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Collective dynamics and rheology of confined
phoretic suspensions
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Similarly to their biological counterparts, suspensions of chemically active autophoretic
swimmers exhibit a non-trivial dynamics involving self-organisation processes as a
result of inter-particle interactions. Using a kinetic model for a dilute suspension of
autochemotactic Janus particles, we analyse the effect of a confined pressure-driven flow
on these collective behaviours and the impact of chemotactic aggregation on the effective
viscosity of the active fluid. Four dynamic regimes are identified when increasing the
strength of the imposed pressure-driven flow, each associated with a different collective
behaviour resulting from the competition of flow- and chemically induced reorientation of
the swimmers together with the constraints of confinement. Interestingly, we observe that
the effect of the pusher (respectively puller) hydrodynamic signature, which is known to
reduce (respectively increase) the effective viscosity of a sheared suspension, is inverted
upon the emergence of autochemotactic aggregation. Our results provide new insights
into the role of the collective dynamics in complex environments, which are relevant to
synthetic as well as biological systems.

Key words: collective behaviour, active matter

1. Introduction

The dynamics of microscopic swimmers is dominated by viscous forces, and their
self-propulsion can be achieved only by non-reciprocal fluid forcing (Purcell 1977).
Phoretic particles do so by means of interfacial forces that drive a thin boundary-layer
flow near the surface of the particle (Anderson 1989). At the typical scale of the colloidal
particle, this layer’s thickness is negligible so that the interfacial flow appears as a net slip
velocity at the fluid–solid interface (Jülicher & Prost 2009). By forcing a relative motion
of the fluid with respect to the particle, this effective slip velocity induces a net drift of
the colloid (Anderson 1989; Yadav et al. 2015), as does the cilium-driven flows of many
microorganisms (Blake 1971; Brennen & Winet 1977). When interfacial forcing and drift
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result from local gradients of chemical concentration, it is referred to as diffusiophoresis
(Anderson 1989), and as self-diffusiophoresis when such gradients are generated by the
particle itself via surface chemical reactions. Janus colloids represent a now-canonical
example of such phoretic colloids, and generate the gradients required for propulsion
through the differential coatings of their two halves resulting in an asymmetric chemical
activity (Howse et al. 2007; Yadav et al. 2015; Moran & Posner 2017).

Self-diffusiophoretic swimmers are chemically active and actuate the fluid around them
(Jülicher & Prost 2009); thus, they can interact via the chemical and hydrodynamic
disturbances they induce on their environment (Sen et al. 2009; Theurkauff et al. 2012;
Campbell et al. 2019), like many of their biological counterparts (Budrene & Berg
1991; Drescher et al. 2010; Lushi, Goldstein & Shelley 2012). Within sufficiently large
active suspensions, long-range chemical or hydrodynamic interactions can cause the
emergence of collective dynamics (Dombrowski et al. 2004; Saintillan & Shelley 2008;
Ibele, Mallouk & Sen 2009; Yadav et al. 2015) characterised by correlated motion of
the particles (Dunkel et al. 2013; Stenhammar et al. 2017). Because it results from
inter-particle interactions, the correlation length lc of such collective motion is intrinsic
to the suspension and is typically larger than the interaction range (Balescu 1997), thus
much larger than the typical size of the swimmers.

A second important length scale within an active suspension is le, which characterises
its environment, and can be the typical size of regions with different background flow
conditions or the degree of confinement (e.g. gap between obstacles, width of a channel or
radius of a droplet hosting the suspension). When lc ∼ le, the collective behaviour of active
systems is not suppressed but interestingly modified, as suggested by Wioland, Lushi &
Goldstein (2016), who showed that the turbulent-like dynamics emerging in suspensions
of E. Coli transitions to collective directional motion when the system is confined within
a sufficiently narrow and closed channel. Previously, Wioland et al. (2013) and Lushi,
Wioland & Goldstein (2014) also showed how the collective motion of bacteria confined
into a small droplet induced a steady single-vortex state due to the curvature of the
boundaries.

The interaction of active self-propelled particles with rigid boundaries under
confinement has an impact on the particles’ motion even in the absence of an intrinsic
collective dynamics. In this regard, much research has focused on (steric or fluid-mediated)
wall–particle interactions at the level of an individual swimmer in order to explain a variety
of experimental observations. These include the attraction of swimmers toward walls and
subsequent reorientation parallel to the surface (Li et al. 2011; Spagnolie & Lauga 2012),
their increased residence time near the surface (Drescher et al. 2011), the orbits of rod-like
autophoretic colloids around small obstacles (Takagi et al. 2014), scattering dynamics of
swimming microalgae off of circular pillars (Contino et al. 2015) and the influence of
ciliary contact interactions with surfaces for flagellated microorganisms (Kantsler et al.
2013).

Despite the complexities arising in the detailed description of each system, the tendency
of swimming particles to spend most of their time near boundaries appears common
to many active suspensions (Rothschild 1963; Berke et al. 2008; Li & Tang 2009).
Interestingly, this behaviour can also be rationalised by involving only the combined
effect of self-propulsion, steric exclusion by the wall and diffusive processes (Elgeti &
Gompper 2013; Ezhilan & Saintillan 2015). Thus, at large time scales compared with those
characterising the ballistic run of a swimmer, its shape and the specifics of its swimming
kinematics are not necessary ingredients to predict a swimmer’s larger residence time near
walls.
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Another key feature of natural environments is the presence of an external stimulus.
This could be some non-uniform flow conditions, such as those generated by muscular
contractions or heat convection in a biological system (Riffell & Zimmer 2007) or by
imposed pressure gradients in microfluidic devices (Liu et al. 2020). Other stimuli include
external attractive fields such as light for phototactic micro-algae (Martin et al. 2016) or
synthetic swimmers (Sen et al. 2009). In an experiment involving a confined suspension
of phototactic algae, Garcia, Rafaï & Peyla (2013) tested the combined effect of two
simultaneous stimuli: (i) a background pressure-driven shear flow and (ii) a directional
source of light. The result is the focusing of the swimmers either at the centre of the
channel or at the boundaries, depending on the relative directions of the flow and light
source. A similar behaviour was observed by Kessler (1985) for gyrotactic swimmers,
where the effect of light is replaced by that of gravity. More recently, Rusconi, Guasto &
Stocker (2014) showed how the presence of an externally imposed pressure-driven flow
affects fundamental microbial processes (e.g. nutrient uptake) by hampering chemotaxis
while promoting surface attachment.

At the typical length scales of the suspension, the dynamics and trajectory of individual
microswimmers are blurred and the system can be regarded as a continuum, namely
as an active fluid. Active fluids are known to respond in a peculiar way to external
stimulations. In particular, the rheology of active suspensions was analysed experimentally
for elongated pusher-like (Gachelin et al. 2013; López et al. 2015) and puller-like
swimmers (Rafaï, Jibuti & Peyla 2010), which were found respectively to decrease and
increase the effective viscosity of the fluid as a result of the energy injection at the particle
scale. These predictions are qualitatively captured by theoretical models which consider
the swimmers as elongated bodies and completely neglect the presence of boundaries
(Hatwalne et al. 2004; Saintillan 2010). More complex models have included the effect
of boundaries and inter-particle interactions in one-dimensional channels, i.e. considering
inhomogeneities only along the cross-stream direction and a homogeneous streamwise
direction (Alonso-Matilla, Ezhilan & Saintillan 2016). However, the effective viscosity
of an active suspension undergoing a self-driven collective dynamics remains largely
unexplored. Doing so would require a model (i) to account for spatial inhomogeneities
also in the streamwise direction (i.e. collective dynamics is minimally captured in two
dimensions, see Lushi et al. 2012; Gao et al. 2017), and (ii) to include hydrodynamic and
chemical interactions, which drive the underlying self-organisation processes.

Having identified confinement and external stimuli as building blocks to simulating a
realistic environment of active suspensions (Tufenkji 2007; Guasto, Rusconi & Stocker
2012), the aim of this work is to study the collective response of autophoretic suspensions
when placed into a channel pressure-driven flow, and how this response influences its
macroscopic properties, e.g. the rheological properties of this active fluid. To this end,
the kinetic model recently used by Traverso & Michelin (2020) to model autophoretic
suspensions in a bulk environment is adapted here to include the effect of rigid no-slip
walls and of an external flow.

In this work, we focus on suspensions of chemically active Janus spheres whose surface
properties enable their reorientation along gradients of a chemical solute produced at their
surface, thus making them auto-chemotactic, i.e. able to rotate and self-propel toward
other particles or their chemical trails. At sufficiently large time scales compared with
that of a ballistic swimmer’s run, this effective attraction is known to promote particle
self-organisation in the form of asters (Saha, Golestanian & Ramaswamy 2014), similar to
that observed for autochemotactic microorganisms performing run-and-tumble dynamics
(Budrene & Berg 1991; Lushi, Goldstein & Shelley 2018).
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Our first objective is to investigate how such a chemically driven astering process is
influenced by the confined environment and particle-generated hydrodynamic field, for
different intensities of the background pressure-driven flow. We then characterise the effect
of such a dynamics on the coherent hydrodynamic forcing exerted by the particles, and
thus on the apparent viscosity of the active fluid. Finally, we derive and study the linear
stability of a reduced-order model (ROM) to identify and capture the minimal physical
ingredients to explain the rich collective behaviours in the numerical simulations of the
complete model.

By accounting for both confinement and a background pressure-driven flow, thus
reproducing conditions that are closer to those observed in practice, we predict and explain
new dynamical regimes of autophoretic chemotactic suspensions and their link with the
microscopic features of the particles. This represents a step forward in the design of
control strategies for active suspensions, in order to accomplish medical tasks, such as
drug delivery (Wang et al. 2013; Mostaghaci et al. 2017) or non-invasive diagnostic tests
for cancer cells (Mager 2006), or to overcome environmental challenges, e.g. nuclear waste
removal (Ying et al. 2019) or in situ bioremediation (Steffan et al. 1999; Tufenkji 2007)
and to design active fluids with controllable rheological properties.

The manuscript is organised as follows: § 2 introduces the kinetic model for the
suspension dynamics under confinement, and the techniques employed for its numerical
solution. Then, the system of equations is solved numerically for different strengths of
the background flow in § 3, and four different regimes are identified, each displaying
a different dynamics emerging from the interplay between inter-particle interactions,
confinement and background flow. Section 4 discusses the effects of the active stresses
induced by the particles on the particle-induced flows and the effective viscosity of the
suspension. Section 5 proposes a ROM for the suspension’s dynamics and analyses its
linear stability. Finally, § 6 summarises the main conclusions of this analysis and presents
further perspectives.

2. Kinetic model of a confined phoretic suspension

2.1. Governing equations of the suspension dynamics
We analyse the dynamics of a dilute suspension of self-propelled spherical autophoretic
Janus particles (JP) confined between two parallel flat plates separated by a distance 2H
and placed in an externally imposed pressure-driven flow, as illustrated in figure 1. On
length scales much larger than the particle radius R, the probability of finding a particle
at a given position x with a set orientation p is described, at time t, by the distribution
function Ψ (x, p, t). Phoretic particles emit a chemical solute and generate a net fluid slip
u∗ along their surface in response to local concentration gradients, so that on their surface

Dcr̂ · ∇C = −A(r̂), u∗ = M(r̂)(I − r̂r̂) · ∇xC (2.1a,b)

with C(x, t) the local solute concentration and Dc its diffusivity, A(r̂) and M(r̂) are the
(spatially dependent) surface activity and mobility of the particle and r̂ the unit normal at
the particle’s surface.

In a three-dimensional space Ψ is a function of six independent variables, namely
three spatial coordinates, two angles and time, making it unpractical for numerical time
marching. In order to gain a relevant physical insight into the dynamics of the confined
suspension and reduce the computational cost, we focus here on a two-dimensional (2-D)
case (all quantities are invariant in the x direction), counting four independent variables,
namely two spatial coordinates x = ( y, z), the orientation θ of the particles’ director
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z = +1

z = –1
y = 0

ey

ez

p
UP (z)

θ

Figure 1. Channel geometry, imposed flow and frame of reference.

p = (cos θ, sin θ) and time t. Such a 2-D approximation is often made to solve continuum
models describing active matter numerically, and it is consistently found to provide a
qualitatively accurate description of the systems’ dynamics (Saintillan & Shelley 2008;
Lushi et al. 2012; Gao et al. 2017; Lushi et al. 2018).

The evolution of the suspension then follows a Smoluchowski equation (expressing the
conservation of the particles in space and orientation)

∂Ψ

∂t
= −∇x · (Ψ ẋ) − ∇p · (Ψ ṗ), (2.2)

where ∇x denotes the spatial gradient. The operator ∇p denotes the gradient operator with
respect to the swimmers’ orientation, and its application on a scalar field f (p) and a vector
field a(p) amounts respectively to

∇pf = ∂f
∂θ

eθ and ∇p · a = ∂

∂θ
(a · eθ ), (2.3a,b)

where eθ is the unit vector defined as eθ = ∂p/∂θ = (− sin θ, cos θ).
The probability fluxes ẋ and ṗ in (2.2) are obtained from the deterministic velocities

of an individual particle of orientation p located at x, in response to its own activity and
to the hydrodynamic and phoretic mean fields, u(x, t) and C(x, t), generated by the outer
flow and other particles in its vicinity. Those read

ẋ = U0p + u + χt∇xC − Dx∇x[ln(Ψ )], (2.4)

ṗ = 1
2
ω × p + χr(p × ∇xC) × p − Dp∇p[ln(Ψ )], (2.5)

where ω = ∇x × u is the vorticity vector. The translational and rotational velocities in
(2.4) and (2.5) are thus obtained by superimposing linearly (i) the intrinsic self-propulsion
of the particles (there is no rotation for axisymmetric Janus particles), (ii) the
hydrodynamic drift obtained from the hydrodynamic mean field using Faxen’s laws, (iii)
the chemical drift and rotation induced by a locally uniform gradient of concentration and
(iv) the particles’ diffusion. Note that, for a hemispheric Janus particle, the phoretic drift
is purely along ∇C, i.e. the component along p vanishes (Kanso & Michelin 2019).

Because we consider here the specific case of spherical half-coated JPs, the
physico-chemical properties of the colloids’ surface, namely their mobility M and activity
A, are considered uniform on each hemisphere, respectively denoted (Af , Mf ) in the front
and (Ab, Mb) in the back. For brevity, we also define A± = Ab ± Af , the total activity
(+) and activity contrast (−), respectively, with similar definitions for the mobility.

943 A21-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.366


T. Traverso and S. Michelin

The particle self-propulsion and drift properties can be obtained explicitly in terms of
these characteristics as (see Appendix A and Traverso & Michelin 2020)

U0 = A−M+

8Dc
, χt = −M+

2
, χr = 9

16
M−

R
. (2.6a–c)

At such microscopic scales, inertia plays a negligible role, so that the hydrodynamic
problem is governed by the incompressible Stokes equations for the fluid’s velocity u
and pressure q, and is forced (i) by the hydrodynamic active stresses S(x, t) generated
collectively by the JPs, and (ii) by an imposed pressure gradient along the streamwise
direction f P = fyey. As a result

∇x · u = 0, (2.7)

−η∇2
xu + ∇xq = ∇x · S + f P, (2.8)

with η the viscosity of the surrounding Newtonian fluid where the velocity field is subject
to a no-slip boundary condition at the walls

u = 0, at z = ±H. (2.9)

Following Saintillan & Shelley (2008), the active stress produced by the swimmers at
a given location, S(x, t), is obtained by performing orientational averages of the stresslet
produced by a particle oriented along p, Ŝ(x, p, t), namely

S(x, t) = 〈Ŝ(x, p, t)〉, where 〈•〉 ≡
∫

S
•Ψ dp. (2.10)

As for the particle’s velocities, the stresslet associated with a phoretic particle can
be computed from the mobility and activity distributions on its surface and can be
decomposed into two different parts Ŝ = Ŝs + Ŝe, namely (i) the self-induced stresslet
Ŝs corresponding to the phoretic response of the particle to its own activity, and (ii) the
externally induced stresslet Ŝe corresponding to its phoretic response to an external solute
gradient G (see Appendix A and Traverso & Michelin 2020)

Ŝe = α̂e
[
Gp + pG + (G · p)(pp − I)

]
, Ŝs = α̂s

(
pp − I

3

)
, (2.11a,b)

where

α̂s = −10πκηR2M−A−

Dc
, α̂e = 15

8
πηR2M−, (2.12a,b)

with κ = 0.0872 a numerical constant. Stresslets are traceless tensors; for the present 2-D
implementation (where I : I = 2), the previous definitions must be adapted as

Ŝe = α̂e

[
Gp + pG + (G · p)

(
pp − 3I

2

)]
, Ŝs = α̂s

(
pp − I

2

)
. (2.13a,b)

At the suspension scale, the chemical concentration field C(x, t) is governed by the
advection–diffusion equation

∂C
∂t

+ u · ∇xC = Dc∇2
xC − β1C + 2πR2A+Φ, (2.14)

which includes a relaxation term and a source term. The former is proportional to β1,
which should be interpreted as a measure of the finite-time intrinsic relaxation rate of
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Dynamics and rheology of confined phoretic suspension

the chemical system toward its background equilibrium, i.e. in the absence of or far from
all active particles. Without loss of generality, the swimmers are considered net chemical
sources (A+ > 0) and the source term is proportional to the local density of particles

Φ(x, t) = 〈1〉. (2.15)

In the dilute limit, we only need to account for the dominant influence of the particles at
large distances, and thus neglect the subdominant contribution of the dipolar chemical field
due to the anisotropic surface activity (A− /= 0). The walls of the channels are chemically
inert, therefore

∂C
∂z

= 0, at z = ±H. (2.16)

Finally, particles cannot penetrate the channel walls so that the normal component ez · ẋ
of the fluxes in (2.4) must vanish at the wall (Ezhilan & Saintillan 2015) providing the
boundary condition on the distribution function Ψ

(
U0 sin θ + χt

∂C
∂z

)
Ψ = dx

∂Ψ

∂z
, at z = ±H. (2.17)

2.2. Non-dimensional equations
The governing equations are made dimensionless using H and H2/Dc, i.e. the half-width
of the channel and solute diffusion time across it, as characteristic length and time,
respectively. The streamwise period of the channel now reads, in dimensionless form, as
the aspect ratio A = L/H, and the fluid domain of interest is now defined as −A ≤ y < A
and −1 ≤ z ≤ 1. The reference concentration scale Cref = FHA+/Dc is obtained by
balancing the chemical production by the phoretic particles (nR2A+) and the diffusive
flux at the suspension level (DcCref /H2). The dimensionless parameter F = nR2H is a
measure of the spatial confinement of the suspension and is obtained as the ratio of the
half-channel width and of the intrinsic length scale of the suspension (nR2)−1 introduced
by Saintillan & Shelley (2008).

Upon normalising Ψ by the conserved mean number density n, which is defined as

n = 1
4LH

∫ H

−H
dz

∫ L

−L
dy

∫
S

dpΨ (x, p, t), (2.18)

equation (2.2) remains unchanged, with fluxes now given in non-dimensional form by

ẋ = u0

F
p + u + ξt∇xC − dx∇x[ln(Ψ )], (2.19)

ṗ = 1
2
ω × p + ξr

ρ
(p × ∇xC) × p − dp∇p[ln(Ψ )], (2.20)

where ρ = R/H is the non-dimensional particle radius and dx = Dx/Dc and
dp = DpH2/Dc are the reduced particle diffusion coefficients. The non-dimensional
self-propulsion and chemically induced drifts are obtained from the dimensional
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properties of the particles as

u0 = M+A−H2nR2

8D2
c

, ξt = −M+A+H2nR2

2D2
c

, ξr = 9M−A+H2nR2

16D2
c

. (2.21a–c)

Accounting for the no-flux boundary condition on the chemical field, (2.16), the
boundary condition for the distribution function becomes

u0

F
sin θ Ψ = Dx

∂Ψ

∂z
, at z = ±1. (2.22)

Using ηDc/H3 as the characteristic pressure gradient, the non-dimensional Stokes
equations are obtained as

∇x · u = 0, (2.23)

−∇2
xu + ∇xq = ∇x · S + f P, (2.24)

with the non-dimensional stresslets defined as

αs = −πκ
640

9
ξru0

ξt
, and αe = 30

9
πξrF. (2.25a,b)

The imposed non-dimensional pressure gradient f P = −γwey produces the Poiseuille
background flow given by

UP(z) = −γw

2
(1 − z2), (2.26)

where γw represents the maximum non-dimensional velocity gradient at the upper wall
(z = 1) and will be used as a relative measure of the background flow intensity. Finally,
the non-dimensional concentration equation becomes

∂C
∂t

+ u · ∇xC = ∇2
x C − βC + 2πΦ, (2.27)

where β−1/2 = l∗/H is the reduced screening length l∗ = √
Dc/β1 emerging from the

finite-time relaxation of the chemical system toward its equilibrium state in the absence of
particles.

2.3. Numerical solution
In the following, we solve the complete nonlinear dynamics of the system numerically
by marching in time (2.2), (2.24) and (2.27) for the particle distribution Ψ , velocity field
u and solute concentration C. The approach followed here is pseudo-spectral and uses a
Chebyshev representation in the cross-channel direction (z, using Nz modes) and a Fourier
representation in the periodic directions, y and θ using Ny and Nθ modes, respectively.
Convergence of the results was tested by performing simulations at increasing spectral
resolution (up to Ny = Nz = 128, Nθ = 32), and the values Ny = Nz = 64 and Nθ = 32
are chosen to perform all the simulations reported here.

The time-dependent variables Ψ and C are marched in time using a semi-implicit
Crank–Nicholson scheme in spectral space. For each Fourier mode in y and θ , the
boundary conditions (2.16) and (2.22) couple all the Chebyshev modes in z. Thus, by
treating diffusion terms implicitly and nonlinear terms explicitly, time marching requires
the solution of NyNθ /4 1-D Helmholtz equations at every time step. This is done using the
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Chebyshev tau-method on a Gauss–Lobatto grid, as described in Tuckerman (1989). The
Stokes equations (2.24) are solved using the influence-matrix method proposed by Kleiser
& Schumann (1980), which ensures locally the conservation of mass to machine precision,
thus avoiding sources and sinks of advected probability. Finally, to avoid the coupling of
the θ -Fourier modes with the Chebyshev modes, at a given time t = tn, the value of the
(nonlinear) left-hand side in the boundary condition (2.22) is treated as a known term and
guessed using a shooting method, making (2.22) a linear Neumann condition for Ψ . This
requires us to iterate the solution of the whole system of equations at each time step until
convergence (typically three to five iterations per time step), an approach that was found to
ensure fluctuations of the O(1) mean probability around its theoretical (conserved) value
to be O(10−7) or less.

The initial particle distribution Ψ (x, p, t0) = 1/(2π) + εΨ ′(x, p) is generated by
adding small random perturbations to a uniform and isotropic distribution Ψ̄ = 1/(2π).
The initial chemical concentration C(x, t0) is chosen as the purely diffusive steady state
solution of (2.27) for the initial particle density considered, Φ(x, t0).

2.4. Parameter selection
The physical problem considered here is fully determined by fixing the non-dimensional
particle radius ρ, the particle properties (u0, ξr, ξt), the diffusion coefficients (dx, dp),
the chemical decay rate β and setting the degree of confinement to F = 1. We focus
throughout the rest of the paper on the effect of the background flow intensity (γw) on
an auto-chemotactic suspension. The values of the other parameters are chosen as follows.

Within such suspensions, particles acting as net sources of solute are effectively
attracted to each other due to the combined effect of positive chemical reorientation
(ξr/ρ = 1.25) and self-propulsion (u0 = 0.5). In addition, we consider in the following
repulsive chemically induced drift (ξt = −0.5) in order to isolate the effect of attraction
through chemical reorientation. Setting ξr/ρ and ξt to similar magnitudes as u0 results
in the particles’ passive drifts in a O(1) chemical gradient being of the same order as
their intrinsic propulsion speed; this reflects the theoretical expectation that a collective
dynamics develops when the motion due to inter-particle interactions is comparable
to that due to self-propulsion (Traverso & Michelin 2020). These values correspond
to dilute suspensions (O(10−2) volume fraction) of JPs of colloidal size (R ∼ 10−6m),
and small solute molecules (Dc ∼ 10−9 m2 s−1). These estimates further result in the
stresslet intensities αs = −0.7305 (pusher-type swimmer) and αe = 0.3927, see (2.25a,b).
For micron-sized spherical particles, typical rotational diffusion can be estimated using
Einstein’s relation, Dp = kBT/(8πηR3) ∼ 10−1 m2 s−1, yielding dp = DpH2/Dc = 0.25.
For self-propelled colloids, their effective translational diffusion (i.e. at large time scales
compared with the duration of a ballistic run) can be estimated by Dx = kBT/(6πηR) +
U2

0D−1
p /2 ∼ 10−11 m2 s−1 (Howse et al. 2007), giving dx = Dx/Dc = 0.025. Finally, the

reduced chemical decay rate is set to β = π/2, which yields a screening length for the
chemical decay of the same order as the channel width. This choice allows particles to
interact chemically across the entire channel.

3. Response of the suspension to the background flow intensity

3.1. Overview of the system’s dynamics
The overall dynamics of the anti-chemotactic suspension is summarised in figure 2 for
increasing background flow γw. For all flow intensities, starting from the initial state (a
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Figure 2. Overview of the suspension’s evolution in time for increasing background flow intensity, γw. For
each flow regime, the particle density distribution Φ is represented as the system evolves from the initial state
(left) to a possibly unstable 1-D fixed point (centre left). Stable (green) and unstable (red) 1-D fixed points are
identified and, for the latter, typical snapshots of the transient dynamics are presented (centre right), leading to
the corresponding long-term solutions (right).

small perturbation of an isotropic suspension) and after a short transient regime, the system
rapidly approaches a 1-D fixed point of the system, where all fields are uniform in the
streamwise (y) direction. Depending on the background flow intensity γw, this 1-D fixed
point may, however, be either stable or unstable with respect to streamwise perturbations.
Furthermore, for weak enough background flows (γw < 2.1), two families of fixed points
coexist and may be observed: one is symmetric with the channel’s centre line, while the
other breaks the top–down symmetry of the problem. The selection of the intermediate
1-D fixed point, and therefore the initial transient dynamics, are strongly dependent on
the particular choice of initial conditions – the long-term dynamics of the system is,
however, independent of these initial conditions and depends solely on the intensity of
the background flow. The fact that these transient regimes are indeed 1-D fixed point
solutions was numerically checked by solving the 1-D problem (i.e. setting ∂/∂y = 0
achieved in practice by computing only one Fourier mode in the streamwise direction)
and then marching the system to a steady state. We also remark that the long term solution
of the system is not affected by the initial conditions and depends solely on the intensity
of the background flow γw.

When the 1-D fixed point is unstable with respect to streamwise perturbations, it appears
only transiently, and, after a phase of exponential growth and saturation of the unstable
modes, the solution converges toward a new y-dependent stable configuration, referred to
in the following as the long-term solution.
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If, instead, the 1-D equilibrium is stable with respect to streamwise perturbations,
the system does not evolve away from it: the final state is stationary and uniform
along the streamwise direction. The nature of the final state depends on the background
flow intensity: we thus propose a classification of the different regimes based on the
properties of the long-term solution. In the following, we characterise symmetric and
asymmetric regimes based on the symmetry (or absence thereof) of the long-term solution
with respect to the centreline of the channel (y = 0). We also label these regimes as
one- or two-dimensional, depending on whether the long-term solution is y-uniform
(one-dimensional) or y-non-uniform (two-dimensional). As γw is increased progressively
from zero, five regimes can be distinguished based on such features as qualitatively
depicted in figure 2(last column on the right):

(a) No-flow regime (γw = 0): the symmetric and asymmetric 1-D fixed points are both
unstable and the final state is two-dimensional and symmetric.

(b) Weak-flow regime (0 ≤ γw < 0.5): the symmetric and asymmetric 1-D fixed
points are both unstable and the final state is two-dimensional and asymmetric.

(c) Moderate-flow regime (0.5 ≤ γw < 2.1): the symmetric 1-D fixed point is a
transient state (unstable) and the system converges at long times to the asymmetric
1-D equilibrium, which is stable.

(d) Strong-flow regime (2.1 ≤ γw < 4): only the symmetric 1-D fixed point exists,
and it is unstable; the final state is two-dimensional and symmetric.

(e) Flow-dominated regime (γw ≥ 4): the symmetric 1-D fixed point is stable and
coincides with the final state.

In the detailed discussion of each of these regimes, the dynamics of the suspension
will be shown to result from the competition of chemical interactions between particles
(autochemotaxis) and background flow reorientation. We thus anticipate that in regime
(a) chemical reorientation of the particle (autochemotaxis) dominates, while in regime (e)
the shear-induced reorientation and flow-induced drift of the particles will be dominant.
Regimes (b), (c) and (d) result from a complex interplay between these effects. Note that
the values of γw defining the boundaries between regions (a), (b), (c) and (d) are obtained
by performing numerical time-marching simulations and are determined numerically with
a typical uncertainty �γw = ±0.1.

The present study focuses specifically on the effect of shear, comparing the dynamics
resulting from the entire range of shear intensity γw. As a result, a fixed degree of
confinement is considered throughout the analysis, F = 1. A detailed analysis of the effect
of F is beyond the scope of the present study; nevertheless, preliminary results (unreported
here) show that reducing the degree of confinement (F > 1) progressively weakens the
wave-guide effects of the walls and is associated with a gradual transition towards a
bulk-like dynamics, F � 1, where particle aggregates emerge far from the walls in the
form of circular asters (Traverso & Michelin 2020).

3.2. A first note on the symmetric fixed point
The initial dynamics of the suspension is characterised by a rapid relaxation toward the
symmetric 1-D equilibrium point; this relaxation typically occurs over a O(t̃0) time,
with t̃0 = F/u0 the (non-dimensional) time taken by a particle to swim across the
channel. Direct relaxation toward the asymmetric fixed point requires a marked top-bottom
asymmetry of the initial condition. The characteristics of this asymmetric state are further
discussed in § 3.5.
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Figure 3. One-dimensional fixed point solution (i.e. uniform in the streamwise direction) obtained at early
times (t = 40) for weak (γw = 0.25) and strong (γw = 2.5) imposed flow.

Similarly to chemically passive suspensions, and even in the absence of flow, the
symmetric 1-D fixed point is characterised by a wall-normal polarisation of the swimmers
induced by the impenetrability of the boundary. The corresponding boundary condition
on Ψ , (2.22), induces a selection in the orientation of the self-propelled particles near the
walls (Ezhilan & Saintillan 2015). The wall-normal polarisation and accumulation can be
understood rather intuitively: particles pointing away from a wall will progressively swim
toward the opposite side of the channel, while particles oriented toward the boundary
will remain trapped for a time proportional to the characteristic time scale of rotational
diffusion.

In the absence of any flow and for a fixed channel width, the thickness of the resulting
polarisation/accumulation boundary layer is inversely proportional to the self-propulsion
velocity, and proportional to the swimmers’ rotational and translational diffusion (Ezhilan
& Saintillan 2015). When a background shear flow is imposed, the local vorticity induces a
rotation of the particles (Faxen’s law) which is largest near the walls. In Poiseuille flow, this
rotation results in upstream swimming and reduces the component of swimming toward
the walls and consequent wall accumulation. These effects can be seen in figure 3 by noting
ny < 0 and comparing the peaks of Φ and nz at z = ±1 for increasing γw, respectively,
where n is the local polarisation defined as

n(x, t) = (ny, nz) = 〈p〉, (3.1)

whose direction indicates the local expected orientation of the particles.
For weak and moderate flows (γw < 2.1), however, the wall accumulation remains

significant and, consequently, the chemical concentration generated by the particles has
a marked V-shape (figure 3). The associated chemical gradient induces the reorientation
of the chemotactic JPs (ξr > 0) towards the upper (respectively lower) wall in the upper
(respectively lower) half of the channel, i.e. nz > 0 (respectively nz < 0) even far from
the boundaries, where the effect of confinement is still not markedly perceived. This
results in the depletion of particles around the channel’s axis (figures 3 and 4, top). It
should be noted that this centreline depletion and reinforced wall accumulation here have
a chemotactic origin and therefore differ from the shear-trapping mechanism observed for
elongated swimmers (Rusconi et al. 2014; Bearon & Hazel 2015; Ezhilan & Saintillan
2015; Vennamneni, Nambiar & Subramanian 2020).
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Figure 4. No-flow regime γw = 0: (a,b, t = 230) initial linear growth of the 2-D unstable modes from the
unstable 1-D equilibrium; (c,d, t = 1300) final state. In each case, the particle density Φ is reported in panels
(a,c), and the chemical concentration C together with the polarisation vector n (black arrows) in panels (b,d).

3.3. No imposed flow: symmetric wall particle aggregates
In order to better understand the effect of the background flow on the suspension, we first
analyse here its dynamics in the absence of flow (γw = 0), a regime where both symmetric
and asymmetric 1-D equilibrium states exist but are unstable, and are thus only observed
transiently (figure 2a).

Autochemotactic suspensions are characterised by swimmers that modify their chemical
environment and reorient in response to the perturbations produced by others. If the
orientation bias is in the direction of the source of the perturbation, i.e. another swimmer,
then aggregates of swimmers can form. This type of collective behaviour is observed
in suspensions of living microorganisms that react to chemical cues secreted by their
counterparts by modifying their tumbling rate, resulting in their biased orientation at the
time scale of the collective dynamics (Budrene & Berg 1991; Lushi et al. 2012). Exploiting
their front–back mobility contrast (M− > 0), the autophoretic JPs considered here reorient
along the chemical gradient generated by other particles, which act as chemical sources
(A+ > 0) (Liebchen et al. 2015; Traverso & Michelin 2020), see (2.21a–c), resulting in a
similar collective dynamics.

Figure 4 reports the particle density Φ(x, t) and chemical concentration C(x, t) at
the onset of the instability of the symmetric 1-D fixed point (top) and at large times
(bottom) when no background flow is present (γw = 0). The y-uniform boundary layer
along the walls starts to self-organise into aggregates of particles separated by relative
depletion regions. This self-organisation process stems from the autochemotactic nature
of the swimmers (ξr > 0) which communicate chemically in the streamwise direction;
this is already witnessed at the onset of the instability in the alignment of n with the local
chemical field C, figure 4.

At large times, the aggregation process saturates and aggregates of particles located
near the same wall merge. The final state in figure 4(bottom) results from the balance of
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Figure 5. Weak-flow regime γw = 0.25: (a,b, t = 510) initial linear growth of the 2-D unstable modes from
the unstable 1-D equilibrium and simultaneous top–down symmetry breaking; (c,d, t = 1400) final state. In
each case, the particle density Φ is reported in panels (a,c), and the chemical concentration C together with the
polarisation vector n (black arrows) in panels (b,d).

(i) autochemotactic fluxes, (ii) wall-normal polarisation and accumulation, (iii) phoretic
repulsion (ξt < 0) and (iv) translational/rotational diffusion of the particles.

We finally note the left–right symmetry of the final state, as there is no special direction
along the y-axis in the absence of imposed flow.

3.4. Weak imposed flow: asymmetric wall particle aggregates
To characterise the response of the particles to a weak imposed flow, we focus in this
section on the suspension dynamics for γw = 0.25. Here again, both symmetric and
asymmetric 1-D fixed points are unstable and thus only observed transiently (figure 2b).

At early times, the transient dynamics is very similar to that found in the no-flow
case, and the system’s behaviour is nearly indistinguishable from that observed in
figure 4(top), a sign that, for weak flow, the effect of chemical reorientation dominates
the shear-induced rotation even in the high-shear region near the walls. Yet, as discussed
in § 3.2, the presence of the background flow field reduces the wall normal polarisation
and accumulation. This destabilises the symmetric solutions and, at later times (t = 510),
we observe the onset of a symmetry-breaking instability figure 5(a,b). At the same time,
aggregates located on the same side of the channel begin to merge, as in the case with no
flow. The final solution is characterised by an asymmetric 2-D state (figure 5c,d), which
represents an intermediate configuration between the wall aggregates observed for no flow,
and the y-uniform asymmetric state which will be observed at higher γw and discussed in
§ 3.5.

The flow-induced left–right asymmetry of the particle aggregates is clearly visible
in figure 5. When no flow is imposed, the horizontal polarisation, ny, is perfectly
antisymmetric with respect to a vertical axis cutting through the centre of an aggregate
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Figure 6. Moderate shear regime (γw = 1), long term y-uniform and y-asymmetric stable solution.

(see figure 4). The y-uniform background vorticity breaks this antisymmetry of ny, and
thus the left–right symmetry of Φ and C.

Finally, in contrast to γw = 0, the particles are also transported downstream by the
background flow and, at large times, the solution is observed to be steady in a moving
reference frame, and thus represents a travelling wave. The corresponding wave speed,
which increases with γw, is neither the maximum nor the average flow speed but instead
depends on the particle distribution within the channel.

3.5. Moderate imposed flow: asymmetric and stable 1-D fixed point
We now set γw = 1 to analyse the moderate-flow regime (figure 2c). The solution first
converges transiently to the (unstable) symmetric 1-D fixed point as for weaker flows.
In contrast to the previous regime, the most unstable mode is not two-dimensional but
is instead asymmetric and uniform in the y-direction. At large times the solution thus
converges to the stable asymmetric 1-D equilibrium (figure 6). Two boundary layers
near the walls retain the features of the symmetric state (§ 3.2), namely a wall-normal
polarisation (nz(−1) < 0 and nz(1) > 0) and a local increase in the particle density.

In this top–down symmetry-breaking instability, a small perturbation of the symmetric
state leads to an increase of chemical production by the JPs on one side of the channel.
Chemotactic swimmers then reorient in response to the chemical gradient by polarising
along the z-axis in the direction of the high concentration side, thus amplifying the initial
perturbation. The final asymmetric steady state is the result of the balance between the
flux due to self-propulsion, which can be visualised through the polarisation field pointing
downward across most of the channel, and the upward flux due to phoretic repulsion
(ξt < 0) induced by the chemical gradient (see nz and C in figure 6).

This mechanism does not involve the background flow and, consistently, the 1-D
asymmetric equilibrium is found also for γw = 0. The role of the flow, however, is to hinder
the formation of wall aggregates, thus stabilising the 1-D asymmetric state. Physically,
aggregates formation is triggered by chemical reorientation which cannot act fast enough
in comparison with vorticity-induced rotation near the walls, resulting in a misalignment
of the polarisation vector with respect to the local chemical gradient.

3.6. Strong imposed flow: fast-moving patterns
The strong-flow regime is observed for flow intensities in the range 2.1 ≤ γw < 4
(figure 2d). In that case, the 1-D fixed point is characterised by a higher particle density
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Figure 7. Strong-flow regime γw = 2.5: (a,b, t = 100) initial linear growth of the 2-D unstable modes from
the unstable 1-D equilibrium; (c,d, t = 600) final state. In each case, the particle density Φ is reported in panels
(a,c), and the chemical concentration C together with the polarisation vector n (black arrows) in panels (b,d).

near the centreline (figure 7): such particle trapping in the low-shear region of the channel
was already observed in suspensions of nearly spherical swimmers (Rusconi et al. 2014;
Barry et al. 2015). From this unstable fixed point, particles self-organise in regularly
spaced aggregates around the centre of the channel, in a process analogous to the one
experienced in the bulk (Traverso & Michelin 2020), although it is more pronounced
here in the centre of the channel, where the local background vorticity vanishes and
therefore does not interfere with the chemical reorientation of the particles, promoting
such chemotactic instability.

Eventually, the solution evolves toward a travelling wave characterised by alternating
aggregation and depletion regions organised in a checkerboard pattern around the
centreline and at the walls (see the particle distribution at t = 600 in figure 7): at a given
location along the channel, depletion regions at the centreline correspond to aggregation
at the walls, and vice versa. Such patterns move at a speed close to the maximum imposed
velocity of the background flow, UP(z = 0), indicating their driving by the particle and
solute organisation in the central low-shear region. This is in contrast to the travelling
wave observed at lower shear (§ 3.4), where the dynamics is dominated by the particle
aggregates near the walls and the travelling wave moves at a much lower speed compared
with the fluid velocity at the centreline.

The self-sustained existence of the moving patterns in figure 7 requires a mechanism
that continuously drives particles away from depletion regions and towards accumulation
regions at the centreline. Such a mechanism can be explained in terms of the combined
effects of autochemotaxis (chemical reorientation, ξr > 0), self-propulsion, background
vorticity (hydrodynamic rotation) and confinement; its saturation is reached due to the
effect of particle diffusion and phoretic repulsion (ξt < 0). This dynamics is better
understood by considering the individual trajectories of particles leaving a centreline

943 A21-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.366


Dynamics and rheology of confined phoretic suspension

UP(Z)
(i)

(ii)

(iii)

Fast moving-low shear

Slow moving-high shear

Figure 8. Schematics of the mechanism leading to moving patterns in the strong-flow regime (see figure 7,
only the bottom half of the channel is depicted here).

depletion region along one of the three following directions: (i) anti-parallel and (ii)
parallel to the flow direction and (iii) towards the wall (figure 8).

Given the small local vorticity, particles (i) and (ii) are able to reorient in the local
chemical gradient (green circular arrows). Their trajectories remain in the fast-moving
low-shear region leading towards the aggregation regions at the back and front of
the depletion regions, respectively. Particle (iii) initially swims downward towards the
slow-moving high-shear region, where the vorticity increases and the intensity of the
flow gets weaker as UP(±1) = 0. The orientation of the particle here is determined by
the hydrodynamic clockwise rotation (white circular arrows) which is balanced by the
chemically induced rotation (green circular arrow). This mechanism, together with the fact
that particles cannot penetrate the wall, produces the high-density regions near the walls.
Particle (iii) is now in the slow-moving region near the wall and, from the point of view of
the moving patterns near the centreline, thus travels upstream (white dotted arrow). This
relative motion brings particle (iii) in a position where the chemical reorientation induced
by the centreline pattern and the background vorticity both act in the same direction,
directing the particle back upward toward the moving high concentration region.

4. Effective rheology of the phoretic suspension

4.1. Particle-induced flow and effective viscosity
A remarkable feature of the analysis presented in the previous section is that understanding
the characteristics of the suspension dynamics did not involve the flow forcing exerted
by the particles. This suggests that hydrodynamic interactions between particles are
subdominant with respect to the leading-order effect of the vorticity-induced reorientation
by the imposed flow or the chemical alignment of the particles with the local solute
gradients.

Yet, during their swimming motion, phoretic particles exert stresses on the surrounding
fluid, and generate a modified flow field within the suspension that can alter the overall
fluid transport through the channel for a fixed forcing pressure gradient. In doing so,
the phoretic particles modify the effective rheology of the active suspension. More
specifically, using the linearity of Stokes equations, the volumetric flow rates associated
with the background and particle-induced flows are defined as

Q̇P =
∫ 1

−1
UP(z) dz, Q̇d(t) = ey ·

∫ 1

−1
ud( y∗, z, t) dz. (4.1a,b)
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The definition of Q̇d does not depend on the choice of −A ≤ y∗ ≤ A due to the
incompressibility of the fluid. The velocity ud = u − UP(z)ey is the particle-induced flow
field, i.e. the flow velocity generated by the particles’ forcing S in (2.24).

In the absence of particles, the classical Poiseuille law establishes that the driving
pressure gradient is proportional to ηQ̇P. Here, the pressure gradient driving the flow
is fixed, so that the effective (modified) viscosity of the suspension is such that ηQ̇P =
ηeff (Q̇P + Q̇d). In the following, we will characterise the rheology of the suspension
through the evolution of the relative viscosity

ηr = ηeff

η
= 1

1 + Q̇d/Q̇P
. (4.2)

For a fixed background pressure forcing, the effective viscosity of the suspension will
be smaller (larger) than the solvent’s if the particle-induced flow reinforces (respectively
opposes) the imposed flow rate. To understand and characterise this phenomenon, we now
specifically analyse the particle-induced flow field ud in the different regimes identified in
the previous section.

As detailed in Appendix A and in Traverso & Michelin (2020), the particle-induced
stress on the fluid has two origins: a self-induced contribution (Ss) corresponding to the
slip distribution on the particle surface resulting from the concentration field generated by
the particle itself (i.e. its stresslet if it was isolated chemically and hydrodynamically), and
a chemically induced contribution corresponding to the slip induced on a particle surface
by the chemical gradients generated by all the others (Se). Accordingly, following the
decomposition S = Ss + Se, and exploiting the linearity of Stokes equations, the resulting
particle-induced flow field and associated volumetric flow rate can also be split into two
parts

ud(x, t) = us + ue, Q̇d = Q̇s + Q̇e. (4.3a,b)

Before proceeding by examining the global relative viscosity ηr, we remark that other
approaches could be used. One is to look at local quantities by defining a particles’ shear
viscosity ηp(x), which is the constant of proportionality between the active stresses and
the strain rate of the fluid at a given location. In both approaches one needs the distribution
function to be at least anisotropic for the model to predict any effect at all, i.e. to avoid the
average active stresses cancelling out. Anisotropy of Ψ is not sufficient and, depending on
the form of S, certain orientational moments need be non-zero, e.g. 〈pp〉 for Ss and 〈p〉 for
Se.

In suspensions of elongated microorganisms, for example, a non-zero average active
stress can result from the preferred orientation of the swimmer in an imposed irrotational
flow with constant rate-of-strain tensor E = (∇u + ∇uT)/2 (Saintillan 2010). In contrast,
no shear alignment occurs for spherical particles, therefore an external flow field is
not sufficient to induce an anisotropic distribution. Here, confinement introduces a first
wall-normal preferential direction while the left–right symmetry is lost by imposing the
background (rotational) flow and, finally, a non-zero active contribution to the total flow
rate is predicted. As we will see, the y-component of the chemical gradient, which emerges
when the solution is not uniform in the streamwise direction, locally introduces a new
preferential direction with interesting consequences on the flow generated by the particles.

In the following, we analyse for each of the identified flow regimes in figure 2 the net
flow rate generated by the particles. In the no-flow regime, the suspension’s characteristics
are left–right symmetric (there is no imposed flow direction breaking the symmetry): the
net particle-induced volumetric flow rate is therefore trivially zero.
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Figure 9. Evolution of the particle-induced flow rate relative to the background flow rate, Q̇d/Q̇P (solid line)
and its self-induced (dashed blue) and externally induced (dashed green) components, for the weak-flow regime
(γw = 0.25). Insets: corresponding distribution of the particle density Φ in the three representative stages,
(a–c).

4.2. Weak-flow regime
We thus start by examining how the net flow rate is modified by the collective particle
dynamics described in § 3.4 in the weak-flow regime (γw = 0.25). Figure 9 illustrates the
temporal evolution of the particle-induced flow rate Q̇d and its two components, Q̇s and
Q̇e. Three successive plateaus are identified which correspond to the different phases of
the evolution of the suspension, and are illustrated by the corresponding contour plots of
the particle density.

Shortly after the beginning of the simulation and up to t ≈ 230 the solution is in
the symmetric 1-D fixed point (figure 9a). During this phase, Q̇s/Q̇P > 0: the net flow
rate is enhanced by the active self-induced particle stress. We note that the particles
considered here are pushers (αs < 0), and this result is therefore consistent with the
reduction in effective viscosity at low shear rate identified theoretically (Hatwalne et al.
2004; Saintillan 2010; Alonso-Matilla et al. 2016) and experimentally (Gachelin et al.
2013; López et al. 2015) for suspensions of elongated pushers.

In contrast, Q̇e/Q̇P < 0: the externally induced stress tends to hinder the background
flow, increasing the effective viscosity. Some observations to explain this result are in
order. For chemotactic particles ξr > 0 has two important consequences: (i) the sign of the
externally induced stresslet is positive, αe > 0, as both quantities depend on the mobility
contrast M−, see (2.21a–c) and (2.25a,b); (ii) particles tend to be positively aligned with
the local chemical gradient, G. Recalling the definition of Se, (2.11a,b), the hydrodynamic
signature of a particle directed along p and parallel to G is that of a puller swimmer
oriented in the same direction. Clearly, the generated flow field will create a net flow
in the opposite direction to the pusher-type self-induced flow (αs < 0). Such a tendency
of puller-like swimmers to increase the effective viscosity is in agreement with previous
experimental (Rafaï et al. 2010; McDonnell et al. 2015) and theoretical studies (Hatwalne
et al. 2004; Alonso-Matilla et al. 2016).

At t ≈ 230, the instability of the 1-D symmetric state can clearly be seen (figure 9b)
before the solution eventually reaches its 2-D final state (figure 9c and figure 5c,d).
Remarkably, during the transition from the 1-D fixed point (a), passing through (b), up
until the final state (c) the components of the active flow rate, Q̇s and Q̇e, first decrease in
magnitude and then change sign. This means that the chemically induced polarisation
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Figure 10. Streamlines of the disturbance flow generated by the particles, ud , for different background flow
intensities, γw, at large times; the colour bar refers to the particle density Φ: (a) γw = 0, t = 1300; (b) γw =
0.25, t = 1400; (c) γw = 2.5, t = 600.

and aggregation of the suspension (chemotactic instability) reverse the effect of each
component of the active stress tensor on the effective viscosity: the pusher contribution
now increases the viscosity (Q̇s < 0) while the puller-like contribution of the chemically
induced component reduces it (Q̇e > 0). To the best of our knowledge, this is the first
prediction of pusher- and puller-like hydrodynamic signatures increasing and decreasing
the effective viscosity, respectively, and results from the 2-D nature of the suspension
organisation (in contrast to the purely 1-D settings considered usually). Note that the total
particle-induced flow rate remains positive throughout the entire succession of dynamical
phases outlined above, corresponding to a net reduction in effective viscosity in the
weak-flow regime. This indicates the dominance of the chemically induced stresses in
the long-term 2-D dynamics, which were subdominant during the initial phase and whose
intensity depends on the local particle polarisation and chemical gradients.

The detailed particle-induced flow ud observed at large times is reported in figure 10.
For all flow intensities, the presence of aggregates at the walls induces counter-rotating
vortices at the two sides of the aggregates which are reminiscent of those found in other
confined active systems (Wioland et al. 2016; Shendruk et al. 2017). With no imposed flow
(figure 10a) all streamlines are closed: no net flow is induced, i.e. Q̇d = 0. Upon increasing
γw, recirculation regions gradually disappear (figure 10b), and open streamlines are found
as the background flow breaks the left–right symmetry in the particles distribution and
Q̇d /= 0.
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Figure 11. (a) Particle-induced flow rate in the moderate-flow regime (γw = 1). Evolution in time of
particle-induced flow rate relative to the imposed flow rate Q̇P (solid line), and its self-induced (Q̇s) and
externally induced (Q̇i) components (dashed lines). Representative particle density distributions are shown
for the two main phases of the simulations (insets). (b) Particle-induced flow profiles of us(z), ue(z) and ud(z)
in the intermediate-flow regime (γw = 1) at t = 300.

4.3. Moderate-flow regime
In the moderate-flow regime (0.5 ≤ γw < 2.1), the suspension’s characteristics (e.g.
particle and solute concentration) are uniform in the streamwise direction (figure 6) and so
is the particle-induced flow, ud = ud(z)ey. Its two components, us and ue, are observed to
respectively enhance and hinder the background flow (figure 11), which is consistent with
experimental observations and theoretical predictions for active suspensions in parallel
flows and the sign of the associated stresslet intensities, αs and αe. The effect on the
suspension viscosity of pusher or puller swimmers does not depend on the symmetry
property of the flow but are generic (i.e. they apply to both symmetric and asymmetric
configurations).

However, we note that Q̇s and Q̇e are both reduced in magnitude when the solution
becomes asymmetric around t = 100 (figure 11a). In the symmetric state, the local
chemical gradient is always pointing towards the nearest wall and its relative orientation
with respect to the (anti-symmetric) background vorticity is the same throughout the
channel. This does not hold any more as the top–down symmetry is broken: in part of the
upper half of the channel, the chemical gradient is pointing downward, which reduces both
us and ui in that region, and moves their maxima in the region z < 0 (figure 11b). Finally,
unlike in the weak-flow case, the self-induced component is now dominant and the overall
effect is still to enhance the background flow and therefore to reduce the apparent viscosity
of the active fluid, as can be seen from the positive sign of Q̇d in figure 11.

4.4. Strong-flow regime
In the strong-flow regime, the long-term solution is characterised by fast-moving
aggregates. Similarly to the no-flow and weak-flow cases, the formation of aggregates near
the walls produces recirculating regions (figure 10c). As the patterns emerge, a reduction
of both Q̇s and Q̇e is visible in figure 12, an effect that can be explained in total analogy
with the weak-flow case. However, the sign of neither of them is reversed due to the
strong background vorticity, whose effects dominates and, qualitatively, the effect of the
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Figure 12. Particle-induced flow in the strong-flow regime (γw = 2.5). Evolution in time of the
particle-induced flow rate relative to the imposed flow rate Q̇P (solid line), and its self-induced (Q̇s) and
externally induced (Q̇e) components (dashed lines). Representative particle density distributions are shown
for the two main phases of the simulations (inset).
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Figure 13. Evolution of the viscosity ηr, (4.2) with the intensity of the background flow as measured at large
times, when the solution is either time invariant, region (c), or a travelling wave, regions (b,d) (see figure 2).

pusher and puller stresses on the total flow remain the same as in the streamwise-uniform
configuration.

4.5. Remarks on the effects of the disturbance flow
As suggested by the numerical simulations (and confirmed in the subsequent analysis of
the reduced model of § 5 where ud is neglected), the effect of the particle-induced flow on
the suspension’s organisation is qualitatively negligible. However, ud impacts significantly
the long-term effective viscosity ηr, whose variations with γw are displayed in figure 13,
together with that obtained by accounting exclusively for self-induced stresses (ηr,s) or
externally induced ones (ηr,e). Note that these do not contribute additively to ηr, see (4.2).

Above a certain flow strength (here, γw ≈ 3) ηr ≈ 1, showing that the particle’s
hydrodynamic forcing is negligible and the background shear stress dominates. In this
regime, the passive stress due to the inextensibility of the particles (which is not considered
here) is also expected to be important and to increase the effective viscosity for pusher and
puller suspensions regardless of the particles’ shape (Krieger & Dougherty 1959; López
et al. 2015; McDonnell et al. 2015; Rafaï et al. 2010; Alonso-Matilla et al. 2016).
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We therefore focus our attention on the active contributions to the effective viscosity
at lower flow strengths, namely in regions (b,c) of figure 13. In region (c), the puller-like
contribution to the viscosity, ηr,e, contributes positively to ηr, resulting into a decrease of
ηr,e with γw (shear-thinning region), in line with previous studies on pullers (Rafaï et al.
2010; Alonso-Matilla et al. 2016). The trend is reversed in region (b), for weak flows. Here,
starting at γw = 0.1, ηr,e increases with γw resulting in a shear-thickening region. This
behaviour is associated with the 2-D dynamics of the suspension and linked to the local
appearance of a new preferential direction (other than the wall-normal direction and the
flow direction), represented by the chemical gradient. The same behaviour, in a specular
way, occurs to the pusher contribution, ηr,s, which goes from promoting shear thinning for
weak flows, region (b), to promoting shear thickening for intermediate flows, region (c).

The overall contribution ηr is always negative but the shape of the curve ηr(γw)

might qualitatively change depending on the relative magnitude of the two opposite
contributions, ηr,s and ηr,e. The sign of ηr,s and ηr,e, instead, depends on the relative
importance between chemical reorientation and rotation by the flow, which always varies
smoothly from flow dominated to chemically dominated below some non-vanishing value
of γw. For this reason, the shapes of the curves of ηr,s and ηr,e against γw are expected to
be robust, at least qualitatively, representing one of the main contributions of this work.

Finally, we stress the generality of the present results, beyond the particular case of Janus
phoretic particles: the sign reversal of the puller and pusher footprints on the viscosity
is indeed relevant to all suspensions of microswimmers prone to exhibit a chemotactic
dynamics even if characterised by only one hydrodynamic signature. In other words, the
curves of ηr,s and ηr,e in figure 13 can be seen as independent (qualitative) prediction of
ηr for suspensions of autochemotactic pusher and puller microorganisms, respectively.

5. Reduced-order model

We noted earlier that understanding the suspension’s organisation does not require
accounting for interparticle hydrodynamic interactions. This was further confirmed by
setting αs and αe artificially to zero in the full kinetic model (i.e. forcing ud = 0): the
solution was found to be quantitatively similar to that obtained with αs, αe /= 0 for all
values of γw. This observation is true for a sufficiently high degree of confinement
(F = 1), and ceases to hold for higher values of F, as confirmed by few preliminary results
mentioned in § 3.1.

In order to identify the fundamental underlying physical ingredients of the suspension’s
organisation, we propose here a reduced model of a phoretic suspension based on a
two-moment expansion of the probability distribution Ψ (x, p, t), effectively describing
the system in terms of the local particle density Φ and polarisation n.

5.1. Derivation of the two-moment system
In the following, we approximate Ψ (x, p, t) by its truncated moment expansion in p in
terms of its zeroth and first orientational moments, Φ(x, t) and n(x, t), yielding

Ψ (z, p) = 1
2π

Φ + 1
π

p · n. (5.1)

The evolution equations for the first two-moment intensities, Φ and n = (ny, nz), are
obtained by taking the first two orientational moments of the Smoluchowski equation (2.2).
Understanding the dynamics discussed in § 3 does not require us to take into account the
disturbance flow induced by the particles, which suggests that a reduced model can be
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derived considering only the effect of the background flow, thereby reducing the system’s
complexity significantly as the flow is now completely imposed u = (UP(z), 0). The
evolution equations of Φ and n are then obtained as

∂Φ

∂t
+ u · ∇Φ = −u0

F
∇ · n − ξt

(
∇C · ∇Φ + Φ∇2C

)
+ dx∇2Φ, (5.2)

∂n
∂t

+ u · (∇n · ey
) = − u0

2F
∇Φ − ξt

[
∇C · (∇n)T + n∇2C

]
+ ξrΦ

2ρ
∇C

+ dx∇ · (∇n)T − dpn + z
γw

2
n · (

ezey − eyez
)
, (5.3)

subject to the boundary conditions at z = ±1

u0nz

F
= dx

∂Φ

∂z
,

∂ny

∂z
= 0,

u0Φ

2F
= dx

∂nz

∂z
. (5.4a–c)

Equations (5.2)–(5.4a–c) together with (2.27) and (2.16) for the chemical concentration
form a closed system of partial differential equations, referred to in the following as the
two-moment system or reduced model. Using (5.1) to derive the system (5.2)–(5.4a–c)
from (2.2) implies approximating the next (second) orientational moment as

D(x, t) =
〈
pp − I

2

〉
≈ ΦI

2
. (5.5)

Similar closure schemes based on a truncated expansion on the basis of spherical
harmonics are commonly used for analysis or simulations of active suspensions (Baskaran
& Marchetti 2009; Brotto et al. 2013; Saintillan & Shelley 2013; Ezhilan & Saintillan 2015;
Alonso-Matilla et al. 2016; Theillard & Saintillan 2019). The truncation point, however, is
commonly at the third mode (second moment) or after, which is necessary to compute the
self-induced active stress as Ss ∼ D. Moreover, D is also required to study the evolution of
the orientational distribution of elongated particles through Jeffrey’s equation. Including
the second moment is therefore necessary, for example, to study the hydrodynamic
instability emerging in suspensions of elongated pushers (Theillard & Saintillan 2019) or
the rheological properties of active suspensions under externally imposed flow (Hatwalne
et al. 2004; Saintillan 2010). In contrast, for a chemotactic suspension of spherical
autophoretic swimmers, the leading-order interaction routes of the particles with each
other and with the background flow are captured already at the polarisation level. Indeed,
in our dilute model the chemical field generated by the swimmers is a function of Φ

only, see (2.27). Similarly the translational drift induced by the chemical gradient, ξt∇xC,
and that induced by the flow field through Faxen’s law do not depend on the particle’s
orientation and therefore influence the evolution of the particle density regardless of the
local polarisation, see (5.2). The self-propulsion velocity, u0p, as well as the vorticity- and
chemically induced rotations, ω/2 × p and (ξr/ρ)(p × ∇xC) × p, depend on the particle’s
orientation and therefore the first orientational moment needs to be included to capture
their effects. In turn, these terms associated with the rotational motion of the particles,
which naturally are present in the equations for n, (5.3), enter the equation for the particle
density Φ only in the presence of self-propulsion and with non-zero polarisation density n
(see the first term on the right-hand side of (5.2)). To conclude, by using (5.1) and (5.5) we
can account for the leading-order particle interactions discussed in § 3 in a minimal way.

943 A21-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.366


Dynamics and rheology of confined phoretic suspension

Φ(z)

0 1 2 3

z

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

C(z)

3 4 5

ny(z)

–1 0 1

nz(z)

–2 0 2

(a) (b) (c) (d)

Figure 14. Symmetric and asymmetric 1-D fixed points of the two-moment system for γw = 1.8 for a
chemotactic suspensions (the values of the other parameters match that of the full numerical simulations
reported in the previous sections).

5.2. One-dimensional equilibria of the two-moment system
We first analyse the existence of steady 1-D (i.e. y-invariant) solutions by marching in time
the 1-D version of the reduced model described above (i.e. considering ∂/∂y = 0 for all the
solution components) until a steady state is reached (see figure 14). Remarkably, we find
that one symmetric and one asymmetric steady state coexist when the background flow is
weak enough (γw < 1.9), in agreement with the numerical simulations of the full model
which predicted the coexistence of these states for γw < 2.1. Furthermore, the comparison
of figures 14 and 6 shows that the asymmetric 1-D fixed point of the reduced model retains
the qualitative features of its counterpart in the full model, in particular the establishment
of a nearly uniform wall-normal chemical gradient and particle polarisation across most
of the channel width, that drive two competing effects, namely a chemotactic migration
toward the chemically rich wall and a phoretic drift toward the chemically depleted one,
the former effect being dominant.

5.3. Stability analysis of the two-moment system
In this section we analyse the stability of this 1-D fixed point with respect to streamwise
perturbations

Φ = Φ0(z) + εΦ ′( y, z, t), n = n0(z) + εn′( y, z, t), C = C0(z) + εC′( y, z, t).
(5.6a–c)

After linearising the two-moment system in the limit of small ε, we seek solutions of
the form Φ ′( y, z, t) = Φ̃(z, k) exp((iky + σ t)) and analogously for n′ and C′. We denote
by x̃ the column state vector containing the z-discretised state variables (Φ ′, n′

y, n′
z, C′) on

a Gauss–Lobatto grid with N + 1 points

x̃ = [Φ̃(1), . . . , Φ̃(N+1), ñ(1)
y , . . . , ñ(N+1)

y , ñ(1)
z , . . . , ñ(N+1)

z , C̃(1), . . . , C̃(N+1)]T. (5.7)

The linear stability of the model thus finally reduces to an eigenvalue problem of the form

σ x̃ = Lx̃, (5.8)

with L the linear operator accounting for the discretised linear reduced model modified
adequately to account for the boundary conditions. This system is then solved numerically
using a Matlab algorithm based on the principle of minimised iterations developed by
Arnoldi (1951). Figure 15 reports the growth rate σM = Re(σ ) of the most unstable mode
as a function of the strength of the imposed flow, measured by γw. We emphasise that the
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Figure 15. Growth rate Re(σ ) and wave speed c = Im(σ )/k of the most unstable modes as a function of flow
rate. Open and filled symbols correspond respectively to asymmetric and symmetric base states. Insets 1 to 4:
real part of the eigenmodes of the particle density, Φ̃. The particle density of the corresponding 1-D base states,
Φ0(z), is also plotted for reference. The vertical grey dashed line separates the regions where slow-moving
wall patterns dominate (mode 2) in the reduced model, from the region where fast-moving patterns dominate
(mode 3). Green diamonds: wave speed of fast-moving patterns measured in numerical simulation of the full
Fokker–Planck equation.

base state considered is different for each value of γw, and for γw < 1.9, different symbols
are used for the modes related to symmetric and asymmetric base states.

In agreement with the full numerical simulations, the stability analysis shows the
presence of unstable modes until γw ≈ 4, above which the y-uniform solution is stabilised
under the effect of strong background flow. For 1.7 < γw < 2.4, the most unstable mode
associated with the symmetric base state is characterised by denser regions near the walls
(see figure 15, inset 2), which resemble the unstable modes observed during the transient
dynamics of the full simulations for γw < 1.5 (shown only for γw = 0 in figure 4, top).
The dominant mode for γw � 2.4 (figure 15, inset 3) closely resembles the moving patterns
described in figure 7(bottom). The eigenvalues associated with these two families of modes
have a non-zero imaginary part Im(σ ) = σI that grows linearly with γw, which is consistent
with a wave solution travelling in the streamwise direction with speed c proportional to
the background flow. More precisely, c can be estimated from the stability analysis of the
reduced model as

c =
( σI

2π

) (
2π

kM

)
, (5.9)

where 2π/kM is the wavelength of the most unstable mode. This estimate of c is in
agreement with the actual wave speed measured in full simulations in the strong-flow
regime, i.e. fast moving patterns equivalent to modes 3 in the reduced model, as plotted in
figure 15(bottom). The wave speed associated with modes 2, similar to the wall patterns
observed in the full numerical simulations, is significantly smaller than that of modes 3,
which is also consistent with the full simulations.

Focusing on the range of flow rates 1.7 < γw < 1.9 in figure 15(top), two observations
can be made. First, an unstable branch of asymmetric modes uniform in y (i.e. 1-D modes)
is present at low flow rates, modes 1, and is more unstable at low flow rates than the wall
patterns, modes 2. Branch 1 assesses the stability of the symmetric 1-D fixed point to 1-D
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perturbations and is consistent with the observations of the full numerical simulations (see
figure 2): it confirms the existence of an intrinsic instability of symmetric configurations
for sufficiently weak flows, as reported in §§ 3.4 and 3.5.

Also, a branch of unstable 2-D modes relative to the asymmetric base states (open
circles) tends towards negative growth rates as γw decreases, suggesting the existence
of a stable region of the asymmetric base state, qualitatively corresponding to the
intermediate-flow regime, line (c) in figure 2.

Finally, for background flows weaker than γw < 1.7, solving the two-moment system
leads to solutions with negative particle density, and therefore loses physical meaning.
This is not surprising as the reduced model, which is based on a truncated two-mode
expansion of the full distribution function, loses the properties built-in the structure of the
original conservation (2.2).

The reduced model and its stability analysis are therefore in qualitative agreement
with the complete model, indicating that the diverse collective dynamics observed can
be rationalised without accounting for hydrodynamic interactions between particles,
and using a very simplified representation of the probability distribution, in particular
regarding the orientation characteristics, simply described here by the local polarisation
vector n(x, t). This is quite different from the representation of the collective dynamics
in bulk quiescent flows (Traverso & Michelin 2020), suggesting that a transition towards
a bulk-like dynamics will take place by increasing the ratio between the channel width
and the intrinsic length scale of the suspension, F, which is confirmed by unreported
preliminary results and shall be one aspect of future investigations.

6. Conclusions

This work proposes an in-depth investigation into the self-organisation dynamics of a
dilute autochemotactic phoretic suspension under the combined effects of confinement
inside a channel and of a pressure-driven shear flow. It also offers an analysis of the
effect of the particles’ hydrodynamic forcing on the resulting total flow rate for fixed
pressure forcing, i.e. a measure of the effective viscosity of the active fluid. As the
background flow intensity is increased, our results show a smooth transition from a
weak-flow regime, where the particles self-organise into spatio-temporal patterns, to a
flow-dominated regime, where chemical interactions between particles are subdominant
with respect to the transport and rotation by the imposed background flow that drives
their individual and collective dynamics. Starting from an initial perturbation of the
isotropic suspension configuration, confined autophoretic suspensions quickly organise
across the channel width leading to the emergence of 1-D (i.e. streamwise-uniform)
equilibria distributions associated with a top–down (i.e. cross-stream) symmetry breaking.
When these 1-D configurations are unstable to streamwise perturbations due to chemical
interactions among particles, the final long-term particle organisation is inhomogeneous
along the axis of the channel, and characterised by either wall aggregates or fast-moving
patterns, depending on the intensity of the background flow.

The impact of the suspension’s dynamics on the fluid’s effective rheology (defined as the
modification of the total flow rate for a fixed pressure forcing) was further examined in two
distinct ways. The first one focused on the fluid’s response to quasi-static variations of the
external forcing (i.e. over time scales much larger than that of the intrinsic dynamics, see
figure 13). Our results show that the collective organisation of the autochemotactic phoretic
suspensions considered here tend to reduce their effective viscosity, particularly in the
regime of lower flow forcing. Yet, the detailed analysis of the self-induced and externally

943 A21-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.366


T. Traverso and S. Michelin

induced contributions to the particle-induced flow, shows a complex evolution of these
two parts, respectively associated with the particle self-propulsion and its response to the
chemical gradients generated by other particles. They are observed to contribute to the total
flow rate in opposite direction to each other, but also to reverse the sign of their individual
contribution as the flow rate is gradually increased, as a result of the fundamentally
different organisation of the particles in each regime. These observations demonstrate how
inter-particle interactions and the consequent collective dynamics strongly influence the
effective rheology of active fluids, which is an aspect vastly unexplored in the literature so
far, with many potential engineering applications.

For a given flow intensity, we also analysed the rheology of active suspensions by
characterising the evolution of the particle-induced flow rate as the collective organisation
of the particles evolve in time (see figures 9, 11 and 12). Our results suggest the possibility
of controlling in real time the viscosity of an active fluid via the particles’ collective
dynamics. These can indeed be controlled, for example, by means of external chemical
(Hong et al. 2007; Palacci et al. 2010, 2013) or optical (Sen et al. 2009; Martin et al. 2016)
signals, thus paving the way for new microfluidic applications involving either synthetic
or biological microswimmers.

The particular configuration chosen for our study (i.e. a pressure-driven channel shear
flow) exposes the particles to a non-uniform shear, and as a result, our characterisation of
the fluid’s rheology is phenomenological and macroscopic, although motivated by many
technological applications which may be interested in reducing (or increasing) the flow
rate in a thin channel for fixed pressure drop. Several of the self-organisation features
identified here are directly linked to the non-uniformity of the shear and may not hold in
other settings. An alternative approach to the characterisation of the suspension’s rheology
consists in analysing its response to a uniform shear rate (as in most rheometers).

The shape of the particles substantially affects their response to the hydrodynamic
field; as a result, a potential extension of the present work would consider suspensions
of anisotropic (e.g. rod-like) particles for which hydrodynamic reorientation in shear plays
a significant in the organisation of the suspension and the particle-induced flow.

We finally remark that our results are obtained in the dilute limit where far-field
interactions are dominant. However, the control of the fluid’s properties for technological
applications would likely require us to maximise the hydrodynamic forcing by the
particles, which might naturally call for denser suspensions. In this case, the near-field
steric, chemical and hydrodynamic interactions (among particles and with the boundaries)
will also play an important role, and particle-based approaches (e.g. Lambert et al.
2013; Uspal et al. 2015) may become more relevant despite their substantially higher
computational cost.
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Appendix A. Single particle dynamics

This appendix summarises the characteristics of the individual particle’s motion and
stresslet (i.e. its dominant far-field hydrodynamic signature) in response to its own activity
(§ A.1) or an externally imposed chemical gradient (§ A.2).

For an isolated force- and torque-free particle in an unbounded flow, the translational and
rotational velocities of the colloid U and Ω , and particle stresslet, Ŝ, are obtained from
the surface slip velocity of the colloid, u∗, as (Stone & Samuel 1996; Lauga & Michelin
2016)

U = −〈u∗〉∂V , Ω = − 3
2R

〈r̂ × u∗〉∂V , Ŝ = −10ηπR2〈r̂u∗ + u∗r̂〉∂V , (A1a–c)

where 〈〉∂V indicates averages over the surface of the particle, ∂V , and r̂ = r/r is the
normal unit vector used to parametrise the particle’s surface.

The phoretic slip velocity at the particle’s surface is obtained from the local chemical
field and mobility distribution on the surface of the colloid (Golestanian, Liverpool &
Ajdari 2007; Michelin & Lauga 2014), C(r̂) and M(r̂), respectively, as

u∗ = M(r̂)(I − r̂r̂) · ∇xC|r=R. (A2)

A.1. Self-propulsion and self-induced stresslet
The activity distribution is piecewise uniform with

A(r̂) = Ab, for r̂ · p < 0, and A(r̂) = Af , for r̂ · p > 0, (A3a,b)

and similarly for the mobility distribution M(r̂), where p is the unit vector pointing toward
the front of the particle and along its axis of symmetry. As in the main text, we define
A± = Ab ± Af the total activity and activity contrast, respectively, and similar definitions
for the mobility equivalents, M±.

At the particle scale, r = O(R), convective transport of solute is subdominant, so that
the chemical field outside the particle due to its own chemical activity A(r̂) is the solution
of a diffusion (Laplace) problem (Traverso & Michelin 2020)

Dc∇2
x C = 0, with Dcr̂ · ∇xC|r=R = −A(r̂) and C|r→∞ = 0, (A4)

whose solution is obtained for the particles considered here, as (Golestanian et al. 2007)

C =
(

2πR2A+

Dc

)
1

4πr
−

(
3πR3A−

2Dc

)( p · r
4πr3

)
+

∞∑
m=2

AmR
(m + 1)Dc

(
R
r

)m+1

Pm(p · r̂),

(A5)
with Pm the Legendre polynomial of degree m. Coefficients Am are obtained as projections
of the activity distribution, i.e. Am = (m + 1/2)

∫ 1
−1 A(μ̂)Pm(μ̂) dμ̂, and for hemispheric

swimmers Am = 0 for even m. Substitution of (A5) into (A2) and (A1a–c) provides

U = U0p with U0 = A−M+

8Dc
, (A6)

as well as the self-induced stresslet

Ŝs = α̂s

(
pp − I

3

)
, with α̂s = −10πηa2κM−A−

Dc
, (A7)

and κ = 3
4

∞∑
m=1

2m + 1
m + 1

[∫ 1

0
Pm dμ̂

][∫ 1

0
μ̂(1 − μ̂2)P′

m dμ̂

]
≈ 0.0872. (A8)
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Finally, due to the problem’s symmetry there is no self-induced rotation, Ωs = 0.

A.2. Externally induced drifts and stresslet
We now consider the slip velocity and resulting drifts and stresslets, generated on a particle
with no surface activity, by an external concentration Ce ∼ C∞ + G · r surrounding the
particle. Because of the presence of the particle, the external field is modified in its vicinity
as

Ce = C∞ + G · r
(

1 + R3

2r3

)
. (A9)

Substitution of this result into (A2), provides the externally imposed slip velocity, u∗
e , and

substitution into (A1a–c) provides the translational and rotational drifts experienced by
the force- and torque-free particle, respectively, as

Ue = χtG, with χt = −M+

2
, (A10)

Ωe = χrp × G, with χr = 9
16

M−

R
. (A11)

Note that the translational drift Ue does not include any component along (G · p)p in
contrast to more generic particles (Kanso & Michelin 2019), since the second Legendre
projection M2 of the mobility distribution vanishes for hemispherically coated particles.

Similarly, the stresslet component due to the external gradient is obtained from (A1a–c)
as

Ŝe = −15η

4

∫
∂V

M(r̂)
{[

(I − r̂r̂) · G
]

r̂ + r̂
[
(I − r̂r̂) · G

]}
dA. (A12)

For piecewise uniform mobility distribution on each hemisphere, the integral in (A12) can
be conveniently rewritten as the sum of two contributions, on the front (r̂ · p > 0) and back
hemispheres (r̂ · p < 0). Using∫

r̂·p>0
r̂ dA = πR2p,

∫
r̂·p>0

r̂r̂r̂ dA = πR2p
4

[
pI + Ip + (Ip)T23

]
, (A13a,b)

where AT23 is the transpose of the third-order tensor A with respect to its last two indices
(the integrals on r̂ · p < 0 are obtained by changing p into −p), the induced stresslet is
finally obtained as

Ŝe = α̂e
[
Gp + pG + (G · p)(pp − I)

]
, with α̂e = 15

8
ηR2πM−. (A14)
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