geometry into (2.16). For x=S(s, θ) and x̃=S(s̃, θ̃ )

points on the filament surface, we set λ= 1/2, and using the notation,

R≡ S(s, θ)− S(s̃, θ̃ )=R0(s, s̃)+ rf [ρ(s)êρ(s, θ)− ρ(s̃)êρ(s̃, θ̃ )], (2.17)

with R0 ≡ r(s)− r(s̃), and nf dSx̃ =−(∂S/∂ s̃)× (∂S/∂θ̃) d θ̃ d s̃ (where the sign is due
to definition of nf pointing out of the filament), we can write (2.16) as

2πc(s, θ)=
∫ l

−l

∫ π

−π

[
A(s̃, θ̃ )

D|R|

∣∣∣∣∂S
∂ s̃
×
∂S
∂θ̃

∣∣∣∣− c(s̃, θ̃ )R
|R|3

·

(
∂S
∂ s̃
×
∂S
∂θ̃

)]
d θ̃ d s̃, (2.18)

with the surface element and its magnitude given by (2.11) and (2.12) respectively.
While the boundary integral (2.18) now includes the filament geometry, it does

not yet use the approximation that the filament is slender. This approximation will
allow us, after performing matched asymptotics (details in the appendices), to write
the double integral equation (2.18) into a single integral formula for evaluating the
concentration on the filament surface.

We non-dimensionalise lengths by rf , activity by a typical activity [A] and
concentration by a typical concentration [c] taken as [c] ≡ [A]rf /D. The last choice
comes from considering the boundary condition −Dnf · ∇c|S =A|S, and noting that,
since nf is mostly aligned with êρ , nf ·∇c scales as [c]/rf . For a typical mobility scale
[M], using that [c]∼ [A]rf /D, and scaling vslip∼[M][A]rf /(Dl), (i.e. [∂c/∂s]∼ [c]/l).
All quantities are henceforth non-dimensional, unless otherwise stated.

2.4. Azimuthal versus longitudinal slip flows in the slender limit
Before deriving the slender body approximation of (2.18), we sketch out the relevant
terms in the theory, and the assumptions we will make. Defining ε = rf /l, the
slenderness parameter, we are interested in the leading-order swimming velocity,
which is determined by the leading-order slip velocity.

For the majority of the filament, this slip velocity is equal to M∂c/∂s longitudinally,
and M(ερ)−1∂c/∂θ azimuthally. For non-axisymmetric chemical patterning A(s, θ),
we might expect variations of c(s, θ) in s and θ to be of the same order, so that
azimuthal slip flows will be O(ε−1) and dominate the dynamics.

For axisymmetric chemical patterning A(s), a straight rod will have no azimuthal
concentration variation, by symmetry. However, a curved rod will have small
azimuthal variations in concentration arising from geometric confinement. We will
show that these variations are in general O(ε), and as a consequence contribute
to the slip flow at the same order as ∂c/∂s. As such, a consistent leading-order
SPT expansion of the velocity requires O(ε) expansion of the concentration field,
in contrast to other slender body theories (Johnson 1979; Götz 2000; Yariv 2008;
Schnitzer & Yariv 2015; Ibrahim et al. 2017; Koens & Lauga 2018; Yariv 2019).

For the derivation of the following theory, we will assume that the activity A(s, θ)
and curvature κ(s) of the filament are slowly varying with s. We will also assume that
either the filament as prolate spheroidal cross-section ρ(s)=

√
(1− s2), or the activity
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Slender phoretic theory 898 A24-7

is zero near the filament ends. From a practical calculation standpoint, our validation
against boundary element simulation will demonstrate that these assumptions can often
be relaxed. Finally, to allow a convenient decomposition of the azimuthal slip velocity
into modes, for simple use in the slender body theory of Koens & Lauga (2018), we
will also assume axisymmetric mobility M(s), though this assumption does not come
into the derivation of the slender phoretic theory itself.

2.5. Asymptotic expansion of the boundary integral kernels
The surface element from (2.11), now in its non-dimensionalised form,

∂S
∂ s̃
×
∂S
∂θ̃
= ερ

(
−êρ(s̃, θ̃ )+ ε

[
dρ(s̃)

d s̃
t̂(s̃)+ ρ(s̃)κ(s̃) cos θm(s̃, θ̃ )êρ(s̃, θ̃ )

])
, (2.19)

has magnitude∣∣∣∣∂S
∂ s̃
×
∂S
∂θ̃

∣∣∣∣ = ερ(s̃)

√
ε2

(
dρ(s̃)

d s̃

)2

+ [1− ερ(s̃)κ(s̃) cos θm(s̃, θ̃ )]2

= ερ(s̃)[1− ερ(s̃)κ(s̃) cos θm(s̃, θ̃ )+O(ε2)]. (2.20)

The non-dimensionalised version of the boundary integral expression of (2.18) is

2πc(s, θ)=
∫ 1

−1

∫ π

−π

[K1(s, θ, s̃, θ̃ )+K2(s, θ, s̃, θ̃ )] d θ̃ d s̃, (2.21)

with the two kernels K1(s, s̃, θ, θ̃ ),K2(s, s̃, θ, θ̃ ) defined as

K1 =
ρ(s̃)A(s̃, θ̃ )
|R|

[1− ερ(s̃)κ(s̃) cos θm(s̃, θ̃ )+O(ε2)], (2.22a)

K2 = ε
ρ(s̃)c(s̃, θ̃ )
|R|3

R ·
(

êρ(s̃, θ̃ )− ε
[

dρ(s̃)
d s̃

t̂(s̃)+ ρ(s̃)κ(s̃) cos θm(s̃, θ̃ )êρ(s̃, θ̃ )
])

.

(2.22b)

In the slender limit where ε is small, for each evaluation parameter s two regions
of the integration variable s̃ arise, according to how s̃ − s compares to ε. In the
outer region, s̃ − s = O(1), the integration variable is far away from the evaluation
arclength parameter. In the inner region, s̃ − s = O(ε), the integration variable
is within ε arclength distance from the evaluation arclength. We proceed with a
matched-asymptotic expansion of the integral kernels prior to their integration.

2.5.1. Outer region
In the outer region, s − s̃ = O(1), hence R0(s, s̃) = O(1), so we can approximate

R≈R0. To first order,
R=R0(s, s̃)+ εD(s,θ)

(s̃,θ̃ )
, (2.23)

where
D(s,θ)

(s̃,θ̃ )
≡ ρ(s)êρ(s, θ)− ρ(s̃)êρ(s̃, θ̃ ). (2.24)

Expanding and collecting the orders of ε (see § A.1 for details), gives the outer
expansions K1

(o),K2
(o) of the kernels K1,K2, defined in (2.22a)–(2.22b), as

K1
(o)
=
ρ(s̃)A(s̃, θ̃ )
|R0(s, s̃)|

(
1− ε

[
ρ(s̃)κ(s̃) cos θm(s̃, θ̃ )+

R0

|R0|
2
·D(s,θ)

(s̃,θ̃ )

]
+O(ε2)

)
, (2.25)
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K2
(o)
= ε

ρ(s̃)c(s̃, θ̃ )
|R0|

3

(
R0 · êρ(s̃, θ̃ )+ ε(D(s,θ)

(s̃,θ̃ )
) · êρ(s̃, θ̃ )

− εR0 ·

[
dρ(s̃)

d s̃
t̂(s̃)+ ρ(s̃)κ(s̃) cos θm(s̃, θ̃ )êρ(s̃, θ̃ )

]
− ε(R0 · êρ(s̃, θ̃ ))

3R0 ·D(s,θ)
(s̃,θ̃ )

|R0|
2
+O(ε2)

)
. (2.26)

2.5.2. Inner region
In the inner region, s − s̃ = O(ε), and we let s̃ = s + εχ , where χ is O(1). The

expansion and calculation, which we will now summarise, are given in detail in § A.2.
Taylor expanding functions of s̃ around s (for example, ρ(s̃)= ρ(s)+ εχ dρ(s)/ds+
O(ε2)) gives the inner approximation for (2.17) as

R= ε[R̂
(1)

(i) + εR̂
(2)

(i) ] +O(ε3), (2.27)

where

R̂
(1)

(i) =−χ t̂(s)+ ρ(s)[êρ(s, θ)− êρ(s, θ̃ )], (2.28a)

R̂
(2)

(i) =−

[
1
2
χ 2κn̂(s)+ χ

dρ(s)
ds

êρ(s, θ̃ )− χρ(s)κ(s) cos θm(s, θ̃ )t̂(s)
]
, (2.28b)

|R̂
(1)

(i) + εR̂
(2)

(i) | = |R̂
(1)

(i) |[1+ εR̂
(1)

(i) · R̂
(2)

(i) /|R̂
(1)

(i) |
2
+O(ε2)]. (2.28c)

Noting that
|R̂

(1)

(i) | =
√
χ 2 + γ 2, (2.29)

with
γ 2
= 2ρ2(s)[1− cos(θ − θ̃ )], (2.30)

the expansion of 1/|R| will give rise to a factor 1/
√
χ 2 + γ 2. As a result, powers of

1/
√
χ 2 + γ 2 with different exponents appear in different terms of the expression of

K1
(i),K2

(i), given in § A.2.2.
Performing the integration in s̃, we treat the integrals of the form Ii

j =
∫ 1
−1

(χ i/ε
√
χ 2 + γ 2

j
) d s̃, where i, j positive constants, as in Koens & Lauga (2018),

see § A.2.3. Some of these integrals give rise to logarithmic terms, and we arrive at∫ 1

−1
K1

(i) d s̃ = ρ(s)A(s, θ̃ ) log
(

2(1− s2)

ε2ρ2(s)[1− cos(θ − θ̃ )]

)
− 2s∂s[ρ(s)A(s, θ̃ )]

+ ε

{
−A(s, θ̃ )ρ2(s)κ(s) cos θm(s, θ̃ ) log

(
2(1− s2)

ε2ρ2(s)[1− cos(θ − θ̃ )]

)
+ ρ2(s)A(s, θ̃ )

1
2
κ(s)[cos θm(s, θ̃ )+ cos θm(s, θ)]

×

[
log
(

2(1− s2)

ε2ρ2(s)[1− cos(θ − θ̃ )]

)
− 2
]}

+
2sε2

s2 − 1
ρ2(s)A(s, θ̃ )

dρ(s)
ds
[cos(θ − θ̃ )− 1] +O(ε2), (2.31)
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−1
K2

(i) d s̃ = −c(s, θ̃ )

+
1
2
εc(s, θ̃ )

[
log
(

2(1− s2)

ε2ρ2(s)[1− cos(θ − θ̃ )]

)]
κ(s)ρ(s) cos θm(s, θ̃ )

− εc(s, θ̃ )
1
2
ρ(s)κ(s)[cos θm(s, θ̃ )+ cos θm(s, θ)]

+
2sε2

s2 − 1
ρ(s)[cos(θ − θ̃ )− 1]∂s[ρ(s)c(s, θ̃ )] +O(ε2c). (2.32)

While terms incorporating the fraction 2ε2(sρ2(s)/(s2
− 1))(dρ(s)/ds) are O(ε2), we

have written them explicitly above as they generally diverge as s → ±1, and can
thus become leading order in a very small region ε2 from the ends. This divergence
can be circumvented by assuming a prolate spheroidal shape filament ρ(s)∼

√
1− s2,

or ensuring the activity A decays to zero at either end. For a more detailed scaling
argument, see appendix C.

2.5.3. Matching: common part
We follow the van Dyke matching method, and use εχ = s̃− s expanding the inner

region in terms of the outer region variable s̃, and the outer region in terms of the
inner variable χ , and finding the common part, expected to be the same, by expanding
in ε. We use the superscripts (i)∈ (o) for the expansion of the inner region kernel in
terms of the outer variable, and (o)∈ (i) for the expansion of the outer region kernel
in terms of the inner variable.

In order to obtain K1
(o)∈(i) and K2

(o)∈(i), we substitute s̃= s+ εχ in the expressions
for K1

(o) and K2
(o) and expand. The resulting expressions for K1

(o)∈(i) and K2
(o)∈(i) are

given in § A.3 (we note that these are the same as for K1
(i)∈(o),K2

(i)∈(o), as expected).
Following integration,∫ 1

−1

∫ π

−π

K1
(o)∈(i) d s̃ d θ̃ =

∫ 1

−1

ρ(s)
|s̃− s|

∫ π

−π

A(s, θ̃ ) d θ̃ d s̃− 2s∂s

∫ π

−π

[ρ(s)A(s, θ̃ )] d θ̃

−
1
2
ερ2(s)κ(s)

∫ 1

−1

1
|s̃− s|

∫ π

−π

A(s, θ̃ )

×[cos θm(s, θ̃ )− cos θm(s, θ)] d θ̃ d s̃+O(ε2), (2.33)∫ 1

−1

∫ π

−π

K2
(o)∈(i) d s̃ d θ̃ =O(ε2). (2.34)

2.5.4. Composite solution
The boundary integral (2.18) is approximated by adding the outer and inner

expansions and subtracting from each the common part,

2πc(s, θ)≈
∫ 1

−1

∫ π

−π

(K1
(o)
+K1

(i)
−K1

(i)∈(o)
+K2

(o)
+K2

(i)
−K2

(i)∈(o)) d θ̃ d s̃. (2.35)

The full expansion for the concentration field is given in § B.1. We now use the
notation c(0) and c(1) for the leading- and first-order algebraic corrections of c,

c= c(0) + εc(1) +O(ε2), (2.36)
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and consider each in turn. The leading order includes all terms of O(1) and O(log ε).
The correction to the leading order, εc(1), vanishes as ε→ 0, and includes both O(ε)
and O(ε log ε). The details of simplifications are given in §§ B.2 and B.3. We now
present the resulting expressions.

2.6. Leading-order concentration field

Writing 〈 f (s)〉≡
∫ π

−π
f (s, θ̃ ) d θ̃ , the leading-order expression for the concentration field

(originating from (B 2) in § B.2) is given by

2πc(0)(s, θ)+ 〈c(0)(s)〉 = +
∫ 1

−1

[
ρ(s̃)〈A(s̃)〉
|R0(s, s̃)|

−
ρ(s)〈A(s)〉
|s̃− s|

]
d s̃

+ ρ(s)〈A(s)〉 log
(

2(1− s2)

ε2ρ2(s)

)
− ρ(s)

∫ π

−π

A(s, θ̃ ) log[1− cos(θ − θ̃ )] d θ̃ . (2.37)

Integrating this again over θ allows us to evaluate 〈c(0)(s)〉 and then subtract it
from (2.37), the details of which are given in § B.2. We thus arrive at the leading-order
slender boundary integral equation

4πc(0)(s, θ) =
∫ 1

−1

[
ρ(s̃)〈A(s̃)〉
|R0(s, s̃)|

−
ρ(s)〈A(s)〉
|s̃− s|

]
d s̃+ ρ(s)〈A(s)〉 log

(
(1− s2)

ε2ρ2(s)

)
− 2ρ(s)

∫ π

−π

A(s, θ̃ ) log[1− cos(θ − θ̃ )] d θ̃ . (2.38)

We thus see that for non-axisymmetric filaments, there is a leading-order contribution
to the concentration that varies with θ . As such, we expect the slip velocity, and
resulting dynamics, of such filaments, to be dominated by the final term in (2.38).

For filaments with axisymmetric activity, A(s, θ) ≡A(s), and 〈A(s, θ)〉 = 2πA(s),
and using

∫ π

−π
log[1− cos(θ − θ̃ )] d θ̃ =−2π log(2), we arrive at

2c(0)(s, θ)=+
∫ 1

−1

[
ρ(s̃)A(s̃)
|R0(s, s̃)|

−
ρ(s)A(s)
|s̃− s|

]
d s̃+ ρ(s)A(s) log

(
4(1− s2)

ε2ρ2(s)

)
. (2.39)

The two terms inside the integrand of (2.39) both include non-local effects, while the
logarithmic term, and the θ̃ integral in the non-axisymmetric case (2.38), are local.
Physically, equation (2.39) represents a line distribution of point sources located on
the filament centreline, weighted by the filament activity and radius, with a local
correction arising because we are evaluating the concentration on the filament.

Note that the terms of the integrand inside the square brackets both diverge when
the integration variable s̃ passes through the evaluation arclength parameter s, however,
the two singularities cancel each other, such that the integrand is regular. As explained
in detail in Koens & Lauga (2018), the fraction inside the logarithmic term of (2.39)
means that close to the endpoints, the cross-sectional radius ρ(s) must decrease as√
(1− s2) (or less abruptly) for the logarithmic term not to diverge, i.e. the analysis

is valid for prolate spheroidal ends.
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2.7. Next-order correction

Equation (B 6) in § B.3 gives the full expression for c(1)(s, θ) for a general activity
A(s, θ). Simplifying for the axisymmetric case A(s, θ) ≡ A(s), after some algebra
(see § B.3) we finally arrive at

2πc(1)(s, θ)+ 〈c(1)(s)〉 = +πρ2(s)κ(s)A(s) cos θm(s, θ)
[

log
(

4(1− s2)

ε2ρ2(s)

)
− 3
]

− 2πρ(s)
∫ 1

−1
ρ(s̃)A(s̃)

R0

|R0|
3

d s̃ · êρ(s, θ)

−πρ2(s)κ(s)
∫ 1

−1

1
|s̃− s|

A(s) cos θm(s, θ) d s̃. (2.40)

Integrating over θ we see that 〈c(1)(s)〉= 0, and the first-order correction to the slender
boundary integral expression in the case of axisymmetric activity becomes

2c(1)(s, θ) =
[

log
(

4(1− s2)

ε2ρ2(s)

)
− 3
]
ρ2(s)κ(s)A(s) cos[θ − θi(s)]

− ρ(s)
∫ 1

−1

[
2ρ(s̃)A(s̃)R0 · êρ(s, θ)

|R0|
3

+
ρ(s)κ(s)A(s) cos[θ − θi(s)]

|s̃− s|

]
d s̃.

(2.41)

Importantly (though perhaps not obviously), the integral converges. This can be seen
by substituting

R0 =−(s̃− s)
[
t̂(s)+ 1

2(s̃− s)κ(s)n̂(s)+O((s̃− s)2)
]
, (2.42)

in the first fraction of the integrand, whereupon the leading-order term of the
expansion of the first fraction of the integrand cancels the second term of the
integrand, ρ(s)κ(s)A(s) cos[θ − θi(s)]/|s̃ − s|, regularising the singularity. Physically,
equation (2.41) represents a line distribution of source dipoles located on the filament
centreline, weighted by the filament activity, radius and curvature, with a local
correction.

Thus, for axisymmetric activity the full surface concentration is given (up to O(ε2)

corrections) by

2c(s, θ) =
∫ 1

−1

[
ρ(s̃)A(s̃)
|R0(s, s̃)|

−
ρ(s)A(s)
|s̃− s|

]
d s̃+ ρ(s)A(s) log

(
4(1− s2)

ε2ρ2(s)

)
+ ε

[[
log
(

4(1− s2)

ε2ρ2(s)

)
− 3
]
ρ2(s)κ(s)A(s) cos[θ − θi(s)]

− ρ(s)
∫ 1

−1

[
2ρ(s̃)A(s̃)R0 · êρ(s, θ)

|R0|
3

+
ρ(s)κ(s)A(s) cos[θ − θi(s)]

|s̃− s|

]]
d s̃

+O(ε2). (2.43)

In contrast to slender body equations for viscous flows, equation (2.43) is explicit;
given the filament activity and geometry, one can directly calculate the concentration
field by simply evaluating a line integral, rather than having to solve an integral
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equation (cf. (2.22b), that has the concentration in the kernel K2). Note further that,
since we have non-dimensionalised with respect to the filament radius for asymptotic
convenience, in order to make comparisons with existing results (non-dimensionalised
with respect to the filament semiaxis), the entire solution must be premultiplied by ε.

We can now clearly see that there is azimuthal variation in the concentration field
for curved axisymmetric filaments that is O(ε). As such, these azimuthal variations
will in general have a leading-order effect on the filament swimming velocity. For a
straight filament, all the O(ε) terms vanish in (2.43), which means that the leading-
order expression for the concentration of a straight filament with axisymmetric activity
is correct to O(ε2).

This azimuthal dependence has a natural modal form in terms of sin[θ − θi(s)] and
cos[θ − θi(s)], which will carry through as a modal expression for the phoretic slip
velocity, and will naturally lead to a Fourier modes approach for the kinematics which
we now describe.

2.8. Slip velocity – azimuthal modes
We now proceed to calculate the slip velocity for slender curved filaments with
axisymmetric activity. In experimental systems, activity arises from deposition of
catalyst at the surface, and so axisymmetric activity implies no azimuthal variation in
surface chemistry. As such, we may also assume axisymmetric mobility M(s).

As in the above, the following analysis is not valid in a very small region O(ε2)
from the filament ends (typically 0.01 % of the total filament length for the examples
we consider). The contribution to the dynamics from this region is discussed, and
shown to be negligible, in appendix C. The leading-order slip velocity (2.3) for
axisymmetric activity is given by

vslip(s, θ)=M(s)
[

t̂(s)
∂c(0)

∂s
+ êθ(s, θ)

1
ρ(s)

∂c(1)

∂θ

]
. (2.44)

Taking the θ -derivative of (2.43), we see that

2
ρ(s)

∂c(1)

∂θ
= −

{∫ 1

−1

[
2ρ(s̃)A(s̃)R0 · êθ(s, θ)

|R0|
3

−
ρ(s)κ(s)A(s) sin[θ − θi(s)]

|s̃− s|

]
d s̃

+

[
log
(

4(1− s2)

ε2ρ2(s)

)
− 3
]
ρ(s)κ(s)A(s) sin[θ − θi(s)]

}
, (2.45)

where êθ(s, θ)=−n̂(s) sin[θ − θi(s)]+ b̂(s) cos[θ − θi(s)]. Using the notation θm(s, θ)≡
θ − θi(s), we can rearrange (2.45) as

1
ρ(s)

∂c(1)

∂θ
=+As(s) sin θm(s, θ)+ Ac(s) cos θm(s, θ), (2.46)

where

As(s) =
∫ 1

−1

[
ρ(s̃)A(s̃)[R0 · n̂(s)]

|R0|
3

+
ρ(s)κ(s)A(s)

2|s̃− s|

]
d s̃

−
1
2

[
log
(

4(1− s2)

ε2ρ2(s)

)
− 3
]
ρ(s)κ(s)A(s), (2.47)

Ac(s)=−
∫ 1

−1

ρ(s̃)A(s̃)R0 · b̂(s)
|R0|

3
d s̃. (2.48)
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Substituting (2.46) into (2.44) gives

vslip(s, θ) = M(s)
(

t̂(s)
∂c(0)

∂s
+ [As(s) sin θm(s, θ)+ Ac(s) cos θm(s, θ)]

× [−n̂(s) sin θm(s, θ)+ b̂(s) cos θm(s, θ)]
)
, (2.49)

and using the double angle trigonometrical formulae we find that the slip velocity has
only zero and second modes,

vslip(s, θ) =
1
2
M(s)

{[
2t̂(s)

∂c(0)

∂s
− n̂(s)As(s)+ b̂(s)Ac(s)

]
+ cos 2θm(s, θ)[+n̂(s)As(s)+ b̂(s)Ac(s)]

+ sin 2θm(s, θ)[−n̂(s)Ac(s)+ b̂(s)As(s)]
}
. (2.50)

In the case of planar filaments, R0(s, s̃) · b̂(s)≡0 and hence Ac=0. This reduces (2.50)
to

vslip(s, θ)=
1
2
M(s)

(
2t̂(s)

∂c(0)

∂s
+ As(s)[n̂(s)(cos 2θm(s, θ)− 1)+ b̂(s) sin 2θm(s, θ)]

)
.

(2.51)
Given the activity, mobility and geometry of the filament, we can find the concentra-
tion, the concentration gradients and then the phoretic slip velocity field on the surface
of the filament according to (2.50).

2.9. Phoretic swimming kinematics
We now turn to the problem of finding the leading-order swimming (rigid body)
dynamics resulting from the slip velocity forcing defined in (2.50), namely the
translational velocity Usw and rotational velocity Ωsw.

2.9.1. Fourier modes of surface velocities and tractions
Equations (2.50), (2.51) already have the correct form in order to use the Fourier

mode description of surface velocity described by Koens & Lauga (2018), who
decomposed the surface velocity and traction in Fourier modes

2πU(s, θ)=U0(s)+
∞∑

n=1

[Uc,n(s) cos nθm(s, θ)+Us,n(s) sin nθm(s, θ)], (2.52a)

2πρ(s)f (s, θ)= f 0(s)+
∞∑

n=1

[f c,n(s) cos nθm(s, θ)+ f s,n(s) sin nθm(s, θ)]. (2.52b)

We write the rigid body motion as

Usw +Ωsw × S(s, θ) = Usw +Ωsw × r(s)+ ερ(s)Ωsw × êρ(s, θ)
= Usw +Ωsw × r(s)
+ ερ(s)Ωsw × n̂(s) cos θm(s, θ)

+ ερ(s)Ωsw × b̂(s) sin θm(s, θ). (2.53)
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The contributions of the first sine and cosine modes of the surface velocity due to rigid
body motion are O(ε), hence the leading-order Fourier mode decomposition of the
total surface velocity (i.e. the sum of the rigid body motion and phoretic slip velocity)
is

U0(s)= 2π[Usw +Ωsw × r(s)] +πM(s)
[

2t̂(s)
∂c(0)

∂s
− n̂(s)As(s)+ b̂(s)Ac(s)

]
, (2.54a)

Uc,2(s)=πM(s)[+n̂(s)As(s)+ b̂(s)Ac(s)], (2.54b)

Us,2(s)=πM(s)[−n̂(s)Ac(s)+ b̂(s)As(s)], (2.54c)

where the rigid body kinematics (Usw, Ωsw) are to be found by imposing the force
and torque balances on the filament. The total force and torque on the filament are

Ftot =

∫ 1

−1

∫ π

−π

f (s̃, θ̃ )
∣∣∣∣∂S
∂ s̃
×
∂S
∂θ̃

∣∣∣∣ d θ̃ d s̃, (2.55a)

Ttot =

∫ 1

−1

∫ π

−π

S(s̃, θ̃ )× f (s̃, θ̃ )
∣∣∣∣∂S
∂ s̃
×
∂S
∂θ̃

∣∣∣∣ d θ̃ d s̃, (2.55b)

and substituting the surface element form given by (2.20) yields

Ftot =

∫ 1

−1

∫ π

−π

f (s̃, θ̃ )ερ(s̃)[1+O(ε)] d θ̃ d s̃, (2.56a)

Ttot =

∫ 1

−1

∫ π

−π

[r(s̃)+ ερ(s̃)êρ(s̃, θ̃ )] × f (s̃, θ̃ )ερ(s̃)[1+O(ε)] d θ̃ d s̃. (2.56b)

With f (s, θ) given by (2.52b), due to the periodicity of the cosine and sine modes
making vanishing contributions, we see that the force and torque balances to leading
order are ∫ 1

−1
f 0(s̃) d s̃= 0, (2.57a)∫ 1

−1
r(s̃)× f 0(s̃) d s̃= 0. (2.57b)

2.9.2. Phoretic swimming kinematics from slender body theory of viscous propulsion
After expanding the boundary integral equation for Stokes flow for a 3-D filament

of arbitrary geometry, Koens & Lauga (2018) derived the following relation between
the surface traction modes on the filament and the modes of the surface velocities,

4U0(s) =
∫ 1

−1
d s̃

(
1+ R̂0R̂0

|R0|
· f 0(s̃)−

1+ t̂t̂
|s̃− s|

· f 0(s)

)

+

[
log
(

4ρ2(s)
ε2(1− s2)

)
(1+ t̂t̂)+ 1− 3t̂t̂

]
· f 0(s)+O(ε), (2.58a)

2nUc,n(s)= (1+ t̂t̂) · f c,n(s)+O(ε), (n> 0) (2.58b)

2nUs,n(s)= (1+ t̂t̂) · f s,n(s)+O(ε), (n> 0). (2.58c)
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Thus in order to find the leading-order rigid body kinematics (Usw, Ωsw) of the
filament, one must solve the following system for the unknown force per unit length
f 0(s),

8π[Usw +Ωsw × r(s)+ uphor
0 (s)]

=

∫ 1

−1
[G(s, s̃) · f 0(s̃)− J(s, s̃) · f 0(s)] d s̃+ L(s) · f 0(s), (2.59)

where the unknowns (Usw,Ωsw) are such that zero net force (2.57a) and torque (2.57b)
act on the swimmer, and where

uphor
0 (s)=

1
2
M(s)

[
2t̂(s)

∂c(0)

∂s
− n̂(s)As(s)+ b̂(s)Ac(s)

]
, (2.60)

is the average slip velocity (as in (2.50)) over θ , i.e. uphor
0 (s)= (1/2π)

∫ π

−π
vslip(s, θ) dθ ,

that is the zeroth mode of the phoretic slip velocity according to the definition for
modes, equation (2.54a) divided by 2π. We also have defined the tensors

G(s, s̃)=
1+ R̂0(s, s̃)R̂0(s, s̃)
|R0(s, s̃)|

, (2.61a)

J(s, s̃)=
1+ t̂(s)t̂(s)
|s̃− s|

, (2.61b)

L(s)= log
(

4ρ2(s)
ε2(1− s2)

)
(1+ t̂(s)t̂(s))+ 1− 3t̂(s)t̂(s), (2.61c)

for a more compact notation. Note that G(s, s̃)=G(s̃, s) and J(s, s̃)= J(s̃, s).
A numerical implementation of this system of equations is given in § 3. Following

a validation of our theory in §§ 4, 5, we present some simple results in §§ 6, 7.

3. Implementation of slender phoretic theory
In this section, we describe how to numerically implement SPT to find the surface

concentration field and phoretic slip velocity given the activity on a filament of
arbitrary shape, and then couple it with slender body theory of Koens & Lauga
(2018) to find the swimming kinematics. Since the aim of this work is the theoretical
development of the SPT, the following implementation is somewhat rudimentary, but
will be shown to be sufficiently accurate and fast for our purposes. We note that
calculating the concentration c(s, θ) with SPT amounts to merely evaluating a line
integral, rather than solving an integral equation, as required for boundary element
approaches.

3.1. Numerical implementation
The filament is first partitioned into Nelts segments of equal length ltot/Nelts. The nth
segment, denoted by En, has contour length ln and parameterised by its contour length
parameter s taking values in (sn − ln/2, sn + ln/2) where sn is the midpoint of En
(according to contour length), which we will refer to as the nth collocation point.

We simply evaluate the concentration field on the filament surface according
to (2.43), using Gaussian quadrature over each segment. When the evaluation point
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lies in the element over which the integration takes place, it is sufficient to simply use
a high-order even quadrature rule, so that no quadrature point lies at s̃= s. Although
the integrand is non-singular at this point, this regularity arises from two singularities
cancelling, and so for numerical purposes the point should be avoided.

Using a bicubic spline interpolant of the concentration field c(s, θ) with periodic
boundary conditions in θ and clamped boundary conditions for s, we can use
functional derivatives to find the partial derivatives of the concentration along s, θ ,
and hence evaluate the phoretic slip velocity field on the surface of the filament
from (2.44).

For the kinematics, we will only need the zeroth mode of the phoretic slip velocity,
uphor

0 , at the collocation points, which we can calculate according to (2.60). For
the evaluation of ∂c(0)/∂s, we use the functional derivative of a cubic spline data
interpolation for c(0) based on its values at the collocation points. The coefficients
As, Ac are evaluated from (2.47)–(2.48) using Gaussian quadrature for the definite
integrals.

With the zeroth mode of the phoretic slip velocity at hand, we can now proceed
to find the swimming kinematics by numerically implementing slender body theory
according to Koens & Lauga (2018). The force per unit length f 0(s) along En is
approximated as being constant on each segment, taking the value f 0[n]. Then (2.57a)–
(2.57b) become

Nelts∑
n=1

lnf 0[n] = 0, (3.1a)

Nelts∑
n=1

(∫
En

r(s̃) d s̃
)
× f 0[n] = 0. (3.1b)

For ln small enough, we can approximate r(s̃) with s̃ ∈ En as

r(s̃)= r(sn)+ (s̃− sn)t̂(sn)+
1
2(s̃− sn)

2κ(sn)n̂(sn)+O(l3
n) (3.2)

and use ∫ sn+ln/2

sn−ln/2
(s̃− sn)

m d s̃=
lm+1
n

2m+1(m+ 1)
[1− (−1)m+1

] (3.3)

to obtain ∫
En

r(s̃) d s̃= r(sn)ln +
1
24κ(sn)n̂(sn)l3

n +O(l5
n). (3.4)

We assume that all segments have equal contour lengths ln= lelt ∀n. Equations (3.1a)–
(3.1b) become

Nelts∑
n=1

f 0[n] = 0, (3.5a)

Nelts∑
n=1

[
r(sn)+

l2
elt

24
κ(sn)n̂(sn)+O(l4

elt)

]
× f 0[n] = 0, (3.5b)

noting that for reasonable curvatures and small segments, the term l2
eltκ(sn)/24 is also

negligibly small. Evaluating (2.59) at the ith collocation point, si,

8π[Usw +Ωsw × r(si)+ uphor
0 (si)]

=

∫ 1

−1
[G(si, s̃) · f 0(s̃)− J(si, s̃) · f 0(si)] d s̃+ L(si) · f 0(si). (3.6)
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For our element-based approach, we break the integral over the entire filament into a
sum of integrals over the segments, in each of which f 0(s) takes a constant value.

8π[Usw +Ωsw × r(si)+ uphor
0 (si)]

=

Nelts∑
j=1

∫
Ej

[G(si, s̃) · f 0[j] − J(si, s̃) · f 0[i]] d s̃+ L(si) · f 0[i]. (3.7)

We aim to obtain a system of equations of the form

8π[Usw +Ωsw × r(si)+ uphor
0 (si)] =

Nelts∑
j=1

M ij · f 0[j], (3.8)

and solve (3.8), (3.5a) and (3.5b) for the unknowns {f 0[i], i= 1, . . . ,Nelts}, Usw,Ωsw.
Each submatrix M ij is given by

M ij =


∫

Ej

G(si, s̃) d s̃ if i 6= j∫
Ei

[G(si, s̃)− J(si, s̃)] d s̃−
∫
Ω\Ei

J(si, s̃) d s̃+ L(si) if i= j.
(3.9)

Note for the diagonal submatrices, M ij with i= j, we avoid any singularities by having
the difference [G(si, s̃) − J(si, s̃)] (which is regular over Ei as the singularities have
cancelled each other) integrated over Ei, and J(si) (which is singular in Ei) integrated
over the entire filament except Ei, denoted by Ω\Ei. We formulate the entire system
as 

M11 · · · M1Nelts −13×3 ε · r(s1)

...
. . .

...
...

...

MNelts1 · · · MNeltsNelts −13×3 ε · r(sNelts)

13×3 · · · 13×3 03×3 03×3

ε · r(s1) · · · ε · r(sNelts) 03×3 03×3




f 0[1]
...

f 0[Nelts]

Usw
Ωsw

=


uphor
0 (s1)
...

uphor
0 (sNelts)

03×1
03×1

 ,
(3.10)

where ε is the Levi-Civita tensor such that (ε · r) ·Ωsw= r×Ωsw. We use the notation
03×1 for the 3× 1 zero vector, the notation 03×3 for the 3× 3 zero matrix and similarly
13×3 for the 3× 3 identity matrix. The last two block lines of the matrix on the left-
hand side of (3.10) enforce force and torque balances. Note that it is also possible
to calculate the swimming velocity using a version of the reciprocal theorem that is
appropriate for filaments, which may be used to give more detailed insight into the
total contributions of azimuthal slip flows.

3.2. Computational cost
Before we proceed with the method validation and results, it is worth briefly
discussing the computational efficiency gains in employing SPT over the boundary
element method (BEM), Montenegro-Johnson (2018) and providing some benchmarks.
In doing so, we will focus on the gains in calculating the chemical solute concentration,
which represents our novel contribution.
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SPT BEM

Discretisation in s, Ns 100 100
Discretisation in θ , Nθ 20 20
Evaluation points Neval 2000 2000
Quad points/element (singular) 20 190
Quad points/element (non-singular) 20 28

Geometry runtime (s) 0.014 0.26
Concentration runtime (s) 0.044 12.9

TABLE 1. An indication of the computational savings that can be made by employing
SPT over the boundary element method. Simulations run on a Macbook Pro 2.9 GHz Intel
Core i7 (2017) with 16 GB 2133 MHz LPDDR3 RAM.

The computational gains from employing SPT over the BEM arise in two parts of
the code, (a) generating the filament geometry, in other words computational mesh and
quadrature points, and (b) solving for the surface solute concentration. Once c(s, θ) at
a cloud of points the surface is available, the same techniques may be used to evaluate
the concentration gradient for the slip velocity, and so this process is comparable (and
takes a negligible time). Similarly, once this slip velocity is available, either SBT or
the BEM may be used to solve for the hydrodynamics (with SBT significantly faster).
The benchmark results are given in table 1.

Simulations were performed on a 2017 Macbook Pro using Matlab. It should be
noted that the code is efficient, but not precompiled. The BEM code uses Fekete
quadrature over quadrilateral triangles, with a high-order rule (190 points) when
integrating a triangle where the evaluation point lies on a vertex, and a lower-order
rule (28 points) for other triangles. Note that while these values seem much higher
than the SPT quadrature, the fact that these points are spread over two dimensions
makes the high-order rule comparable, and the low-order rule significantly coarser.
Calculating the slip velocity via spline interpolation took O(0.01) seconds for both
methods.

A key reason for this speed up is not only the reduction in the dimension of the
integral equation from 2 (BEM) to 1 (SPT), but also the fact that SPT gives the
surface concentration by evaluating an integral, whereas BEM requires one to solve an
integral equation (which entails setting up and solving a matrix system). As a crude
estimate, evaluation requires O(N2

s ), whereas the solution for BEM requires O(N3
eval)

steps (Neval� Ns) to solve for a direct solver, although this could be reduced using
iterative solvers such as the generalized minimal residual method (GMRES).

3.3. Layout of validation and results
In the following sections, we validate and apply SPT to various filament geometries,
cross-sections and activity patterns of increasing complexity, as summarised in figure 2.
Throughout, we set the mobility M = −1, so that slip flows go from high surface
solute concentrations to low. Firstly, straight rods are used to validate our SPT results
against analytical formulae for prolate spheroids. Secondly, planar curved rods (with
uniform cross-section) are validated against boundary element computations using
the authors’ previously published regularised singularity code (Montenegro-Johnson,
Michelin & Lauga 2015; Varma, Montenegro-Johnson & Michelin 2018), paying
particular attention to the important azimuthal variation. Next, planar curved rods are
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Activity:

Centreline:

End
Shape:

Straight

Uniform Hemispherical Spheroid

Circular arc S-shape Helix

Uniform Smooth decay Saturn Janus

å å å

a(s) = -1 a(s) = s2 - 1 a(s) -1 |s| > sc
0 otherwise

a(s) -1 s < sc
0 otherwise

FIGURE 2. Summary of the different activity patterns (uniform A(s)=−1, smooth decay
A(s) = s2

− 1, Saturn – 2 symmetric active caps, Janus – 1 active cap), cross-sectional
radius profiles (uniform, hemispherical cap used for BEM, prolate spheroid) and centreline
geometries (straight, circular arc, S-shape, helix), used throughout the results section.

analysed with SPT – a circular arc and sinusoidal S-shaped centreline. The impact
of azimuthal phoretic effects on the resulting kinematics is calculated. Finally, we
consider 3-D helical phoretic filaments, focusing on the Janus helix, an autophoretic
swimmer with the ability to explore space on a helical trajectory, relevant to sensing
and enhanced 3-D mixing applications.

4. Validation against analytics for autophoretic prolate spheroids
We first validate our results from the numerical implementation of SPT against

the analytical solution of Michelin & Lauga (2017) for straight, spheroidal particles.
Michelin & Lauga (2017) used spheroidal polar coordinates and decomposed the
concentration field into the associated Legendre polynomials to solve Laplace’s
equation for Janus prolate and oblate spheroids. Given the concentration field, the
Reciprocal Theorem was then employed to find the translational kinematics, using
the classical solution of Oberbeck for the stress field of translating spheroids (Lamb
1932; Happel & Brenner 1965). Figure 3(a) shows the root mean square percentage
error in the surface concentration of a uniformly active prolate spheroid as calculated
by SPT compared to Michelin & Lauga (2017), as a function of the slenderness
parameter ε. We used 20-point Gaussian quadrature over 100 segments for the SPT
calculation, and 801 modes of the series of the analytical solution by Michelin &
Lauga (2017). The error decays like ε2, as predicted by SPT: equation (2.43) shows
that the leading-order expression for the concentration field is correct with O(ε2)
error.

Figure 3(b) shows the surface concentration along the filament, parameterised by its
arclength, −1< s< 1, for a set of Janus prolate spheroids with ε = 0.01 and varying
catalytic coverage. Our SPT predictions show good agreement with the solution of
Michelin & Lauga (2017) (dashed black line). Note that this close agreement is in
some ways slightly surprising at the edge of the Janus cap; our formulation requires
that A(s) varies slowly across the filament surface. In practice, our result here shows
that the discontinuity may be effectively handled by ensuring that the discontinuity lies
at the endpoint between the segments of either side, hence the use of 100 segments.
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Coverage arclength (sc)
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(÷ 10-2) (÷ 10-3)
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0

U

Analytical

SPT

Uniform activity error Janus concentration Janus swimming velocity

FIGURE 3. Validation of SPT versus the series solution of Michelin & Lauga (2017).
(a) The root mean square percentage error in the surface concentration of a uniformly
active prolate spheroid as calculated by SPT, as a function of the slenderness parameter ε.
(b) The surface concentration as a function of arclength s of a set of ‘Janus’ prolate
spheroids with ε = 0.01, with active caps such that sc < −0.9, −0.6, . . . , 0.9 from dark
to light respectively. The solution of Michelin and Lauga is given in each case by the
dashed black line. (c) Comparison of the swimming velocities of Janus prolate spheroids
with ε = 0.01 as a function of sc (−1 all inert, 1 all active).

In figure 3(c) we plot the swimming velocity of a slender (ε = 0.01) Janus prolate
spheroid as a function of the catalytic cap coverage sc (−1 all inert, 1 all active) as
calculated by SPT versus the solution of Michelin & Lauga (2017), showing further
good agreement. The spheroid swims with the inert side at the front, i.e. to the right
in figure 2.

5. Validation against BEM: planar filaments with uniform end shape
We now validate the O(ε) calculation of SPT by comparing against boundary

element method simulations. For slender body theory (Koens & Lauga 2018), the
natural choice of cross-sectional radius profile in SPT is that of a prolate spheroid.
However, slender spheroidal ends are difficult to handle with regularised boundary
element methods that include the double-layer term. This is because the support of
the regularised singularity in the domain depends on local surface curvature (Varma
et al. 2018), and local surface curvature diverges near the tips of the filaments in the
slender limit.

Thus, in order to validate SPT for curved rods against boundary element simulations,
we consider a uniform radius profile ρ(s)= 1 for SPT, with hemispherical end caps
for the BEM (see figure 2). However, for the uniform cross-section, the logarithmic
term in SPT diverges at either end. To avoid this divergence, we thus validate against
the quadratic activity profile A(s)= s2

− 1.
The centreline of a planar filament is uniquely defined by specifying the local

angle ψ(s) between the tangent t̂(s) to the centreline and a fixed direction (here
the x-axis). Then the shape of the curve can be constructed using the function ψ(s)
through integration, x(s) =

∫
cos(ψ(s̃)) d s̃, and y(s) =

∫
sin(ψ(s̃)) d s̃. Following the

non-dimensionalisation in the previous sections, we parametrise the centreline by the
contour length parameter s, such that −1< s< 1. Circular arcs of varying curvature
are parameterised such that ψ(s)= sα, where α is equal to the curvature κ . S-shaped
filaments are parameterised by a sinusoidal tangent angle ψ(s) = α cos(πs), which
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1.00.50-0.5-1.0
Arclength s

1.00.50-0.5
Arclength s

5

0
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´2 c 1
(÷ 10-4)

Circular arc(a) (b)
(÷ 10-3)

S-shape
1.0

0.5

0

-0.5

-1.0

SPT œ = π
SPT œ = 0
BEM

SPT œ = π
SPT œ = 0
BEM

FIGURE 4. Validation of the first-order concentration correction c1 of SPT versus boundary
element simulation using a regularised singularity approach (Montenegro-Johnson et al.
2015) with A(s)= s2

− 1 for (a) a U-shaped filament with α =π/2 and (b) an S-shaped
filament with α =π/3, showing good agreement.

gives the smooth curvature κ(s)=−απ sin(πs). For both curves, the limiting case of
α→ 0 corresponds to a straight filament.

Since the concentration for a slender filament scales with the slenderness, azimuthal
variations in the filament concentration are in fact O(ε2), when the more common
nondimensionalisation with respect to length is used. As such, we require a very
refined boundary element mesh in order to capture this variation accurately. For
accurate implementations of SPT and BEM, we can therefore expect a difference
between our BEM/SPT calculations of at least O(ε3), arising from the truncation of
SPT. In practice, at this very small order for slender filaments, other numerical errors
begin to affect the BEM solution.

With this caveat in mind, we plot the azimuthal variation in the concentration as
a function of arclength for the circular arc and S-shapes in figure 4. For the case of
(a) a circular arc with α=π/2 (i.e. a semicircle) and (b) an S-shaped centreline with
α=π/3, we find good agreement between the SPT and boundary element calculations.
We show the variation of ε2c1 with s at the azimuthal positions θ = 0 and θ =π, as
these bound the values of ε2c1 for the rest azimuthal positions by symmetry.

We now validate the gradients of this concentration field (figure 5), which provide
the phoretic slip velocity according to (2.44). Figure 5(a) shows ∂c/∂s for the case
of a circular arc filament of uniform activity, showing the expected divergence in the
gradient when calculated with SPT at the ends of the filament due to the divergence
of the logarithmic term in the concentration field for uniform cross-sections. However,
there is otherwise generally good agreement with the BEM, except in this small region
around s = ±1. This discrepancy is removed (as expected) by taking the quadratic
activity profile A(s)= s2

−1. Furthermore, figure 5(c) shows that our SPT captures the
azimuthal gradients in the concentration profile with good accuracy, which is crucial
for accurate kinematics calculations.

Finally, we compare the translational and rotational velocities of circular arc and
S-shape filaments as a function of the angle amplitude α (a proxy for curvature).
The geometry is as shown in figure 2, where a positive translational velocity for the
circular arc means swimming upwards, and a positive angular velocity for the S-shape
means anticlockwise rotation about the centroid.
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1

0

-1

™c
/™

s

™c
/™

s

a(s) = -1(a)

1.00.50
s

-0.5-1.0

5

0

-5

(÷ 10-2)

(÷ 10-2)

a(s) = s2 - 1(b)
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a(s) = s2 - 1(c)
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SPT œ = π/2
SPT œ = 3π/2
BEM

SPT
BEM

SPT
BEM

FIGURE 5. Validating concentration gradients against boundary element simulation, for
a semicircular rod of constant radius (required for BEM). (a) For uniform activity, the
slip velocity along θ = π/2 diverges at the ends when calculated via SPT, due to the
logarithmic term. (b) This divergence may be regularised by ensuring the activity smoothly
decays to zero at either end. (c) Azimuthal slip flows show good agreement between SPT
and BEM.

Since we have non-vanishing slip velocity at s = ±1, the (hydrodynamic) slender
body theory solution also diverges at either end. However, since this is over a very
small region, the swimming velocity (which can be thought of as arising from an
integral of the surface slip) is not greatly impacted by this divergence. Figure 6
shows that the SPT kinematics calculations agree well with the full boundary element
simulations. In particular, we note that the kinematics are changed at leading order
when azimuthal slip flows are neglected (i.e. As = Ac = 0 in (2.60)), and that SPT
captures this effect. Having validated our SPT against analytical and Boundary
Element calculations, we now proceed with using SPT to study curved filaments with
activity profiles that are more relevant to fabrication.

6. Curved planar filaments and azimuthal effects
6.1. Azimuthal variation of the concentration field

We now use SPT to examine the physics of slender autophoretic filaments of curved
centreline. Throughout this section we consider a spheroidal end shape to ensure the
regularity of the SPT formulation. Figure 7 shows colour maps of the concentration
field (lines of same colour indicate the contours of the concentration field) at different
arclength values (s) and azimuthal (θ ) positions for the three shapes (straight a,
circular arc b and S-shaped c) in the case of a uniform catalytic coating, A(s)=−1,
that depletes its surrounding solute.

For the straight filament (figure 7a), we see axisymmetry (i.e. no variation of colour
with different θ at a given s) in the concentration field, as expected. We note that
for the straight filament the first-order concentration field vanishes, hence figure 7(a)
shows the zeroth-order concentration field which is axisymmetric, but non-uniform in
s due to the non-local and endpoint effects already present in (2.39). For example,
the closer to the endpoints, the more space there is available for diffusion, hence the
solute depletion is less and the solute reactant is at a higher concentration.

For circular arc filaments, (figure 7b), we see a minimum of the concentration field
occurring at s= 0 and θ = 0(2π), i.e. the part of the surface that is facing the centre
of the semicircular centreline. This is a confinement effect arising from the curvature
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FIGURE 6. Validation of the swimming kinematics of a series of circular arcs and
S-shapes as a function of the angle parameter α, with A(s) = s2

− 1 showing good
agreement between SPT and BEM. Results obtained using the full slip flows (azimuthal
and longitudinal, solid) are compared to those obtained when neglecting azimuthal slip
flow (As = Ac = 0 in (2.60), dashed).
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(a) Straight rod
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FIGURE 7. The surface concentration of uniformly active phoretic filaments with a prolate
spheroidal end shape and planar centrelines with (a) straight shape which is stationary but
pumps fluid, (b) circular arc shape which translates and (c) S-shape which rotates. Small
azimuthal variation due to non-local interactions and confinement effects from curvature
are visible in the circular arc and S-shaped examples.

of the centreline, as this inner part of the surface experiences more depletion of the
solute from the local surface and the adjacent active parts of the surface. Close to
the outer part of the surface, there is more space (due to curvature) for diffusion of
solute from the bulk to the filament surface thus the solute that has been depleted
due to the reaction can be replenished more easily. Straight and circular arc filament
centreline shapes share the symmetry c(s, θ) = c(−s, θ) for the concentration field,
arising naturally from the centreline symmetry in s→−s. This symmetry is broken
by S-shaped filaments, for which c(s, θ)= c(−s,−θ), as in figure 7(c). At s= 0, the
concentration is minimised by the azimuthal positions θ = 0,π with c(0, 0)= c(0,π),
as these lie on the x, y plane and therefore are closer to the nearby active surfaces
(by the same amount by symmetry), and c(0,π/2)= c(0, 3π/2).
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FIGURE 8. Leading-order contribution of azimuthal effects to kinematics arising from
curvature and confinement. Kinematics of (a) circular arc and (b) S-shaped filaments
versus the angle parameter based on SPT, for uniform and Saturn activity patterns, where
the Saturn particle has two active end caps and an inert midpiece (see figure 2). Here,
ε = 0.01. Solid lines include azimuthal slip flows, dashed lines have this contribution
removed, i.e. As = Ac = 0 in (2.60).

6.2. Kinematics: leading-order contribution of azimuthal variations of the
concentration field

Turning now to the kinematics of these filaments, figure 8 shows the translational and
rotational speeds for circular arc and S-shaped filaments when the azimuthal terms
are included (‘on’ – solid lines) versus neglected (‘off’ – dashed), for two different
activity profiles. The azimuthal effect contribution to the kinematics vanishes as α
decreases to 0 in all the plots of figure 8, as expected for straight filaments that have
zero curvature (α = 0) and an axisymmetric concentration field. As α increases, so
does the curvature, and hence the azimuthal effects too.

The importance of the azimuthal effects, as noted in Montenegro-Johnson (2018),
is quite profound in the case of uniform activity, where neglecting their contribution
results in an incorrect prediction in the direction of motion, as shown by the dashed
lines in figure 8(a,b). In order to understand this, let us consider the uniformly active,
circular arc filament (see also the qualitative schematic figure 9b). If we discount
azimuthal effects, the higher solute concentration at the ends drives a longitudinal
surface slip flow to the middle, giving rise to translation in the opposite direction,
hence the positive velocity shown by the dashed blue line in figure 8(a).

Since the filament consumes solute, confinement effects mean that there is a lower
surface concentration in the inner filament surface that faces the centre of the circular
arc centreline. This drives an azimuthal tangential surface slip flow from the outer
to the inner side of the curve. This means that, locally, the filament is acting as
a 2-D squirmer (Blake 1971), with symmetry about θ = 0, π. This outer to inner
flow locally exerts a flow forcing towards the outer side of the cylinder, propelling
the filament in that direction. This forcing is in the opposite direction to that arising
from longitudinal concentration gradient, and this contribution is large enough that the
overall translational velocity has a negative sign, as shown by the solid blue line in
figure 8(a).
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FIGURE 9. Qualitative schematic: understanding end shape and azimuthal effects. Red
text indicates the relative concentration of solute in each figure, with slip flow (blue)
moving from higher to lower concentrations, assuming constant, negative mobility. (a) The
shape of the filaments affects the geometric confinement at the ends, resulting in different
strength of slip flows. (b) A uniformly active prolate spheroid. For our parameter choices,
azimuthal flows work in opposition to axial flows and hence the swimming direction is
sensitive to which effect is stronger, which in turn depends on geometry and end shape.
(c) In a capped filament azimuthal flows and axial flows work together, however, there is
an opposing end-effect flow (as with the Janus prolate spheroid) that slows the swimmer.

For Saturn particles, which have two active caps and an inert midpiece (see
figure 2), the active caps ensure that the tangential concentration gradients dominate
(due to the fast velocity at the change in activity) and hence the kinematics with
the azimuthal terms on/off have the same directionality. In more detail (see also the
qualitative schematic figure 9c), let us consider with the case of two catalytic caps
of length 1s = 0.2. The catalytic end caps in the regions |s| > 0.8 give rise to a
lower concentration of solute at the end region, compared to the region |s| < 0.8,
driving a slip flow across the interface at s = 0.8 directed from the high to the
low solute concentration region (i.e. towards the ends). There is of course a small
region of higher solute concentration at the very ends due to the end confinement
effect (magnified by the presence of the prolate spheroidal ends – see the qualitative
schematic figure 9a), driving a small slip flow at the very ends directed to the middle,
but overall the slip flow at the interface at |s| = 0.8 dominates, leading to motion of
the filament in the negative direction, as shown by the red, dashed line in figure 8(a).

Now consider the azimuthal effect, focusing on the middle region around s = 0,
which by the confinement effect, has higher solute concentration close to the ‘outer’
surface that looks away from the centre of the semicircle. This drives an azimuthal
flow around the filament towards the centre of the semicircle, which contributes to
a negative direction, i.e. in the same direction as the kinematics with the azimuthal
effects switched ‘off’, hence the overall speed is increased when the azimuthal effects
are included, as shown by the red, solid line in figure 8(a).

Similar explanations hold for the kinematics of S-shaped filaments shown in
figure 8(b).

7. Janus helix
Finally, we apply SPT to fully 3-D geometries, focusing specifically on helical

centrelines. As we will see in § 7.2, Janus helical filaments give rise to helical
trajectories, which offer novel exploration of space capabilities which are not currently
accessible to phoretic microswimmer designs of Janus spheres, rods and prolate
spheroids.
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FIGURE 10. The surface concentration of (a) a uniformly active helix and (b) a Janus
helix, as calculated with SPT, with ε = 0.01, α =π/3, sc =−0.8 and 2.5 turns.

7.1. Helix geometry, concentration and kinematics
We consider a helical centreline with chirality h (taking the values ±1 for right-handed
and left-handed helices respectively), helical angle α and n turns,

(x, y, z)=
(

R cos
(s+ 1) sin α

R
, hR sin

(s+ 1) sin α
R

, s cos α
)
, (7.1)

where the helical radius R, curvature κ and torsion τ are given by

R=
sin α
nπ

, κ =
sin2 α

R
, τ = h

sin α cos α
R

, (7.2a−c)

and its pitch by (2 cos α)/n. We begin by validating a constant cross-section rod
against BEM for a helix with 2.5 turns and α = π/3, with regularised activity
A(s) = −(s + 1)(1 − tanh(2s)) and mobility M = −(s + 1)(1 − tanh(4s)). This
regularisation is somewhat similar to a single capped end, but with a smoothly
decaying velocity. We achieve approximately 1 % error in the concentration field, and
2 % and 7 % errors in translational and angular velocities respectively, where angular
velocity is calculated about the helix centroid. We note that this larger relative error
in the swimming velocity arises from the fact that this regularised case only swims
relatively slowly.

Continuing with SPT for a filament with prolate spheroidal ends, the surface
concentration of a uniformly active helix is shown in figure 10(a) for varying
arclengths (s) and azimuthal positions, using θ + θi(s) in order to ensure that θ lies in
[0, 2π) (recall that by definition, θi(s) follows the torsion of the filament – (2.8)). The
apparent shear about θ(s)=π is a result of this choice for θi(s). In figure 10(b), we
show the surface concentration of a Janus helix capped for s 6−0.8, with ε = 0.01,
showing strong local gradients around the capped end.
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Trajectory RT

Janus helix

Side view Top

Area

FIGURE 11. Schematic showing a Janus helix, on a helical trajectory of radius RT , from
a side and top view, demonstrating the ‘exploratory area’ of the swimmer πR2

T .

7.2. Exploration of space
Many microswimmers make use of helical trajectories for exploring their environment
and sensing, and thus also perform chemotaxis towards food resources. Helical
trajectories could offer enhanced sensing and 3-D mixing to artificial phoretic
microswimmer applications.

As shown schematically in figure 11, Janus helices can explore space on a helical
trajectory, with radius and pitch that vary with the geometry of the helical filament.
Figure 12(a) shows the trajectories of Janus helices of the same arclength (2), helical
angle (π/3) and length of catalytic cap (sc=−0.9), but different number of turns. All
simulations run over the same time interval (t = 30 in dimensionless units). In real
space, the axis of the trajectories is aligned with the Ω vector. In figure 12(a) the
trajectories have been rotated to be aligned vertically for the purpose of comparison.
In order to quantify the ability of the different Janus helices to explore space, in
figure 12(b) we plot the explorative area of the helical trajectory, which is equal to
πR2

T for RT the helix radius as in figure 11. Figure 12(c) shows the velocity along
the axis of each helical trajectory versus the number of turns.

These plots show interesting nonlinear behaviour, with a number of transition points,
the most dramatic of which is close to when the number of turns n increases above a
single full turn. There are two limiting behaviours. Firstly, as n→ 0, the helix tends to
a straight rod, and the axial velocity in turn tends to that of a straight rod. However,
the explorative area does not seem to approach zero in this limit – rather the nearly
straight helix may explore a non-zero or even infinite area, but take an infinite time
to do it as n→ 0. On the other hand, as n→∞, the helix again approaches a straight
rod, and we would expect the axial velocity to once more tend to the straight case.
However, we cannot analyse this limit within our framework, as it entails divergent
curvature κ; our analysis remains valid provided κ = nπ sin α� 1/ε.

We note that between these limits, we expect a decrease in axial velocity (since
propulsion force does not lie solely along the axial direction), and hence we expect
a minimum in axial velocity – obtained somewhere in n ∈ (0.75, 1) for the particular
values of parameters we have chosen here. This behaviour is not monotonic, but
displays periodic fluctuations that change depending on whether the helix has an
odd or even number of turns, that are not clearly visible in figure 12(a). Finally,
we note that smart, stimulus-responsive materials, such as thermoresponsive hydrogel
composites, could assist in exploiting both features by changing the number of turns
of a Janus helix, as can occur naturally in the polymorphism of bacterial flagella
(Spagnolie & Lauga 2011), so that it can have a slow, explorative mode with less
than one turn, and a faster, close to straight swimming mode at higher number of
turns.
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FIGURE 12. Trajectories of helical filaments with one catalytic end of length 0.1, i.e. sc=

−0.9, helical angle π/3 and varying number of turns. (a) The different helical trajectories
arising from varying the number of turns. All simulations run over the same time interval
(t= 30 in dimensionless units). The axis of the trajectories is aligned with the Ω vector
in real space. The trajectories have been rotated to be aligned vertically for the purposes
of this plot. (b) Area of helical trajectories, i.e. πR2

T for helical radius RT , versus number
of turns of the Janus helix. (c) Velocity along the axis of each helical trajectory versus
number of turns of the Janus helix.

8. Discussion

This paper provides a novel and complete framework to analyse the dynamics
of slender (auto)-phoretic filaments with centrelines that are not limited to straight
geometries, but are fully three-dimensional. These (auto)-phoretic filaments self-propel
by catalysing a reaction of a solvent in their surroundings. Catalytic patterning on
the filament surface induces differential surface reaction, which generates solute
concentration gradients that drive a propulsive surface slip flow.

Previous analytical theories have considered straight slender phoretic filaments
(Yariv 2008; Schnitzer & Yariv 2015; Yariv 2019). We developed a slender phoretic
theory which addresses slender phoretic filaments of arbitrary shape. We used matched
asymptotics to expand the boundary integral representation of the solution of the
diffusion equation in the slender limit, similarly to the approach of Koens & Lauga
(2018) for filaments moving in viscous fluids. In contrast to many other slender
body theories, which finish at leading order, the form of the azimuthal slip flow,
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necessitates that SPT be derived to first order in the slenderness of the filament. These
first-order azimuthal variations to the concentration arise from confinement effects
from curvature, drive azimuthal slip flows and make a leading-order contribution to
the kinematics. The latter can be as profound as reversing the direction of motion.

SPT is more computationally efficient than BEM. However, although the speed up
in calculating the surface concentration distribution is considerable (≈300×), for the
examples we considered herein, the boundary element calculation is not prohibitively
slow at O(10) s. As with classical slender body theory for Stokes flows, which
has proven to be efficient and popular in the study of many biological flows, such
as ciliary flows, the full capability of SPT lies in two possible extensions to the
theory, that we believe will make fruitful avenues of future research. The first is in
efficiently evaluating the solute dynamics of multiple filaments. This would likely
use a representation of neighbouring curved filaments by line distributions of sources
and dipoles, weighted by activity and curvature, but will require significant work to
rigorously derive. The second use is in dynamic fluid–structure interaction problems
for flexible chemically active filaments. There have been a number of recent advances
in efficient simulation elastohydrodynamics combining local drag theory or slender
body theory for Stokes flow with elastic beam theory (Moreau, Giraldi & Gadêlha
2018; Hall-McNair et al. 2019; Schoeller et al. 2019; Walker et al. 2019). Taking
Hall-McNair et al. (2019) as an example, a typical simulation took 0.0007 s per time
step, with a single beat of the active filament model (the minimum for interesting
dynamics) taking approximately 20 s to resolve, i.e. around 30 000 time steps. To
consider similar chemoelastohydrodynamic simulations, coupling the concentration
solution via SPT would increase the total run time to approximately 22 min, whereas
coupling via the boundary element method would increase the total run time to
100 h. It is also worth noting that our SPT code has as yet not been optimised for
speed, and in fact more efficient implementations will certainly be able to reduce this
further.

Furthermore, the form of the SPT integral equation reveals the underlying structure
of the various contributions to the concentration field (and swimming velocity),
providing opportunities for new insights. In particular, we note that the torsion is
absent from the SPT equation, as it appears only at O(ε2). The natural decomposition
of the azimuthal slip flow into Fourier modes furthermore makes the theory ideal
for coupling with the viscous flow slender body theory of Koens & Lauga (2018),
providing further gains in efficiency. We hope that this new theory will provide
the basis for researchers to begin to look at complex, interacting, flexible phoretic
filament flows in three dimensions.
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Appendix A. Expansion of the kernels
A.1. Outer region

Expanding in the outer region, s − s̃ = O(1), (i.e. R0(s, s̃) = O(1) and we can
approximate R≈R0), and using (2.23), (2.24). Expanding 1/|R|,

1
|R|
= [|R0|

2
+ 2εR0 ·D(s,θ)

(s̃,θ̃ )
+O(ε2)]−1/2

=
1
|R0|

[
1− ε

R0

|R0|
2
·D(s,θ)

(s̃,θ̃ )
+O(ε2)

]
, (A 1)

which gives the outer expansions K1
(o),K2

(o) of the kernels K1,K2, defined in (2.22a)–
(2.22b), as

K1
(o)
=
ρ(s̃)A(s̃, θ̃ )
|R0(s, s̃)|

[
1− ε

R0 ·D(s,θ)
(s̃,θ̃ )

|R0|
2
+O(ε2)

]
[1− ερ(s̃)κ(s̃) cos θm(s̃, θ̃ )+O(ε2)]

=
ρ(s̃)A(s̃, θ̃ )
|R0(s, s̃)|

[
1− ε

[
ρ(s̃)κ(s̃) cos θm(s̃, θ̃ )+

R0 ·D(s,θ)
(s̃,θ̃ )

|R0|
2

]
+O(ε2)

]
, (A 2)

K2
(o)
=
ερ(s̃)c(s̃, θ̃ )
|R0|

3

[
1−

3εR0 ·D(s,θ)
(s̃,θ̃ )

|R0|
2

]
[R0 + εD(s,θ)

(s̃,θ̃ )
]

·

[
êρ(s̃, θ̃ )− ε

dρ(s̃)
d s̃

t̂(s̃)− ερ(s̃)κ(s̃) cos θm(s̃, θ̃ )êρ(s̃, θ̃ )
]
+O(ε3)

= ε
ρ(s̃)c(s̃, θ̃ )
|R0|

3

{
R0 · êρ(s̃, θ̃ )+ ε

(
D(s,θ)

(s̃,θ̃ )

)
· êρ(s̃, θ̃ )

− εR0 ·

[
dρ(s̃)

d s̃
t̂(s̃)+ ρ(s̃)κ(s̃) cos θm(s̃, θ̃ )êρ(s̃, θ̃ )

]
− ε(R0 · êρ(s̃, θ̃ ))

3R0 ·D(s,θ)
(s̃,θ̃ )

|R0|
2
+O(ε2)

}
. (A 3)

In the above expressions we keep the first two orders to ensure all relevant
contributions are accounted for, in particular in anticipation of the matching to
follow (A 3).

A.2. Inner region
A.2.1. Inner region expansion

In the inner region, s − s̃ = O(ε) and we let s̃ = s + εχ , where χ is O(1). We
proceed by Taylor expanding functions of s̃ around s, using the Serret–Frenet equation
∂ t̂/∂s= κn̂(s), and from (2.9), ∂ êρ/∂s=−κ(s) cos θm(s, θ)t̂(s),

ρ(s̃)= ρ(s)+ εχ
dρ(s)

ds
+O(ε2), (A 4a)

r(s̃)= r(s)+ εχ t̂(s)+ 1
2(εχ)

2κ(s)n̂(s)+O(ε3), (A 4b)

êρ(s̃, θ̃ )= êρ(s, θ̃ )− εχκ(s) cos θm(s, θ̃ )t̂(s), (A 4c)
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S(s̃, θ̃ ) = r(s)+ ε[χ t̂(s)+ ρ(s)êρ(s, θ̃ )]

+ ε2

[
1
2
χ 2κ(s)n̂(s)+ χ

dρ(s)
ds

êρ(s, θ̃ )− ρ(s)χκ(s) cos θm(s, θ̃ )t̂(s)
]

+O(ε3). (A 4d)

Equation (2.17) gives
R= ε[R̂

(1)

(i) + εR̂
(2)

(i) ] +O(ε3), (A 5)

where

R̂
(1)

(i) =−χ t̂(s)+ ρ(s)[êρ(s, θ)− êρ(s, θ̃ )], (A 6a)

R̂
(2)

(i) =−

[
1
2
χ 2κn̂(s)+ χ

dρ(s)
ds

êρ(s, θ̃ )− χρ(s)κ(s) cos θm(s, θ̃ )t̂(s)
]
, (A 6b)

|R̂
(1)

(i) + εR̂
(2)

(i) | = |R̂
(1)

(i) |[1+ εR̂
(1)

(i) · R̂
(2)

(i) /|R̂
(1)

(i) |
2
+O(ε2)]. (A 6c)

Using these, the inner expansions of K1,K2 become

ε|R̂
(1)

(i) |K1
(i)
= ρ(s)A(s, θ̃ )+ ε

(
+χ

[
ρ(s)∂sA(s, θ̃ )+

dρ(s)
ds

A(s, θ̃ )
]

− ρ(s)A(s, θ̃ )[ρ(s)κ(s) cos θm(s, θ̃ )+ R̂
(1)

(i) · R̂
(2)

(i) /|R̂
(1)

(i) |
2
]

)
+O(ε2),

ε|R̂
(1)

(i) |
3K2

(i)
= ρ(s)c(s, θ̃ )R̂

(1)

(i) · êρ(s, θ̃ )+ εχ∂s[ρ(s)c(s, θ̃ )]R̂
(1)

(i) · êρ(s, θ̃ )

+ ερ(s)c(s, θ̃ )

R̂
(2)

(i) · êρ(s, θ̃ )−
(
χκ(s) cos θm(s, θ̃ )+

dρ(s)
ds

)
R̂
(1)

(i) · t̂(s)

−

ρ(s)κ(s) cos θm(s, θ̃ )+
3R̂

(1)

(i) · R̂
(2)

(i)

|R̂
(1)

(i) |
2

 R̂
(1)

(i) · êρ(s, θ̃ )

+O(ε2c). (A 7)

A.2.2. Simplifying the inner integrals
From (A 6a) we have that

|R̂
(1)

(i) | =
√
χ 2 + γ 2, (A 8)

where
γ 2
= 2ρ2(s)[1− cos(θ − θ̃ )] (A 9)

and

R̂
(1)

(i) · t̂(s)=−χ, (A 10a)

R̂
(1)

(i) · êρ(s, θ̃ )= ρ(s)[cos(θ − θ̃ )− 1], (A 10b)

R̂
(2)

(i) · êρ(s, θ̃ )=−
[

1
2
χ 2κ(s) cos θm(s, θ̃ )+ χ

dρ(s)
ds

]
, (A 10c)

where we used that êρ(s, θ) · êρ(s, θ̃ )= cos(θ − θ̃ ).
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Rewriting (A 6a), (A 6b) in the {t̂, n̂, b̂} frame,

R̂
(1)

(i) =−χ t̂(s)+ ρ(s)[êρ(s, θ)− êρ(s, θ̃ )] (A 11)

=−χ t̂(s)+ ρ(s) {[cos θm(s, θ)− cos θm(s, θ̃ )]n̂(s)
+ [sin θm(s, θ)− sin θm(s, θ̃ )]b̂(s)}, (A 12)

R̂
(2)

(i) =−

[
1
2
χ 2κn̂(s)+ χ

dρ(s)
ds

êρ(s, θ̃ )− χρ(s)κ(s) cos θm(s, θ̃ )t̂(s)
]

(A 13)

= χρ(s)κ(s) cos θm(s, θ̃ )t̂(s)−
[

1
2
χ 2κ(s)+ χ

dρ(s)
ds

cos θm(s, θ̃ )
]

n̂(s)

−χ
dρ(s)

ds
sin θm(s, θ̃ )b̂(s), (A 14)

we obtain

R̂
(1)

(i) · R̂
(2)

(i) =−χρ(s)
[

1
2
κ(s)χ(cos θm(s, θ̃ )+ cos θm(s, θ))+

dρ(s)
ds

(cos(θ − θ̃ )− 1)
]
.

(A 15)
This allows us, after some rearranging, to express the inner kernels K1

(i),K2
(i) as

K1
(i)
=
ρ(s)A(s, θ̃ )
ε
√
χ 2 + γ 2

− εA(s, θ̃ )
1

ε
√
χ 2 + γ 2

ρ2(s)κ(s) cos θm(s, θ̃ )

+ ερ2(s)A(s, θ̃ )
[

1
2

κ(s)χ 2

ε
√
χ 2 + γ 2

3 [cos θm(s, θ̃ )+ cos θm(s, θ)]

+
χ

ε
√
χ 2 + γ 2

3

dρ(s)
ds
[cos(θ − θ̃ )− 1]

]
+ ε

χ

ε
√
χ 2 + γ 2

∂s[ρ(s)A(s, θ̃ )] +O(ε2), (A 16)

K2
(i)
=

ρ(s)c(s, θ̃ )

ε
√
χ 2 + γ 2

3ρ(s)[cos(θ − θ̃ )− 1]

+ ε
χ

ε
√
χ 2 + γ 2

3ρ(s)[cos(θ − θ̃ )− 1]∂s[ρ(s)c(s, θ̃ )]

− ε
ρ(s)c(s, θ̃ )κ(s) cos θm(s, θ̃ )

ε
√
χ 2 + γ 2

3

[
−
χ 2

2
+ ρ2(s)[cos(θ − θ̃ )− 1]

]

+ 3ε
ρ3(s)c(s, θ̃ )

ε
√
χ 2 + γ 2

5 [cos(θ − θ̃ )− 1]
{
χ

dρ(s)
ds
[cos(θ − θ̃ )− 1]

+
χ 2

2
κ(s)[cos θm(s, θ̃ )+ cos θm(s, θ)]

}
+O(εc/

√
χ 2 + γ 2

3
). (A 17)

Note we have deliberately not simplified ε in the numerators and denominators of the
fractions in the above expressions and kept the fractions in the form χ i/ε

√
χ 2 + γ 2

j
,

as we will next use known expressions for their integrated values.
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A.2.3. Evaluating the inner integrals
We can now perform the integrations with respect to s̃, following Koens & Lauga

(2018), by using the known values of integrals of the form

Ii
j =

∫ 1

−1

χ i

ε
√
χ 2 + γ 2

j d s̃, (A 18)

where γ is a constant with respect to s̃, i, j positive integers, and we recall s̃= s+ εχ .
The following leading-order expressions are given by Koens & Lauga (2018),

Ii=0
j=1 = log

(
4(1− s2)

ε2γ 2

)
, Ii=0

j=3 =
2
γ 2
, Ii=0

j=5 =
4

3γ 4
, (A 19a−c)

Ii=1
j=3 =

2sε
s2 − 1

, Ii=1
j=5 = 0, (A 19d,e)

Ii=2
j=3 =

[
log
(

4(1− s2)

ε2γ 2

)
− 2
]
, Ii=2

j=5 =
2

3γ 2
, (A 19f ,g)

and we also evaluate

Ii=1
j=1 =

∫ 1

−1

χ

ε
√
χ 2 + γ 2

d s̃=
∫ (1−s)/ε

−(1+s)/ε

χ√
χ 2 + γ 2

dχ

=
1
ε
[|1− s| − |1+ s|][1+O(ε2)] =−

2s
ε
[1+O(ε2)], (A 20)

where we used |1− s| − |1+ s| = (1− s)− (1+ s)=−2s for −1< s< 1. Using (A 19a)
to (A 19e) in K1

(i),K2
(i) and simplifying gives∫ 1

−1
K1

(i) d s̃ = ρ(s)A(s, θ̃ )
[

log
(

2(1− s2)

ε2ρ2(s)

)
− log[1− cos(θ − θ̃ )]

]
− 2s∂s[ρ(s)A(s, θ̃ )][1+O(ε2)]

− εA(s, θ̃ )
[

log
(

2(1− s2)

ε2ρ2(s)

)
− log[1− cos(θ − θ̃ )]

]
× ρ2(s)κ(s) cos θm(s, θ̃ )

+ ερ2(s)A(s, θ̃ )
1
2
κ(s)[cos θm(s, θ̃ )+ cos θm(s, θ)]

×

[
log
(

2(1− s2)

ε2ρ2(s)

)
− 2− log[1− cos(θ − θ̃ )]

]
+ ερ2(s)A(s, θ̃ )

2sε
s2 − 1

dρ(s)
ds
[cos(θ − θ̃ )− 1]

+O(ε2), (A 21)∫ 1

−1
K2

(i) d s̃ = −c(s, θ̃ )+
1
2
εc(s, θ̃ )

[
log
(

2(1− s2)

ε2ρ2(s)

)
− log[1− cos(θ − θ̃ )]

]
× κ(s)ρ(s) cos θm(s, θ̃ )

− εc(s, θ̃ )
1
2
ρ(s)κ(s)[cos θm(s, θ̃ )+ cos θm(s, θ)]

+ ε
2sε

s2 − 1
ρ(s)[cos(θ − θ̃ )− 1]∂s[ρ(s)c(s, θ̃ )] +O(ε2c). (A 22)
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A.3. Matching: common part

In order to obtain K1
(o)∈(i) and K1

(o)∈(i), we substitute s̃ = s + εχ in the expressions
for K1

(o) and K2
(o) and expand. Here we show these expansions for R0, R0/|R0|

2 and
D(s,θ)

(s̃,θ̃ )
, using the Serret–Frenet equations,

R0 = −εχ

[
t̂(s)+

1
2
(εχ)κ(s)n̂(s)

+
(εχ)2

6
[−κ2(s)t̂(s)+ κ ′(s)n̂(s)+ κ(s)τ (s)b̂(s)] +O(ε3)

]
, (A 23a)

|R0| = |εχ |
[
1− 1

24(εχ)
2κ2(s)+O(ε3)

]
, (A 23b)

R0

|R0|
2
= −

1
(εχ)

[
t̂(s)+

1
2
(εχ)κ(s)n̂(s)

+
(εχ)2

6

[
−
κ2(s)

2
t̂(s)+ κ ′(s)n̂(s)+ κ(s)τ (s)b̂(s)

]
+O(ε3)

]
, (A 23c)

D(s,θ)
(s̃,θ̃ )
= ρ(s)[êρ(s, θ)− êρ(s, θ̃ )]

+ εχ

[
ρ(s)κ(s) cos θm(s, θ̃ )t̂(s)−

dρ(s)
ds

êρ(s, θ̃ )
]
+O(ε2), (A 23d)

R0 ·D(s,θ)
(s̃,θ̃ )

|R0|
2
=−

1
2
ρ(s)κ(s)[cos θm(s, θ)+ cos θm(s, θ̃ )] +O(ε). (A 23e)

The above expansions, after some calculations lead to

K1
(o)∈(i)

=
ρ(s)A(s, θ̃ )
|s̃− s|

+ sign(s̃− s)∂s[ρ(s)A(s, θ̃ )]

−
1
2
ε
ρ(s)A(s, θ̃ )
|s̃− s|

ρ(s)κ(s)[cos θm(s, θ̃ )− cos θm(s, θ)] +O(ε2), (A 24)

K2
(o)∈(i)
= ε2ρ

2(s)c(s, θ̃ )
|s̃− s|3

[cos(θ − θ̃ )− 1][1+O(ε)]. (A 25)

Since
∫ 1
−1 sign(s̃− s) d s̃ =

∫ s
−1(−1) d s̃ +

∫ 1
s (+1) d s̃ = −(1 + s) + (1 − s) = −2s the

integrals of the common parts simplify to∫ 1

−1

∫ π

−π

K1
(o)∈(i) d s̃ d θ̃ =

∫ 1

−1

ρ(s)
|s̃− s|

∫ π

−π

A(s, θ̃ ) d θ̃ d s̃+ (−2s)∂s

∫ π

−π

[ρ(s)A(s, θ̃ )] d θ̃

−
1
2
ερ2(s)κ(s)

∫ 1

−1

1
|s̃− s|

∫ π

−π

A(s, θ̃ )

×[cos θm(s, θ̃ )− cos θm(s, θ)] d θ̃ d s̃+O(ε2), (A 26)∫ 1

−1

∫ π

−π

K2
(o)∈(i) d s̃ d θ̃ =O(ε2). (A 27)
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Appendix B. Expansion of the concentration field
B.1. Full expression for the expansion of the concentration field

The full boundary integral (BI) equations are approximated by the adding the outer
and inner expansions and subtracting from each the common part,

2πc(s, θ) ≈
∫ 1

−1

∫ π

−π

(K1
(i)
+K2

(i)
+K1

(o)
+K2

(o)
−K1

(i)∈(o)
−K2

(i)∈(o)) d θ̃ d s̃

= +ρ(s)
∫ π

−π

A(s, θ̃ )
[

log
(

2(1− s2)

ε2ρ2(s)

)
− log[1− cos(θ − θ̃ )]

]
d θ̃

+ (−2s)
∫ π

−π

∂s[ρ(s)A(s, θ̃ )] d θ̃ [1+O(ε2)]

− ερ2(s)κ(s)
∫ π

−π

A(s, θ̃ ) cos θm(s, θ̃ )

×

[
log
(

2(1− s2)

ε2ρ2(s)

)
− log[1− cos(θ − θ̃ )]

]
d θ̃

+
1
2
ερ2(s)κ(s)

∫ π

−π

A(s, θ̃ )[cos θm(s, θ̃ )+ cos θm(s, θ)]

×

[
log
(

2(1− s2)

ε2ρ2(s)

)
− 2
]

d θ̃

−
1
2
ερ2(s)κ(s)

∫ π

−π

A(s, θ̃ )[cos θm(s, θ̃ )+ cos θm(s, θ)]

× log[1− cos(θ − θ̃ )] d θ̃

+ ερ2(s)
2sε

s2 − 1
dρ(s)

ds

∫ π

−π

A(s, θ̃ )[cos(θ − θ̃ )− 1] d θ̃

−

∫ π

−π

c(s, θ̃ )d θ̃ +
1
2
ερ(s)κ(s)

∫ π

−π

c(s, θ̃ )

×

[
log
(

2(1− s2)

ε2ρ2(s)

)
− log[1− cos(θ − θ̃ )]

]
cos θm(s, θ̃ ) d θ̃

−
1
2
ερ(s)κ(s)

∫ π

−π

c(s, θ̃ )[cos θm(s, θ̃ )+ cos θm(s, θ)] d θ̃

+ ε
2sε

s2 − 1
ρ(s)

∫ π

−π

[cos(θ − θ̃ )− 1]∂s[ρ(s)c(s, θ̃ )] d θ̃

+

∫ 1

−1

ρ(s̃)
|R0|

∫ π

−π

A(s̃, θ̃ ) d θ̃ d s̃

− ε

∫ 1

−1

ρ(s̃)
|R0|

∫ π

−π

A(s̃, θ̃ )
[
ρ(s̃)κ(s̃) cos θm(s̃, θ̃ )+

R0

|R0|
2
·D(s,θ)

(s̃,θ̃ )

]
d θ̃ d s̃

+ ε

∫ 1

−1

ρ(s̃)
|R0|

3

∫ π

−π

c(s̃, θ̃ ){R0 · êρ(s̃, θ̃ )+O(ε)} d θ̃ d s̃
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−

∫ 1

−1

ρ(s)
|s̃− s|

∫ π

−π

A(s, θ̃ ) d θ̃ d s̃+ 2s∂s

∫ π

−π

[ρ(s)A(s, θ̃ )] d θ̃

+
1
2
ερ2(s)κ(s)

∫ 1

−1

1
|s̃− s|

∫ π

−π

A(s, θ̃ )

×[cos θm(s, θ̃ )− cos θm(s, θ)] d θ̃ d s̃+O(ε2). (B 1)

B.2. Leading-order concentration field

To leading order, after neglecting the term ε(2sε/(s2
− 1))ρ(s)

∫ π

−π
[cos(θ − θ̃ ) − 1]

∂s[ρ(s)c(s, θ̃ )] dθ in the integral of K2
(i), equation (B 1) gives

2πc(0)(s, θ)+
∫ π

−π

c(0)(s, θ̃ ) d θ̃ ≈ +
∫ 1

−1

ρ(s̃)
|R0|

∫ π

−π

A(s̃, θ̃ ) d θ̃ d s̃

−

∫ 1

−1

ρ(s)
|s̃− s|

∫ π

−π

A(s, θ̃ ) d θ̃ d s̃

+ ρ(s) log
(

2(1− s2)

ε2ρ2(s)

) ∫ π

−π

A(s, θ̃ ) d θ̃

− ρ(s)
∫ π

−π

A(s, θ̃ ) log[1− cos(θ − θ̃ )] d θ̃ , (B 2)

where the terms ±2s∂s
∫ π

−π
[ρ(s)A(s, θ̃ )] d θ̃ cancel out. Integrating this again over θ

gives

4π〈c(0)(s)〉 = 2π

{∫ 1

−1

[
ρ(s̃)〈A(s̃)〉
|R0(s, s̃)|

−
ρ(s)〈A(s)〉
|s̃− s|

]
d s̃+ ρ(s)〈A(s)〉 log

(
2(1− s2)

ε2ρ2(s)

)}
− ρ(s)

∫ π

−π

∫ π

−π

A(s, θ̃ ) log[1− cos(θ − θ̃ )] d θ̃ dθ, (B 3)

= 2π

{∫ 1

−1

[
ρ(s̃)〈A(s̃)〉
|R0(s, s̃)|

−
ρ(s)〈A(s)〉
|s̃− s|

]
d s̃+ ρ(s)〈A(s)〉 log

(
2(1− s2)

ε2ρ2(s)

)}
+ 2π log(2)ρ(s)

∫ π

−π

A(s, θ̃ ) d θ̃ , (B 4)

where we simplified the last term by exchanging the order of the two integrals (over
d θ̃ and dθ ) and using

∫ π

−π
log[1− cos(θ − θ̃ )] d θ̃ =−2π log(2). Dividing by 2π and

collecting terms we arrive at

2〈c(0)(s)〉=+
∫ 1

−1

[
ρ(s̃)〈A(s̃)〉
|R0(s, s̃)|

−
ρ(s)〈A(s)〉
|s̃− s|

]
d s̃+ ρ(s)〈A(s)〉 log

(
4(1− s2)

ε2ρ2(s)

)
. (B 5)

Subtracting half of (B 5) from (B 2) we obtain the leading-order slender boundary
integral equation in (2.39).
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B.3. Next-order concentration field
Going to the next order, equation (B 1) gives the first-order correction to the slender
boundary integral formula

2πc(1)(s, θ) = −ρ2(s)κ(s)
∫ π

−π

A(s, θ̃ ) cos θm(s, θ̃ )

×

[
log
(

2(1− s2)

ε2ρ2(s)

)
− log[1− cos(θ − θ̃ )]

]
d θ̃

+
1
2
ρ2(s)κ(s)

∫ π

−π

A(s, θ̃ )[cos θm(s, θ̃ )+ cos θm(s, θ)]

×

[
log
(

2(1− s2)

ε2ρ2(s)

)
− 2
]

d θ̃

−
1
2
ρ2(s)κ(s)

∫ π

−π

A(s, θ̃ )[cos θm(s, θ̃ )+ cos θm(s, θ)]

× log[1− cos(θ − θ̃ )] d θ̃

−

∫ π

−π

c(1)(s, θ̃ ) d θ̃ +
1
2
ρ(s)κ(s)

∫ π

−π

c(0)(s, θ̃ )

×

[
log
(

2(1− s2)

ε2ρ2(s)

)
− log[1− cos(θ − θ̃ )]

]
cos θm(s, θ̃ ) d θ̃

−
1
2
ρ(s)κ(s)

∫ π

−π

c(0)(s, θ̃ )[cos θm(s, θ̃ )+ cos θm(s, θ)] d θ̃

−

∫ 1

−1

ρ(s̃)
|R0|

∫ π

−π

A(s̃, θ̃ )

×

[
ρ(s̃)κ(s̃) cos θm(s̃, θ̃ )+

R0

|R0|
2
·D(s,θ)

(s̃,θ̃ )

]
d θ̃ d s̃+O(ε2),

+

∫ 1

−1

ρ(s̃)
|R0|

3

∫ π

−π

c(0)(s̃, θ̃ ){R0 · êρ(s̃, θ̃ )+O(ε)} d θ̃ d s̃

+
1
2
ρ2(s)κ(s)

∫ 1

−1

1
|s̃− s|

∫ π

−π

A(s, θ̃ )[cos θm(s, θ̃ )− cos θm(s, θ)] d θ̃ d s̃.

(B 6)

In the above expression we have neglected the term 2ε2(sρ2(s)/(s2
− 1))(dρ(s)/ds)∫ π

−π
A(s, θ̃ )[cos(θ − θ̃ ) − 1] d θ̃ in the integral of K1

(i). This is permissible for
prolate spheroidal ends, as the ρ2(s) in the numerator cancels the singularity in the
denominator at s=±1.

For axisymmetric activity, A(s, θ) ≡A(s), this simplifies as some of the integrals
vanish or simplify, for example,

∫ π

−π
êρ(s̃, θ̃ ) d θ̃ = 0 and

∫ π

−π
cos θm(s, θ̃ ) d θ̃ = 0,

2πc(1)(s, θ)+ 〈c(1)(s)〉

=+
1
2
ρ2(s)κ(s)A(s)

∫ π

−π

cos θm(s, θ̃ ) log[1− cos(θ − θ̃ )] d θ̃

+
1
2
ρ2(s)κ(s)A(s) cos θm(s, θ)
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×

{
2π

[
log
(

2(1− s2)

ε2ρ2(s)

)
− 2
]
−

∫ π

−π

log[1− cos(θ − θ̃ )] d θ̃
}

−
1
2
ρ(s)κ(s)c(0)(s)

(
2π cos θm(s, θ)+

∫ π

−π

log[1− cos(θ − θ̃ )] cos θm(s, θ̃ ) d θ̃
)

− 2πρ(s)
∫ 1

−1
ρ(s̃)A(s̃)

R0

|R0|
3
d s̃ · êρ(s, θ),

−πρ2(s)κ(s)
∫ 1

−1

1
|s̃− s|

A(s) cos θm(s, θ) d s̃. (B 7)

Now, as in Koens & Lauga (2018) we use that∫ π

−π

log[1− cos(θ − θ̃ )] d θ̃ =−2π log(2), (B 8a)∫ π

−π

log[1− cos(θ − θ̃ )] cos θm(s, θ̃ ) d θ̃ =−2π cos θm(s, θ), (B 8b)

to get

2πc(1)(s, θ)+ 〈c(1)(s)〉 = +
1
2
ρ2(s)κ(s)A(s)

×

(
− 2π cos θm(s, θ)+ cos θm(s, θ)

×

{
2π

[
log
(

2(1− s2)

ε2ρ2(s)

)
− 2
]
+ 2π log(2)

})
−

1
2
ρ(s)κ(s)c(0)(s)(2π cos θm(s, θ)− 2π cos θm(s, θ))

− 2πρ(s)
∫ 1

−1
ρ(s̃)A(s̃)

R0

|R0|
3

d s̃ · êρ(s, θ),

−πρ2(s)κ(s)
∫ 1

−1

1
|s̃− s|

A(s) cos θm(s, θ) d s̃. (B 9)

Appendix C. Endpoint error estimation
To complement the numerical validation of our results, here we provide some

analysis of the end errors in our theory. In the derivation of SPT, in particular the
inner region expansion, we have assumed that ε dρ/ds � 1, however, for prolate
spheroidal filaments ρ(s) =

√
1− s2, and dρ/ds diverges close to the ends. Indeed,

in the region where ε dρ/ds∼ 1/εn, n> 0, we must have s∼ 1/
√
(1+ ε2(n+1))→|s| ∼

1− ε2(n+1)/2, which gives the length of the region as δ = O(ε2(n+1)). Not accounting
for this divergence at the ends introduces a small error in the concentration calculation
over the filament, which we now estimate via scaling arguments on the boundary
integral equation. We then discuss the slip velocity in this region, and the impact on
swimming velocity.

C.1. Error analysis for the concentration
The concentration field over the filament is given by,

2πc(s, θ)=
∫ l

−l

∫ π

−π

[K1 +K2] d θ̃ d s̃, (C 1)
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with

K1(s, θ, s̃, θ̃ )=
A(s̃, θ̃ )
|R|

∣∣∣∣∂S
∂ s̃
×
∂S
∂θ̃

∣∣∣∣ , K2(s, θ, s̃, θ̃ )=−
c(s̃, θ̃ )R
|R|3

·

(
∂S
∂ s̃
×
∂S
∂θ̃

)
. (C 2)

Consider the expressions for the surface element and its magnitude

∂S
∂ s̃
×
∂S
∂θ̃
= ερ(s̃)

{
ε

dρ(s̃)
d s̃

t̂(s̃)− [1− ερ(s̃)κ(s̃) cos θm(s̃, θ̃ )]êρ(s̃, θ̃ )
}
, (C 3)∣∣∣∣∂S

∂ s̃
×
∂S
∂θ̃

∣∣∣∣= ερ(s̃)
√
[1− ερ(s̃)κ(s̃) cos θm(s̃, θ̃ )]2 + ε2

(
dρ(s̃)

d s̃

)2

. (C 4)

While dρ/ds diverges as s → ±1, the product ρ dρ/ds remains O(1). Thus, for
ε dρ/ds∼ 1, ρ∼ ε, and the size of the surface element ∼ερ

√
O(1)=O(ε2). Similarly,

for ε dρ/ds � 1, the size of the surface element ∼ερ
√
(ε dρ/ds)2 ∼ ε2ρ dρ/ds =

O(ε2).
Following the argument of Koens & Lauga (2018), in the inner expansion, |R| =

O(ε), hence in the region δ near the ends, scaling (C 2) gives K1 ∼ (1/ε)ε2
= O(ε),

K2 ∼ (cε/ε3)ε2
= O(1), since c = O(1). Thus, returning to the boundary integral

equation, the error in the integral from either endpoint cerr,

cerr ∼

∫
−l+δ

−l

∫ π

−π

K1 +K2 d θ̃ d s̃∼ (ε + 1)δ ∼ δ. (C 5)

Thus at worst, the contribution to the concentration along the filament from the end
regions is region is O(ε2), and therefore negligible.

C.2. The slip velocity
The slip velocity is given by (2.3). Using (C 3) and (C 4), we evaluate the normal to
the filament’s surface, pointing out of the filament, as

nf (s, θ)=
[1− ερ(s)κ(s) cos θm(s, θ)]êρ(s, θ)− ε

dρ(s)
ds

t̂(s)√
[1− ερ(s)κ(s) cos θm(s, θ)]2 + ε2

(
dρ(s)

ds

)2
. (C 6)

The boundary condition of (2.2) allows us to write the slip velocity as

vslip|S = M(x)(1− nf nf ) · ∇c
= M(∇c+ nfA), (C 7)

and using the local cylindrical polars (with the axisymmetry axis along t̂(s)), we have
that

∇c = t̂(t̂ · ∇c)+ êθ(êθ · ∇c)+ êρ(êρ · ∇c), (C 8)

= t̂∂sc+ êθ
1
ερ
∂θc+ êρ(êρ · ∇c), (C 9)
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where in the last line we used that t̂ · ∇c = ∂sc, êθ · ∇c = (1/ερ(s))∂θc. Using the
boundary condition in (2.2) (nf · ∇c = −A), together with the expression for nf
in (C 6), we can evaluate êρ · ∇c as

(êρ · ∇c)=
1

[1− ερκ cos θm]

ε dρ(s)
ds

∂sc−A

√
[1− ερκ cos θm]

2 + ε2

(
dρ(s)

ds

)2
 .

(C 10)
Thus we calculate the slip velocity by substituting in the expressions for ∇c
(equation (C 9)) and nf (equation (C 6)) in (C 10)

1
M

vslip = t̂∂sc+ êθ
1
ερ
∂θc+ êρ(êρ · ∇c)+ nfA

= t̂∂sc+ êθ
1
ερ
∂θc+ êρ

ε
dρ(s)

ds
∂sc−A

√
[1− ερκ cos θm]

2 + ε2

(
dρ(s)

ds

)2

[1− ερκ cos θm]

+

[1− ερκ cos θm(s, θ)]êρ − ε
dρ(s)

ds
t̂√

[1− ερκ cos θm(s, θ)]2 + ε2

(
dρ(s)

ds

)2
A. (C 11)

C.3. Swimming velocity error analysis
We now proceed to estimate the effect of the regions with large variations in the cross-
sectional radius ρ(s) in the swimming velocity. We focus our attention on the prolate
spheroidal cross-sectional profile ρ(s)=

√
1− s2 and show that in both regions (see the

following §§ C.3.1 and C.3.2), the contribution of the endpoint region to the swimming
kinematics is negligible at leading order.

Note the form of the normal vector to the filament surface close to the endpoints,

ε
dρ(s)

ds
=O(1), then nf (s, θ)=

êρ(s, θ)− ε
dρ(s)

ds
t̂(s)√

1+ ε2

(
dρ(s)

ds

)2
+O(ε), (C 12a)

ε
dρ(s)

ds
=O(1/εn), n > 1, then nf (s, θ)=−sign

(
ε

dρ(s)
ds

)
t̂+O(εn). (C 12b)

At s = ±1, nf = ±t̂, and the boundary condition for the flux gives us that ∂sc =
±A(s = ±1). Since in the majority of the filament s ∈ (−1 + ε2, 1 − ε2) we have
∂sc=O(1) (provided one is away from a jump in activity), by continuity we therefore
expect ∂sc=O(1) in the region δ. Similarly, we will assume that, provided activity is
axisymmetric in the region δ, we have ∂θc=O(ερ).

Since we are interested in the contribution of the end regions to the swimming
kinematics, we estimate

∫ π

−π

∫
1−|s|=O(δ) vslip(s, θ) dθ ds where δ is the arclength extend

of the region close to the endpoints in each of the cases examined below. For the
purposes of the scaling analysis, we assume M= 1.
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C.3.1. Region with ε(dρ(s)/ds)=O(1)
For ρ(s)=

√
1− s2 this region has size δ =O(ε2) and within it ρ =O(ε). We can

estimate the scalings of the various terms in the surface slip velocity as follows:∫ π

−π

∫
1−|s|=O(δ)

vslip(s, θ) dθ ds

=

∫ π

−π

∫
1−|s|=O(δ)

t̂(s)(∂sc)︸ ︷︷ ︸
O(δ·1)=O(ε2)

+

∫ π

−π

∫
1−|s|=O(δ)

êθ
1
ερ
(∂θc)︸ ︷︷ ︸

O(δ·1/ε2·ε2)=O(ε2) for axisymm A

+

∫ π

−π

∫
1−|s|=O(δ)

êρε
dρ(s)

ds
(∂sc)[1+O(ε2)]︸ ︷︷ ︸

O(δ·1)=O(ε2)

−

∫ π

−π

∫
1−|s|=O(δ)

êρA

√
1+ ε2

(
dρ(s)

ds

)2

[1+O(ε2)]︸ ︷︷ ︸
O(δ·1)=O(ε2)

+

∫ π

−π

∫
1−|s|=O(δ)

A
êρ − ε

dρ(s)
ds

t̂√
1+ ε2

(
dρ(s)

ds

)2
[1+O(ε2)]

︸ ︷︷ ︸
O(δ·1)=O(ε2)

. (C 13)

Thus, the regions of size O(ε2), in which ε(dρ(s)/ds) = O(1), make an O(ε2)

contribution to the swimming kinematics, which is negligible compared with the
leading-order swimming kinematics.

C.3.2. Region with ε(dρ(s)/ds)∼ 1/εn, n > 1
For ρ(s) =

√
1− s2, the region in which ε(dρ(s)/ds) ∼ 1/εn, n > 1 has size δ =

O(ε2n+2), within it ρ=O(εn+1), and hence we can estimate the scalings of the various
terms in the surface slip velocity as follows:∫ π

−π

∫
1−|s|=O(δ)

vslip(s, θ)

=

∫ π

−π

∫
1−|s|=O(δ)

t̂(s)(∂sc)︸ ︷︷ ︸
O(δ·1)=O(ε2n+2)

+

∫ π

−π

∫
1−|s|=O(δ)

êθ
1
ερ
(∂θc)︸ ︷︷ ︸

O(δ·1)=O(ε2n+2)

+

∫ π

−π

∫
1−|s|=O(δ)

êρε
dρ(s)

ds
(∂sc)︸ ︷︷ ︸

O(δ(1/εn)·1)=O(εn+2)

−

∫ π

−π

∫
1−|s|=O(δ)

êρA
∣∣∣∣ε dρ(s)

ds

∣∣∣∣︸ ︷︷ ︸
O(δ(1/εn))=O(εn+2)

+

∫ π

−π

∫
1−|s|=O(δ)

−A sign
(
ε

dρ(s)
ds

)
t̂+O(εn)︸ ︷︷ ︸

O(δ·1)=O(ε2n+2)

. (C 14)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

41
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

CS
D

 U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
 S

an
 D

ie
go

, o
n 

10
 Ju

l 2
02

0 
at

 0
4:

43
:0

8,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2020.410
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


898 A24-42 P. Katsamba, S. Michelin and T. D. Montenegro-Johnson

Thus, the regions of size O(ε2n+2) in which ε(dρ(s)/ds)=O(1/εn), make an O(εn+2)

contribution to the swimming kinematics, which is negligible compared to the leading-
order swimming kinematics.
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