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A variety of swimming microorganisms, called ciliates, exploit the bending of a large number of
small and densely packed organelles, termed cilia, in order to propel themselves in a viscous fluid.
We consider a spherical envelope model for such ciliary locomotion where the dynamics of the
individual cilia are replaced by that of a continuous overlaying surface allowed to deform
tangentially to itself. Employing a variational approach, we determine numerically the time-periodic
deformation of such surface which leads to low-Reynolds locomotion with minimum rate of energy
dissipation !maximum efficiency". Employing both Lagrangian and Eulerian points of views, we
show that in the optimal swimming stroke, individual cilia display weak asymmetric beating, but
that a significant symmetry-breaking occurs at the organism level, with the whole surface deforming
in a wavelike fashion reminiscent of metachronal waves of biological cilia. This wave motion is
analyzed using a formal modal decomposition, is found to occur in the same direction as the
swimming direction, and is interpreted as due to a spatial distribution of phase differences in the
kinematics of individual cilia. Using additional constrained optimizations, as well as a constructed
analytical ansatz, we derive a complete optimization diagram where all swimming efficiencies,
swimming speeds, and amplitudes of surface deformation can be reached, with the mathematically
optimal swimmer, of efficiency one-half, being a singular limit. Biologically, our work suggests
therefore that metachronal waves may allow cilia to propel cells forward while reducing the energy
dissipated in the surrounding fluid. © 2010 American Institute of Physics. #doi:10.1063/1.3507951$

I. INTRODUCTION

Swimming microorganisms are found in a large variety
of environments. From spermatozoa cells to bacteria in the
human body, from unicellular protozoa to multicellular algae
swimming in the ocean, these small organisms are able to
generate net locomotion by exploiting their interaction with a
surrounding viscous fluid.1 Because of their small dimen-
sions, the Reynolds number associated with their motion,
Re=UL /!, where U is the swimming velocity, L is the typi-
cal size of the organism, and ! is the fluid kinematic viscos-
ity, is close to zero and the effects of body and fluid inertia
are both negligible. As a result, the motion of swimming
microorganisms is based on the exploitation of viscous drag
to generate thrust through periodic non-time-reversible shape
changes.1–3

Many swimming microorganisms use the beating of
elongated flexible appendages attached to their surface to
produce motion.4 These appendages are known as cilia or
flagella depending on their distribution density on the cell
and their size relative to that of the organism. Eukaryotic
flagella, such as those used by invertebrate or mammalian
spermatozoa, are longer than the cell head and are only
found in small numbers !typically one for spermatozoa, and
a few for other eukaryotes".1 In contrast, most of the surface

of ciliates such as Paramecium !see Fig. 1, left" is covered
by cilia much shorter than the cell body.5 Ciliary motion is
also functionally essential for respiratory systems, where the
beating of cilia covering lung epithelium permits the trans-
port of mucus and foreign particles out of the respiratory
tract.6 In that case, the cilia support is fixed and the cilia
motion produces a net flow.

Eukaryotic flagella and cilia have similar diameters !of
the order of 200 nm", beating frequencies !of the order of 10
Hz" and internal structure. They differ however in length.
The typical length of a sperm cell flagellum is of the order of
50 "m, while cilia, such as those of Paramecium, have a
typical length of 5–10 "m.4 Both eukaryotic flagella and
cilia are subject to distributed actuation through the sliding
of neighboring polymeric filaments !microtubules
doublets".7,8 Notably, bacterial flagella, although bearing the
same name, are much smaller !typically 20 nm diameter and
5–10 "m in length", have a much simpler internal structure
than their eukaryotic equivalent and are passively driven by a
rotating motor located in the cell wall.9,10

The propagation of wave patterns is essential to both
flagellar and ciliary propulsion.11 The deformation of indi-
vidual eukaryotic flagella in planar or helical wave patterns
leads to non-time-reversible kinematics and is thus respon-
sible for the net swimming motion of the associated
microorganism.1–3,12,13 In this paper, we focus on ciliary pro-
pulsion, for which two levels of symmetry-breaking !and two
types of waves" are observed.4 At the level of an individual
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cilium, a deformation wave propagates along the cilium
length as for flagellar motion. The beating pattern is however
different from that of individual flagella, and the individual
stroke of a cilium can be decomposed into two parts: an
effective stroke, during which the cilium is extended and
offers the most resistance to the fluid, and a recovery stroke,
in which the cilium is bent in such a way as to reduce the
viscous drag.

In addition to such asymmetric beating at the level of an
individual cilium, the beating coordination of neighboring
cilia at the organism level results in a collective behavior
known as metachronal waves. All cilia on the surface of a
microorganism perform similar beating patterns, but they de-
form in time with a small phase difference with respect to
their neighbors, and these phase differences are spatially dis-
tributed in a way that leads to symmetry-breaking at the level
of the whole cell and the formation of a wave pattern of
surface deformation4,5 !see Fig. 1, right". The origin of the
synchronization responsible for the metachronal waves in
ciliary propulsion is still debated, but several recent studies
have suggested that it results from hydrodynamic interac-
tions between neighboring cilia.14–18

In this paper, we consider the energetic cost and hydro-
dynamic efficiency associated with ciliary propulsion. By ef-
ficiency, we understand here a relative measure of the organ-

ism displacement or velocity to the energy dissipated through
viscous stresses in the flow to produce this motion. Of
course, this differs from the actual energetic cost for the or-
ganism which includes metabolism and other internal bio-
logical considerations, and we limit ourselves here to the
purely hydrodynamical aspect of the efficiency. Although
little is known experimentally about the actual energy con-
sumption associated with ciliary propulsion, some studies
suggest that metachronal waves reduce the energy loss.19

More generally, the question of the hydrodynamic efficiency
of different swimming patterns is at the heart of many
low-Re locomotion investigations of the extent to which the
swimming modes observed in nature could be optimal with
respect to hydrodynamic efficiency. In particular, numerous
studies have considered the optimal beating of flagella.2,20–23

Through a theoretical and numerical optimization frame-
work, we determine in this paper the particular collective
cilia beating patterns that minimize the dissipation of me-
chanical energy.

Computing the flow around a ciliated organism accu-
rately is difficult because of the large number of appendages
deforming and interacting. Two types of modeling ap-
proaches have been proposed in the past to address this prob-
lem. The first type of model, termed sublayer modeling, con-
siders the dynamics of individual cilia, either theoretically in
a simplified fashion,4,5 or numerically with all hydrodynamic
interactions.24,25 The study of the collective dynamics of a
large number of cilia remains however a costly
computation.14,19

An alternative approach, motivated by the densely
packed arrangement of the cilia on the surface of the organ-
ism, is based on the description of the swimmer by a deform-
able, continuous surface enveloping the cilia at each
instant.4,26,27 This so-called envelope model substitutes the
motion of material surface points !cilia tips" with the defor-
mation of a continuous surface and is expected to be a good
approximation when the density of cilia is sufficiently high.
In the particular case of a purely spherical swimmer, this
model is known as a squirmer,27,28 and it was recently used
to study the collective dynamics and the rheology of suspen-
sions of model swimming microorganisms29,30 and the im-
pact of the squirming stroke on nutrient transport and feeding
by microorganisms.31,32 Although some organisms using cilia
do have a spherical shape !e.g., Volvox",33 most ciliated mi-
croorganisms have an elongated body. Nonetheless, the
squirmer model and the spherical approximation allow one
to reduce the complexity of the problem in order to shed
some light on the fundamental properties of symmetry-
breaking in ciliary locomotion.

In this paper, we thus consider locomotion by a squirmer
in a Newtonian fluid without inertia as a model for locomo-
tion of a spherical ciliated cell. We will assume that the
squirmer can deform its shape tangentially in a time-periodic
fashion, and hence the shape remains that of a sphere for all
times. For a given time-periodic stroke, that is for a given
periodic Lagrangian surface displacement field, we are able
to compute the swimming velocity of the swimmer, the en-
ergy dissipation in the fluid, and use both to define the stroke
hydrodynamic efficiency. We will not restrict our analysis to

t

FIG. 1. !Color online" Paramecium swimming using metachronal waves
!Hoffman modulation contrast microscopy, 40# magnification". Left: pic-
ture of the cell in a microchannel. Right: visualization of metachronal waves
of cilia deformation propagating along the cell. Time increases from top to
bottom, with a time difference of 1/300 s between each picture. Arrows
indicate the propagation of a wave of effective strokes in the cilia array. The
scale bar is 50 µm in both pictures. Pictures courtesy of Sunghwan !Sunny"
Jung, Virginia Tech.
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small-amplitude deformations,34,35 but will allow arbitrary
large-amplitude tangential deformations to take place. The
purpose of our work is to then determine the optimal squirm-
ing stroke which maximizes this swimming efficiency !or,
alternatively, minimizes the amount of work done against the
fluid for a fixed average swimming velocity" and to study its
characteristics. In the first part, we will consider the general
problem of determining the optimal stroke theoretically and
numerically. In the second part, we will consider the limita-
tion to the surface kinematics introduced by the finite size of
the cilia and how it affects the optimal swimming stroke. In
all cases, we will show that the optimal swimming strokes
show very little asymmetry at the level of individual cilia
!Lagrangian framework" but display strong symmetry-
breaking at the level of the whole-organism !Eulerian frame-
work", reminiscent of phase differences between cilia and of
metachronal waves observed in experiments. Within our
framework, we will thus be able to conclude that metachro-
nal waves are hydrodynamically optimal.

In Sec. II, after a brief review of the squirmer model and
its dynamics, the optimization procedure is presented, to-
gether with the resulting optimal stroke. In Sec. III, a con-
straint is added to the optimization to take into account the
finite-length of the cilia and limit the surface displacement.
Based on the observations of the optimal strokes obtained in
Secs. II and III, an analytical ansatz is constructed in Sec. IV
that achieves asymptotically the theoretical upper bound for
the swimming efficiency of a squirmer. In Sec. V, the physi-
cal properties of the optimal strokes are presented and dis-
cussed, in particular the wave characteristics. Our results are
finally summarized and discussed in Sec. VI.

II. OPTIMAL SWIMMING STROKE OF SPHERICAL
SWIMMER

We consider in this paper the dynamics of a spherical
microorganism able to produce locomotion by imposing
time-periodic tangential displacements of its spherical sur-
face, the so-called squirmer approximation, as an envelope
model for ciliated cells. Only axisymmetric strokes with no
azimuthal displacements are considered, thereby restricting
the swimming motion to a pure time-varying translation.

A. Equations of motion and swimming
efficiency

1. Geometric description

The dynamics of the microswimmer is studied in a trans-
lating reference frame centered at the squirmer center. In this
comoving frame, the fluid and surface motions are described
in spherical polar coordinates !r ,$ ,%" !see notation in Fig.
2". All quantities are nondimensionalized using the swimmer
radius a, the stroke frequency f , and the fluid dynamic vis-
cosity ".

The surface of the squirmer !r=1" is described by two
Lagrangian variables, 0&$0&' and 0&%0&2', and the
position of each surface element is defined by the time evo-
lution of its polar and azimuthal angles, $!$0 ,%0 , t" and
%!$0 ,%0 , t". Considering purely axisymmetric deformations
of the swimmer’s surface, we have

$ = (!$0,t", % = %0. !1"

In the following, we will therefore omit the dependence in
%0, all particles located on a circle of constant $ having the
same behavior. By a straightforward symmetry argument, the
swimming velocity of the organism must thus be of the form
U!t"ex.

Each point on the swimmer surface can be equivalently
described by its polar angle $ or its vertical Cartesian coor-
dinate x=cos $. In the following, both notations will be used
to describe the surface motion,

$ = (!$0,t", or x = )!x0,t" . !2"

Most of the analytical work will be done in terms of the x
variable as equations adopt a simpler form in this case.
Physical properties of the stroke will however be discussed
using the variable $ which describes the actual angular dis-
placement of the cilia tips on the surface.

The Lagrangian label x0=cos $0 is chosen such that
x0=−1 !$0='" and x0=1 !$0=0" are, respectively, the south
and north poles of the squirmer !Fig. 2". Spatial boundary
conditions at both poles, as well as time-periodicity impose
that

)!− 1,t" = − 1 and )!1,t" = 1 for 0 & t & 2' , !3"

)!x0,t" = )!x0,t + 2'" for − 1 & x0 & 1. !4"

Note that there exist multiple choices for the Lagrangian
label x0 !or $0" and it is not necessarily the position of the
material point at t=0. Any other Lagrangian label x1 satisfy-
ing Eq. !3" can be used provided that x0→x1 is a bijective
function. In the following, we use the mean value of ( over
a swimming period as Lagrangian label and $0= %(&, where
%¯ & denotes the averaging operator in time.

Finally, in a discrete representation of the three-
dimensional motion of cilia, it would be possible for cilia to
cross. This is however forbidden in the continuous axisym-
metric envelope model used here and the surface velocity is
uniquely defined at each point; )!x0" must therefore be a
bijective function, which leads to

ex
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r
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U(t)ex
x

M(r, θ,ϕ)

FIG. 2. Notation for the squirmer model. A comoving frame centered on the
squirmer center is used with spherical polar coordinates !r ,$ ,%". The axi-
symmetry of the surface motion imposes a purely translating swimming
motion along ex with time-varying velocity U!t". See text for details.
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#)

#x0
* 0, for − 1 & x0 & 1, 0 & t & 2' . !5"

In the comoving frame, the surface velocity uS is purely
tangential uS=u$

S!$ , t"e$ and is related to the surface dis-
placement by a partial time derivative

#(

#t
!$0,t" = u$

S!(!$0,t",t" . !6"

Equivalently, this equation can be rewritten using the vari-
ables !x , t" as

#)

#t
!x0,t" = u!)!x0,t",t" , !7"

with

u!x,t" = − '1 − x2u$
S!cos−1x,t" . !8"

The tangential velocity u$
S!$ , t" is the velocity at a fixed point

$, while #( /#t is the tangential velocity of a given material
point labeled by $0. Equation !6" is therefore the fundamental
conversion from Eulerian to Lagrangian quantities. Note that
u!x , t" in Eq. !7" is the axial component of the surface veloc-
ity !along ex".

2. Swimming motion of a squirmer

In the limit of zero Reynolds number Re=0, the equa-
tions for the incompressible flow around the squirmer sim-
plify into the nondimensional Stokes equations

$2u = $p, $ . u = 0, !9"

with boundary conditions, expressed in the comoving frame,
as

u = uS = u$
S!$,t"e$ for r = 1, !10"

u = − Uex for r → + . !11"

Equations !9"–!11" can be solved explicitly as27

ur = − U!t"cos $ +
,1!t"

r3 L1!cos $"

+
1
2(

n=2

+ ) 1
rn+2 −

1
rn*!2n + 1",n!t"Ln!cos $" , !12"

u$ = U!t"sin $ +
,1!t"
3r3 K1!$"

+
1
2(

n=2

+ ) n

rn+2 −
n − 2

rn *,n!t"Kn!$" , !13"

p = p+ − (
n=2

+ +4n2 − 1
n + 1

,,n!t"
Ln!cos $"

rn+1 , !14"

where Ln!x" is the nth Legendre polynomial, Kn!$" is defined
as

Kn!$" =
!2n + 1"sin $

n!n + 1"
Ln!!cos $" , !15"

and the time coefficients ,n!t" are obtained uniquely from
the expansion of the surface tangential velocity in spherical-
harmonics

u$!$,t" = u$
S!$,t" = (

n=1

+

,n!t"Kn!$" . !16"

In the Stokes regime, the inertia of the swimmer is neg-
ligible so the fluid force is zero at all times,

Fext = -
S

#− pn + !$u + $uT" · n$dS = 0. !17"

The viscous torque is also zero by symmetry. From Eqs.
!12"–!14" and !17", the swimming velocity U as well as the
instantaneous rate of work of the swimmer on the fluid can
then be obtained as27

U!t" = ,1!t" , !18"

P!t" = 12'),1!t"2 +
1
3(

n=2

+ !2n + 1"2

n!n + 1"
,n!t"2* . !19"

The swimming velocity is completely determined by the first
mode ,1!t", which is thereafter referred to as the swimming
mode. All others modes, ,n!t", do not contribute to the swim-
ming velocity but do contribute to the energy consumption
and in that sense are penalizing the swimming efficiency of
the organism. However, the existence of these nonswimming
modes is required to ensure the periodicity of the surface
displacement.

3. Swimming efficiency

In this paper we are going to derive the optimal stroke
kinematics and thus we have to define our cost function.
Since low-Re locomotion is essentially a geometrical
problem,13,36 the appropriate cost function is basically a way
to normalize this geometrical problem. Here we will use the
traditional definition of a low-Re swimming efficiency, -,
given by

- =
%U&T!

%P&
, !20"

where T! is the force required to drag a rigid body of same
shape as the swimmer at the time-averaged swimming veloc-
ity %U& and %P& is the mean rate of energy dissipation in the
fluid during swimming.1–3,22,37 The cost function, -, given in
Eq. !20", has traditionally been termed an efficiency, but per-
haps more accurately it should be termed a normalization, as
it is the ratio between the average rate of work necessary to
move the body in two different ways: in the numerator, drag-
ging the body with an external force, and in the denominator,
self-propelled motion at the same speed. It is thus not a ther-
modynamic efficiency and for general swimmers does not
have to be less then one, although for most biological cells it
is of the order of 1%.1
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In the particular case of a squirmer, Stokes’ formula
gives T!=6'%U&, and the efficiency #Eq. !20"$ can be ob-
tained analytically as

- =
%,1!t"&2

2)%,1!t"2& +
1

3
(n=2

+
!2n + 1"2

n!n + 1"
%,n!t"2&* · !21"

From the Cauchy–Schwartz inequality, we see that Eq. !21"
leads to an upper bound of -&1 /2. This upper bound, which
we will discuss in more detail in Sec. IV, is tighter than the
one obtained in Ref. 35 !-&3 /4" and corresponds to the
treadmilling microswimmer described in Ref. 38. Impor-
tantly, the definition of efficiency retained here is purely me-
chanical and does not characterize the absolute efficiency of
the locomotion mode for the organism, which is influenced
by many other factors, including feeding and metabolic
costs. In addition, since we are using an envelope model for
the cilia, our approach does not allow us to capture the fluid
dissipation in the sublayer !i.e., near the cilia".

Using Eqs. !7" and !16", we have the dynamics

#)

#t
= − '1 − )2(

m=1

+

,m!t"Km!cos−1 )"

= − !1 − )2"(
m=1

+ !2m + 1",m!t"Lm! !)"
m!m + 1"

· !22"

Multiplying both sides of the previous equation by Ln!!)" and
integrating in ) leads to

,n!t" = −
1
2-−1

1

Ln!!)"
#)

#t
d)

= −
1
2-−1

1

Ln!#)!x0,t"$
#)

#t

#)

#x0
dx0. !23"

Integrating by part and using the boundary condition at the
poles #Eq. !3"$ finally leads to the Lagrangian-Eulerian rela-
tionship,

,n!t" =
1
2-−1

1

Ln#)!x0,t"$
#2)

#x0 # t
dx0. !24"

For a given stroke x=)!x0 , t", the coefficients ,n!t" are com-
puted from Eq. !24" and used to determine the swimming
efficiency -#)$ using Eq. !21".

B. Optimization of the swimming efficiency

The objective of the present work is to determine the
stroke )!x0 , t" maximizing the swimming efficiency -#)$.
Physically, the optimal stroke will therefore be the one swim-
ming the furthest for a given amount of dissipated energy, or,
alternatively, will be the one minimizing the rate of work
done by the swimmer for a given swimming speed. To char-
acterize the optimal stroke, we use a variational approach.

1. Swimming efficiency gradient in the stroke
functional space

Let us consider a particular reference swimming stroke
)̃!x0 , t" and the perturbed stroke )̃!x0 , t"+.)!x0 , t", where
.)!x0 , t" is a small perturbation to the reference stroke. In the
following, tilde quantities correspond to the reference !or,
initial" stroke. From the boundary conditions #Eq. !3"$ ap-
plied to )̃ and )̃+.), we obtain the following boundary con-
ditions and periodicity constraints on .)!x0 , t":

.)!− 1,t" = .)!1,t" = 0 for all 0 & t & 2' , !25"

.)!x0,t" = .)!x0,t + 2'" for all − 1 & x0 & 1. !26"

Retaining only the linear contribution, the change in swim-
ming efficiency is given by

.- = -#)̃ + .)$ − -#)̃$

=
%,̃1&.%,1&

D
−

%,̃1&2

2D2 +.%,1
2& + (

n=2

+ !2n + 1"2

3n!n + 1"
.%,n

2&, ,

!27"

with

D = %,̃1
2& +

1
3(

n=2

+ !2n + 1"2

n!n + 1"
%,̃n

2& . !28"

From Eqs. !24" and !25", the perturbation .,n!t" induced on
,n!t" is computed as

.,n!t" =
1
2-−1

1 +Ln!!)̃"
#2)̃

#x0 # t
.) − Ln!!)̃"

# )̃

#x0

#.)

#t
,dx0.

!29"

For n=1 and using Eq. !26", the time average of Eq. !29"
leads to

.%,1& =
1

2'
-

0

2'-
−1

1

.) ·
#2)̃

#x0 # t
dx0dt . !30"

Keeping only the leading order contribution, we have

.%,n
2& = 2%,̃n.,n& . !31"

Using Eq. !29" and integration by part in time, we find

.%,n
2& =

1
2'
-

0

2'-
−1

1

.) · ),̃n!t"+2Ln!!)̃"
#2)̃

#x0 # t

+ Ln"!)̃"
# )̃

#x0

# )̃

#t
, + ,̇̃nLn!!)̃"

# )̃

#x0
*dx0dt . !32"

After substitution into Eq. !27", the variation .- can finally
be written as

.- = -
−1

1 -
0

2'

F#)̃$!x0,t".)!x0,t"dx0dt , !33"

where F#)̃$!x0 , t" is the efficiency gradient in the stroke func-
tional space evaluated at )̃
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F#)̃$ =
%,̃1&
4'D.2

#2)̃

#x0 # t
−

%,̃1&
D )+2,̃1

#2)̃

#x0 # t
+ ,̇̃1

# )̃

#x0
,

+
1
3(

n=2

+ !2n + 1"2

n!n + 1"
+Ln"!)̃"

# )̃

#x0

# )̃

#t
+ 2Ln!!)̃"

#),̃n
#2)̃

#x0 # t
+ ,̇̃nLn!!)̃"

# )̃

#x0
*,*/ · !34"

2. Projection on the subspace of the boundary
conditions

F#)̃$ is the gradient of - with respect to the swimming
stroke )̃. Choosing a sufficiently small .) aligned with F#)̃$
guarantees an increase of the swimming efficiency !.-*0"
between )̃ and )̃+.) as the integrand in Eq. !33" is positive
everywhere, which suggests the manner in which we can
numerically iterate to find the optimal swimmer. However,
such a change .) along F#)̃$ does not guarantee that )̃+.)
will satisfy the boundary and periodicity conditions #Eqs. !3"
and !4"$ or the constraint on monotonous variations #Eq. !5"$.
To circumvent this difficulty, we notice that for any stroke
)!x0 , t", there exists at least one continuous function /!x0 , t"
such that we can write

)!x0,t" = − 1 +
20−1

x0 #/!x!,t"$2dx!

0−1
1 #/!x!,t"$2dx!

· !35"

Performing the optimization on the field /!x0 , t" rather than
)!x0 , t" frees us from imposing the boundary, periodicity, and
bijection conditions separately, as, through Eq. !35", any
/!x0 , t" will generate an acceptable )!x0 , t". The analysis of
the previous paragraph remains valid and we now must
evaluate the variation .)!x0 , t" induced by a small change
./!x0 , t". From Eq. !35", we have

.) = 4)0−1
x0 /̃./ dx!

0−1
1 /̃2 dx!

−
!0−1

1 /̃./ dx!"!0−1
x0 /̃2 dx!"

!0−1
1 /̃2 dx!"2 * ·

!36"

Substitution of this result into Eq. !33" leads, after integra-
tion by part and rearrangement of the result, to

.- = -
0

2'-
−1

1

G#/̃$!x,t"./!x0,t"dx0dt , !37"

with G#/̃$!x0 , t" the efficiency gradient in the functional
space of /, which can be written as

G#/̃$ =
4/̃

!0−1
1 /̃2dx!"2)+-

x0

1

F#)̃$dx!,+-
−1

1

/̃2dx!,
− -

−1

1

F#)̃$+-
0

x!
/̃2dx",dx!* , !38"

with F#)̃$ given in Eq. !34".

C. Numerical optimization

The optimization on the swimming stroke is performed
iteratively and numerically, using a steepest ascent
algorithm.39 Given a guess /n!x0 , t", the efficiency -#/n$ and
the gradient G#/n$ are computed numerically using Eqs.
!21", !24", !34", and !38". The next guess /n+1!x0 , t" is ob-
tained numerically by marching in the functional space in the
gradient direction as

/n+1!x0,t" = /n!x0,t" + 0G#/n$!x0,t" , !39"

where 0 is a small number. For small enough 0, Eq. !37"
guarantees that .-=-#/n+1$−-#/n$*0. Starting from an
initial guess /0 and using this approach iteratively, one trav-
els in the !/ ,-"-space along the steepest slope in - until
convergence is reached. As the purpose of the present paper
is to obtain physical insight on the maximum efficiency
strokes, we did not attempt to construct the fastest converg-
ing algorithm, and it is possible that faster convergence
would be achieved, for example, using a variation of the
conjugate gradient algorithm.

The efficiency - and gradient G are computed numeri-
cally from / using spectral methods in both t !fast Fourier
transform" and x0 !Chebyshev spectral methods". To avoid
aliasing phenomena introduced by the successive nonlinear
products, the 2/3-dealiasing rule is applied in both space and
time before taking each physical product.

Convergence is achieved when marching in the direction
of the gradient G no longer leads to an increase of the swim-
ming efficiency, even after successive reductions of the step
size 0. This algorithm, as most iterative optimization tech-
niques, cannot guarantee the finding of an absolute maxi-
mum of the swimming efficiency but only of local maxima.
Because of the infinite number of dimensions of the func-
tional space, it is expected and observed that some optimiza-
tion runs will lead to local maxima with small values of -.
This difficulty is overcome by performing several runs with
different initial conditions and/or resolution until conver-
gence to similar solutions provides enough confidence in the
finding of an absolute maximum.

As pointed out before, )!x0 , t" is not a unique description
of the swimming stroke as any bijection on the Lagrangian
label will lead to another equivalent representation of same
-. To identify whether two strokes are equivalent, we must
therefore resort to the comparison of their physical charac-
teristics or velocity distribution.

We use Nx Chebyshev Gauss–Lobatto points in x0 and Nt
equidistant points in t. The infinite sum in Eq. !21" must be
truncated at M modes. A large enough number of modes M
must be computed for the efficiency estimate to be accurate,
thereby imposing a practical minimum on Nx and Nt for the
integrals involved in Eq. !24" to be computed accurately. In
the representative cases presented in the rest of this work,
typical values of the discretization parameters were M
140–80, Nx1120–200, and Nt164–128. Figure 3 shows
that the contribution %,n

2& of mode n to the efficiency of the
reference stroke decreases exponentially with n. One can
then estimate the truncation error on - as %0.03%.
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D. Initial guesses for the swimming stroke

Different sets of initial conditions were used to ensure
convergence of the procedure. Examples of such initial con-
ditions are

)!x0,t" = x0 + c1!1 − x0
2"Ncos!t − c2x0" , !40"

with N an integer, c111, and 0.5&c2 /'&10. Equation !40"
corresponds to a traveling wave in x0 of wavespeed 1 /c2,
attenuated at both poles. The efficiency being a quadratic
function of the swimming velocity #see Eq. !21"$, the initial
condition must have nonzero swimming velocity and must
therefore not be time-reversible !Purcell’s theorem".13 In the
following, traveling wave patterns will be identified and it is
important to ensure that the wavelike characteristics of the
optimal solution result from the efficiency optimization and
not from the particular initial guess considered. In that re-
gard, different wave amplitudes and wave velocities were
tested in Eq. !40". Also, a superposition of multiple waves
traveling in different directions was tested as well as “hemi-
spheric solutions” defined independently in each hemisphere
!the equator then becoming a fixed point", and “elliptical
solutions” of the form

)!x0,t" = − 1 + !1 + x0"A!x0"

##sin2!t − c2x0" + A!x0"2cos2!t − c2x0"$−1/2,

with

A!x0" = 1 + c1 sin)'!1 + x0"
2

* . !41"

Independently of the particular choice of initial conditions,
we obtain a systematic convergence to the results presented
in the following section.

E. Unconstrained results: optimal swimming stroke

For all these different initial conditions, we observe the
convergence of our numerical approach toward a stroke of
efficiency -122.2%. We will refer to this solution as the
optimal unconstrained stroke thereafter.

The trajectories of surface elements along the sphere
$=(!$0 , t" are shown on Fig. 4, and Fig. 5 presents a se-
quence of snapshots corresponding to a stroke period. On

Fig. 5, the color code is a Lagrangian label and allows one to
track the position of a particular surface particle in time. A
few lines $0=constant are also represented for better visual-
ization of the surface motions. The average swimming veloc-
ity associated with this stroke is directed upward and equal
to %U&=0.33. Due to the length and time scalings chosen
here, this corresponds to a mean swimming velocity slightly
above one body length per period. The swimming velocity is
not constant throughout the period as can be seen on Fig. 6.

The optimal unconstrained swimming stroke illustrated
in Figs. 4 and 5 can be decomposed into two parts: !1" an
effective stroke where the surface moves downward !increas-
ing $" while stretching and !2" a recovery stroke where the
surface elements that migrated toward the south pole during
the effective swimming stroke are brought back toward the
north pole, in the same direction as the swimming velocity.
The surface is highly compressed in this phase, which gives
it a shocklike structure !see the dark region in Fig. 4". The
instantaneous swimming velocity, U!t", is maximum and
roughly constant throughout the effective stroke, while the
recovery stroke is associated with a reduced !even reversed"
swimming velocity !Fig. 6".

These two strokes are not exactly successive in time as
their boundary is not vertical on Fig. 4. The recovery stroke
is mostly visible during the middle half of the stroke period
!' /2& t&3' /2" !see Figs. 4 and 5". Outside of this time
domain, the entire organism surface is moving downward
!effective stroke", with the possible exception of two small
regions located near the poles. This is confirmed by the pre-
dominance of the swimming mode ,1!t" over the other
modes outside of the domain #' /2,3' /2$ !see Fig. 6".

Although individual cilia motion is not explicitly repre-
sented in this continuous envelope model, the swimming
stroke obtained through this optimization process shares
many similarities with metachronal waves observed in cili-
ated microorganisms.4,6 Indeed, a small phase difference in
the motion of neighboring surface points !or cilia tips" can be
observed: as can be seen in Fig. 4, for the range 20° &$0
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10!2

100

~e!0.205*n

n

<
n(
)>

∼ e−0.205n

n

〈α
2 n
(t
)〉

FIG. 3. The contribution of the successive modes, %,n
2&, to the efficiency

!stars" decreases exponentially with the mode order, n. The results are plot-
ted for the unconstrained optimization with efficiency -122.2% and were
obtained with M =40, Nx=150, and Nt=128.
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FIG. 4. Lagrangian description of the optimal swimming stroke with no
constraint on the maximum displacement. The maximum amplitude of dis-
placement is 2max152.6°, the mean swimming velocity is %U&10.33, and
the swimming efficiency is -122.2%. Each curve illustrates the trajectory
$=(!$0 , t" of a single material surface point.
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&160°, the maximum and minimum of a given trajectory
occur with a small time delay compared to those of a trajec-
tory with a slightly greater value of $0.

This small phase difference results in a global wave pat-
tern at the organism level propagating from the south pole
!$=180°" to the north pole !$=0°" as clearly seen on Fig. 5.
We illustrate schematically in Fig. 7 this symmetry-breaking

mechanism through the collective behavior of individual La-
grangian points. With purely identical and symmetric mo-
tions of equal amplitude of neighboring Lagrangian points,
the introduction of a small spatial phase shift breaks the sym-
metry and generates a shocklike dynamics similar to the re-
covery stroke obtained numerically and shown in Fig. 4. For
biological cells, the biophysical origin of the observed phase-
locking between neighboring cilia and the generation of
metachronal waves is still a matter of investigation.14–18 Our

t = 0 t = π/4 t = π/2

t = 3π/4 t = π t = 5π/4

t = 3π/2 t = 7π/4 t = 2π

FIG. 5. !Color online" Snapshots of the displacement of the squirmer surface over a swimming period in the optimal unconstrained stroke !2max152.6°,
%U&10.33, -122.2%". The surface color of each material point on the surface refers to the mean polar angle of that material point. Black lines also
correspond to the location of particular material points and have been added for clarity.
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FIG. 6. Time-evolution of the ten first modes, ,n!t" !n&10", over the period
for the optimal unconstrained stroke shown in Fig. 5. The swimming mode
or swimming velocity U!t"=,1!t" is plotted as a thick solid line. Modes 2
through 10 are plotted as dashed line. The swimming mode is observed to
dominate during the effective stroke !for t&' /2 and t33' /2", while many
modes are significant during the recovery stroke !' /2& t&3' /2".

(a) In-phase beating (b) Small phase difference

FIG. 7. A small phase difference between trajectories of neighboring La-
grangian points with identical and symmetric individual trajectories can lead
to symmetry-breaking and the appearance of a shocklike structure. !a" Har-
monic in-phase beating. !b" Same harmonic motion with a linearly spatially
varying phase.
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results show that a wavelike deformation of the surface at the
whole-organism level is actually an optimal for the swim-
ming efficiency.

Finally, we note that the efficiency obtained through our
optimization procedure is much larger than that of typical
swimming microorganisms. Our optimal unconstrained
stroke is found to be associated with very large displace-
ments of material points on the spherical surface, with a
maximum amplitude of 2max152.6° #meaning that there ex-
ists a Lagrangian point for which (!$0 , t"−$0 varies between
452.6° and +52.6°$, corresponding to a linear tangential dis-
placement equivalent to 90% of a diameter. This stroke of
large amplitude is however not realistic for real ciliated or-
ganisms as the length of the cilia !and therefore the maxi-
mum distance covered by its tip" is typically several times
smaller than the size of the organism itself.4 In the following
section our optimization approach is adapted to constrain the
maximum displacement amplitude of each surface point, and
we study the maximum achievable swimming efficiency with
a given maximum individual tangential displacement. The
optimal unconstrained stroke obtained above will serve as a
reference for comparison and discussion in the rest of the
paper.

III. STROKE OPTIMIZATION WITH CONSTRAINED
SURFACE DISPLACEMENTS

A. Applying a constraint on the maximum
displacement

The optimization algorithm described in Sec. II can be
adapted to include a constraint on the maximum displace-
ment of individual points on the surface, by modifying the
function to be maximized as

J = -#)$ − -
−1

1

H!T#)$!x0" − c"dx0, !42"

where -#)$ is the efficiency as defined in Eq. !21", T#)$ is a
measure of the amplitude of the displacement of individual
material points for the stroke )!x0 , t", and c is a dimension-
less threshold parameter !a smaller c corresponding to a
stricter constraint". H is defined as

H!u" = 5)1 + tanh+u

6
,*u2. !43"

This form of H, when 5 is large and 6 is small, introduces a
numerical penalization in the cost function only when the
displacement measure T is greater than the threshold value.
Values of 5=104 and 6=10−3 were typically used in our
numerical calculations, with little effect on the final result.

Physically, the constraint T#)$=2#)$ should ideally be
applied, with

2#)$!x0" =
$max!$0" − $min!$0"

2

=
maxt#cos−1!)"$ − mint#cos−1!)"$

2
, !44"

which is the actual displacement amplitude of an individual

point. However, the strong nonlinearity of this measure is not
appropriate for the computation of a gradient in functional
space as presented in Sec. II. An alternative measure of the
displacement is

T#)$!x0" = %!) − %)&"2&

=
1

2'
-

0

2' ))!x0,t" −
1

2'
-

0

2'

)!x0,t!"dt!*2

dt ,

!45"

which is the variance of the displacement along the vertical
axis. Note that in using Eq. !45", we do not strictly enforce
that the maximum displacement along the surface should be
less than a given threshold. In addition, choosing Eq. !45"
instead of Eq. !44" introduces a difference between points
located near the poles !a small change in $ there corresponds
to a much smaller vertical displacement compared to that
obtained with the same angular displacement at the equator".
This is however not an issue as Eq. !45" will still penalize
large amplitude strokes and the constraint applied using Eq.
!45" will be stronger near the equator, where the displace-
ments were observed the largest in the unconstrained prob-
lem !Fig. 4". In addition, a posteriori, an implicit relationship
between c and the actual maximum displacement can be ob-
tained, and c can thus be used as a tuning parameter to con-
strain the maximum amplitude 2max.

Following the same approach as in Sec. II, we consider a
small perturbation .) of a reference swimming stroke )̃. The
resulting change in the cost function J#)$ is obtained as

.J = -
0

2'-
−1

1

F#)̃$!x0,t".)!x0,t"dx0dt , !46"

where the modified gradient F is now

F#)̃$ = F#)̃$ −
5

'
!)̃ − %)̃&"H!#T#)̃$ − c$ , !47"

and the corrected gradient G#/̃$ of the cost function with
respect to / is then obtained from F as in Eq. !38".

B. Results

A number of simulations were performed using a range
of values of c, each with various choices for both 5 and 6.
As expected, we observe that introducing the penalization
and reducing the value of c does indeed reduce the maximum
displacement amplitude of individual Lagrangian points.
This decrease in 2max is found to systematically be associ-
ated with a decrease in the swimming efficiency. The swim-
ming stroke obtained under constrained maximum displace-
ments presents the same structure as the unconstrained case
!see Figs. 8 and 9". The !$ , t" domain can be divided into two
strokes, an effective stroke, where the surface moves down-
ward while stretching, and a recovery stroke, corresponding
to the upward motion of a compressed surface. The maxi-
mum amplitude of displacement is however smaller, as is the
propagation velocity of the shock structure corresponding to
the recovery stroke !Fig. 8". Because of this smaller shock
velocity, the recovery and effective strokes coexist over the
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entire swimming period on different regions of the swim-
mer’s surface, resulting in a smoothing of the swimming
velocity which becomes close to a constant when the con-
straint on 2max becomes tighter !Fig. 10".

For each simulation, the maximum amplitude
2max=max!2#)$!x0"" can be computed together with the
swimming efficiency -. A clear monotonic relationship be-
tween - and 2max is obtained, as shown in Fig. 11 !top". The
dispersion around the main trend is small and due to some
numerical runs converging to local minima. The rightmost
point of the curve corresponds to the unconstrained optimi-

zation presented in Sec. II. Similarly, the swimming velocity
is found to be an increasing function of the maximum tan-
gential displacement in the optimal stroke !Fig. 11, bottom".
It is maximum for the unconstrained stroke !2max152.6°"
with a dimensionless speed of U10.33, corresponding to
about one body-length per period, and is reduced to less than
half a body-length per period when the displacement ampli-
tude is constrained below %30°.

IV. THEORETICAL UPPER BOUND ON THE
SWIMMING EFFICIENCY OF A SQUIRMER

Using the numerical optimization approach described
above, we have obtained an optimal swimming stroke with
an efficiency of %22.2%. We have further shown that con-
straining the maximum displacement of the surface reduces
the swimming efficiency continuously from that maximum
value. In this section, we are addressing the question of
whether the numerical result of about 22.2% is the maximum
achievable efficiency for a periodic swimming stroke. We
show below that, in fact, the theoretical upper bound of 50%
can be reached asymptotically by a singular stroke.

A. Bound on the swimming efficiency and conditions
of equality

The Cauchy–Schwartz inequality states that
%,1

2&3 %,1&2 and the equality can only be reached when
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FIG. 8. Same as Fig. 4 in a constrained-displacement case. Here, the maxi-
mum displacement is 2max110.6°, the mean swimming velocity is %U&
10.058, and the swimming efficiency is -16.2%.

t = 0 t = π/4 t = π/2

t = 3π/4 t = π t = 5π/4

t = 3π/2 t = 7π/4 t = 2π

FIG. 9. !Color online" Same as Fig. 5 in the constrained case. The example illustrated here has a maximum displacement amplitude 2max110.6°, a mean
swimming velocity %U&10.058 and a swimming efficiency -16.2%.
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,1!t"= %,1& is a constant. From the definition of the swim-
ming efficiency - in Eq. !21", we therefore obtain that for
any swimming stroke ),

-#)$ & 1
2 , !48"

and this upper bound can only be reached for the particular
case,

,1!t" = %,1& and ,n!t" = 0 for all n 3 2. !49"

In this case, u$!$ , t"2sin $, and both the surface velocity and
the swimming speed remain constant in time. This stroke
corresponds to the so-called “treadmilling” swimmer38 which
is not time-periodic as the poles are permanent source and
sink of material surface points, which move continuously
from one pole to the other.

However, the treadmill swimmer provides some impor-
tant insight about strokes maximizing the efficiency: ,1 must
be dominant over the other modes to minimize the energy
consumption. This observation is consistent with the relative
mode amplitudes ,n!t" observed in the result of the optimi-
zation procedure !Fig. 6". To guarantee the stroke periodicity,
at least one of the two conditions in Eq. !49" must be vio-
lated. In the following, we build an analytical ansatz that
achieves -=1 /2 asymptotically based on the observation
that the conditions of Eq. !49" need only to be satisfied on
most of the period, the interval where they are violated being
asymptotically of zero measure.

B. Building the analytical ansatz

The analytical ansatz we propose here is formulated as
the superposition of two parts: !a" the outer solution, or ef-
fective stroke, corresponding to the treadmilling swimmer

solution of maximum efficiency, and !b" the inner solution,
or recovery stroke, which is non-negligible only in thin re-
gions of the !t ,$"-plane, with associated velocity fields con-
structed to enforce the time-periodicity of the displacement
of each surface particle.

1. Outer solution

The outer solution satisfies the optimality conditions of
Eq. !49" exactly. The Lagrangian equation of motion of the
surface points is obtained from Eqs. !7" and !16" as

#)

#t
= 7!)2 − 1" with 7 =

3
2
,1, !50"

which can be integrated as

)!x0,t" = tanh+log'1 + x0

1 − x0
− 7t, . !51"

Using the change of variables x=tanh y and )=tanh 8, Eq.
!16" becomes

0 1 2 3 4 5 6

!0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
(a)

(b)

(c)

(d)

(e)

(f)
(g)

t

U(
t)

Case (a) (b) (c) (d) (e) (f) (g)

Θmax 52.6◦ 45.1◦ 34.2◦ 26.9◦ 14.4◦ 11.0◦ 4.26◦

η (%) 22.2 21.0 17.9 15.1 8.33 6.81 2.61
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FIG. 10. Variations of the swimming velocity over a period for optimal
strokes with different maximum displacements. The unconstrained optimal
stroke is represented by a thick black line !a". The values of the maximum
displacement, the swimming efficiency, and the mean swimming velocity
are also given for each case.

FIG. 11. !Color online" Top: swimming efficiency, -, vs the maximum
amplitude in angular displacement of the stroke, 2max. The results of mul-
tiple runs !with different initial conditions or penalizing function param-
eters" have been regrouped into bins. Horizontal and vertical error bars
represent the standard deviation in displacement and efficiency for each
point. The star !blue online" corresponds to the optimal unconstrained swim-
ming stroke of Sec. II. Bottom: swimming velocity vs maximum angular
displacement.
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#8

#t
!y0,t" = − (

n=1

+
2n + 1

n!n + 1"
,n!t"Ln!#tanh!8"$ , !52"

and the outer solution of Eq. !51" corresponds to straight
lines in the !t ,y"-plane #see Fig. 12!c"$,

8!y0,t" = y0 − 7t, − +9 y0 9+ . !53"

2. Shocks and inner solution

The trajectories obtained with the outer solution only are
not periodic since

8!y0,t + 2'" − 8!y0,t" = − 27' . !54"

Here, we construct a time-periodic solution by assuming that
the outer treadmilling solution is valid everywhere except in
thin shocklike regions. We look for shock equations of the
form

xSk
= tanh#:!t + 2k'"$ or ySk

= :!t + 2k'" . !55"

Note that because the shocks are not vertical lines in the
!t ,y"-plane, individual trajectories remain in the shock region
for a finite amount of time, even if the shock width is infini-
tesimal. In the !y , t"-plane, a Lagrangian surface particle will
follow a straight line of slope −7, until it hits one of the
shocks !Fig. 12". The velocity field inside the shock must be
constructed so that this particle then follows the shock and
reemerges when the shock-induced change in y is exactly
;y=2'7.

The change of variables z=y and <= t−y /: positions the
shocks as vertical lines <=2k' in the !< ,z"-plane #see Fig.
12!d"$. The trajectories of Lagrangian particles y=8!y0 , t"
are now rewritten as z==!z0 , t", with

#8

#t
=

#=

#<
+1 +

1
:

#=

#<
,−1

· !56"

In !z ,<" coordinates, the outer solution trajectories in Eq.
!53" become

=!z0,<" = z0 −
7<

1 + 7/:
· !57"

The Eulerian velocity w!z ,<" in !z ,<"- coordinates is now a
function of < only #Fig. 12!d"$ and w!<"=−7: / !7+:" every-
where, except in thin regions near <=2k'. Considering the
Gaussian approximation for .>!<",

.>!<" =
e−<2/>2

>'' , !58"

the solutions of

#=

#<
= w!<" , !59"

with

w!<" =
7:

7 + :
+2' (

k=−+

+

.>!< + 2k'" − 1, !60"

are periodic and equal to the outer solution outside thin re-
gions of characteristic width >. Changing back to variables
!y , t" and !x , t", the ansatz is finally obtained as

#)

#t
= u!x,t" = !1 − x2"3− 7 + !: + 7"

U!x,t"
:

2'7
+ U!x,t"4 ,

!61"

with

U!x,t" = (
k=−+

+

.>+t −
tanh−1 x

:
+ 2k', · !62"

For given values of :, >, and 7, the efficiency of the
corresponding periodic stroke can be computed numerically
by projecting u!x , t" using Eq. !23". The infinite sum in Eq.
!62" can be easily truncated after a few terms as the contri-
bution of larger values of k to the term in brackets is limited
to the vicinity of ?1.

C. Asymptotic convergence to !=50%

The solution of Eq. !61" satisfies the periodicity con-
straint and matches the !optimal" treadmilling swimming
stroke over most of the domain. For a small value of the
shock width >, we numerically sweep the parameter space
!: ,7" and display the map of the corresponding values of the
swimming efficiency in Fig. 13. We observe that when : and
7 become very large, values of the efficiency approaching
50% can be reached. Figure 13 also shows the variations of

(a) Trajectories θ=ϑ(θ0,t)
and shock position

(b) Trajectories x=ξ(x0,t)
and shock position

(c) Trajectories y=χ(y0,t)
and shock position

(d) Trajectories z=ς(x0,τ)
and shock position
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FIG. 12. The construction of the analytical ansatz is illustrated in the four
successive coordinate systems used !a" !t ,$", !b" !t ,x", !c" !t ,y", and !d"
!< ,z". The trajectories corresponding to the outer solution are shown in
dashed lines and thick solid lines show the position of the shocks and inner
solution trajectories #Eq. !55"$. Here, 7=1 and :=0.7, and three swimming
periods are shown.
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- with > for large values of : and 7. We thus obtain that the
value of -=50% can be obtained in the asymptotic limit
where >→0 and : ,7→+.

The first criterion !>→0" is expected because the shock
must be narrow for the measure of the domain where the
outer solution does not hold to be small. In addition, we see
that the shock velocity !:" and swimming velocity !27 /3"
must also go to infinity. This is the result of the nondimen-
sionalization of the equations using the stroke frequency.
When 7→+, the effective stroke accumulates an asymptoti-
cally infinite amount of surface at one pole between two
successive recovery strokes; :→+ corresponds to the recov-
ery stroke taking as little time as possible to bring back this
accumulated surface near the opposite pole, thereby to a
time-periodic stroke. If the swimming velocity had been used
for nondimensionalization, the limit 7→+ would have
corresponded to an infinite spacing between two successive

recovery strokes. The present asymptotic solution with
: ,7→+ therefore matches the treadmill swimmer except for
a time-interval of measure zero. In this singular !and thus,
nonphysical" limit, the entire surface of the sphere travels
from one pole to the other during the effective stroke before
the shock/recovery stroke redistributes the surface points,
corresponding to a maximum displacement amplitude 2max
equal to 90°.

D. Efficiency versus maximum displacement:
Final optimization diagram

We therefore established numerically that for any value
of - less than, but arbitrarily close to 50%, one can find
parameter values for :, 7, and > for which the stroke #Eq.
!61"$ leads to swimming with efficiency -. This upper bound
is therefore reachable asymptotically but the corresponding
stroke is singular. It is therefore not surprising that such a
stroke, where all Lagrangian points accumulate at the south
pole, could not be obtained through the numerical optimiza-
tion procedure presented in Secs. II and III, which is based
on a Lagrangian description of the surface

The analytical approach can however also be used to
confirm the results of our optimization approach for small
values of the swimming efficiency. Equation !61" defines a
family of periodic strokes with three parameters :, 7, and >.
For each stroke, we can compute numerically its efficiency
together with the maximum displacement amplitude 2max.
The envelope curve, or equivalently the maximum efficiency
obtained for a given maximum displacement amplitude, can
then be compared to the results of the optimization procedure
from Secs. II and III. The results of this comparison are
displayed in Fig. 14.
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FIG. 13. !Color online" !Top" Variations of the swimming efficiency ob-
tained for the analytical ansatz, for a sweep in the !: ,7" parameter space,
and a shock width parameter of >=0.05; lines display isovalues of -.
!Bottom" Evolution with > of the efficiency of the analytical ansatz for 7
=1000 !solid" and 7=200 !dashed"; in both cases :=800.
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FIG. 14. !Color online" Final optimization diagram: optimal efficiency of
the swimming stroke, -, as a function of the maximum Lagrangian angular
displacement of the surface, 2max. Squares !green online": result from nu-
merical optimization !the vertical and horizontal error bars denote the vari-
ability from the initial conditions and the weight of the constraint". Star
!blue online": unconstrained optimal swimming stroke with 2max152.6°
and -122.2°. Small black dots: envelope of the results obtained from the
analytical ansatz for >=0.1 and varying : and 7. Large circle !red online":
asymptotic limit of the singular quasitreadmill swimmer of efficiency
-=1 /2 and maximum angular amplitude 2max=90°.
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In the range 0° &2max&52°, solutions can be obtained
both with the analytical ansatz and with the numerical opti-
mization. We see that the maximum efficiency obtained with
the ansatz stroke agrees with the optimal curve obtained in
Sec. III, confirming the validity and form of the bounds on -
introduced by a restriction on 2max in our numerical ap-
proach. Beyond the value 2max=52°, the analytical ansatz
provides an indication of the bound imposed on the effi-
ciency by a weaker restriction on 2max, in a domain not
reachable by our numerical algorithm, and allows us to
continuously link the results of the numerical optimiza-
tion results to the theoretical optimal, but singular, stroke of
-=1 /2.

Figure 14 presents thus the complete optimization dia-
gram, where for each value of 2max, the stroke has been
optimized to lead to the largest possible swimming effi-
ciency, and all values of - from 0 to 1/2 can be obtained. In
particular, we observe that realistic values of the cilia-length-
to-body-length ratio lead to the angular amplitude range
2max15° –15°, which corresponds to optimal strokes of ef-
ficiency in the range -13%–6% comparable to, if not
slightly above, swimming efficiencies expected using flagel-
lar propulsion.1,4

V. PROPERTIES OF OPTIMAL STROKES

In this section, we consider the optimal strokes obtained
numerically using the unconstrained and constrained optimi-
zation algorithms of Secs. II and III and analyze their physi-
cal properties.

A. Lagrangian versus Eulerian quantities

Two points of view can be adopted to analyze the sur-
face deformation of an optimal squirmer. One can either con-
sider the property of a fixed point in the swimmer’s comov-
ing frame characterized by a polar angle $ !Eulerian
formulation" or the property of a given material surface point
indexed by $0 !Lagrangian formulation". A quantity Q can
then be understood and plotted either as a Lagrangian quan-
tity Q!$0 , t" or an Eulerian quantity Q!$ , t". To make this
distinction, $ will be used in what follows for the fixed co-
ordinate and $0 will be used as a Lagrangian label.

The mean position of a given material point $0= %$& is
one of the many possible Lagrangian labels. It is physically
convenient and intuitive because it is expected to correspond
roughly to the position of the cilia base. Note however that
the configuration (!$0 , t"=$0 for all $0, corresponding to the
case where all cilia are vertical at the same time, is never
reached during the stroke period.

In our analysis, we will see that quite different conclu-
sions can be reached when considering the same quantity
from one point of view or the other. This is illustrated below
by looking at the stretching of surface elements. The La-
grangian formulation allows to address the individual behav-
ior of a given material point or cilia tip in time. In contrast,
the Eulerian formulation is more adapted to study the global
properties of the swimming stroke, determined by the collec-
tive behavior of the different surface points.

B. Surface stretching and compression

The difference in the displacement of two neighboring
surface elements induces some periodic stretching and com-
pression of the surface. This stretching can be quantified us-
ing S=#( /#$0, with $0 as the mean position of each surface
point; S*1 !respectively, S91" corresponds to a stretched
!respectively, compressed" surface in comparison with the
reference !mean" configuration. The stretching field S can be
plotted either in Lagrangian coordinates as S!$0 , t" or in Eu-
lerian coordinates as S!$ , t" and both are shown in Fig. 15
for two different strokes !the optimal unconstrained stroke
with -122.2% and the constrained one with -16.2%".

One can see from the comparison of the top and bottom
figures in Fig. 15 that the Lagrangian or Eulerian point of
view fundamentally changes the description of surface
stretching. In the Lagrangian formulation, the stretching of a
material particle appears symmetric, with a particle spending
about as much time compressed than stretched. In the Eule-
rian approach, however, the conclusion is qualitatively dif-
ferent. In this case, a given location experiences a stretching
of the surface for most of the period, with compression being
only achieved during the fast passage of the recovery shock.
We therefore observe a strong symmetry-breaking at the or-
ganism level in stretching and compression, whereas it is
essentially symmetric at the individual cilium level. This
symmetry-breaking, consistent with the discussion presented
in Sec. II E, will be analyzed quantitatively in Sec. V C.

Note in addition that in Fig. 15, by comparing the
stretching maps for the unconstrained and constrained
strokes, we can observe additional changes such as a smaller
velocity of the shock in the constrained case. These proper-
ties will be discussed further in Sec. V D.

C. Symmetry-breaking and collective behavior

1. Individual „Lagrangian… motion asymmetry

We first adopt the Lagrangian point of view to charac-
terize the symmetry or asymmetry in the motion of indi-
vidual surface elements. Quantitatively, different measures of
this asymmetry can be chosen and we focus here on the
following ones:

!1" Temporal asymmetry, measured as the period fraction
during which the material point is moving downward
!respectively, upward",

@1!$0" = log3 <+
#$

#t
!$0,t" * 0,

<+ #$

#t
!$0,t" 9 0,4 . !63"

!2" Maximum velocity asymmetry, defined as the ratio be-
tween the maximum velocities of the material point in
each direction,

@2!$0" = log5 mint+ #$

#t
!$0,t",

maxt+ #$

#t
!$0,t",5 . !64"
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!3" Individual trajectory eccentricity, defined as the distance
of the turning points to the mean position

@3!$0" = log+$max!$0" − $0

$0 − $min!$0" , · !65"

These three quantities are plotted as functions of the La-
grangian coordinate, $0, on Fig. 16. A logarithmic scaling is
used so that @p=0 corresponds to the symmetric situation and
opposite sign @p corresponds to the same amplitude of asym-
metry in opposite directions. Regardless of the chosen asym-
metry measure, we see that it vanishes near the poles, and the
equatorial points correspond to local minima of the asymme-
try. The maximum individual asymmetry is reached around
$0140° –45° and this maximum is more pronounced for @2
and @3 measuring a displacement asymmetry than for the
temporal asymmetry factor, @1. We also see that @1 and @2 are
positive everywhere !except near the poles, where the very
small displacements make the asymmetry measurements ir-
relevant", while @3 has opposite sign depending on the hemi-
sphere, showing an eccentricity of the individual trajectories
directed toward the equator.

The value of the temporal asymmetry, @1, is rather small
and uniform for individual particles !@110.2 corresponds to
a 20% asymmetry in the velocity sign" confirming the near-
symmetry observed in the map of surface velocity displayed
in Fig. 16!a". Individual cilia spend thus about the same time
moving in either direction, but a slight asymmetry is ob-
served, with about 20% more time spent performing the ef-

fective stroke !positive #$ /#t". As a consequence, the maxi-
mum velocity achieved is greater during the recovery stroke
!positive @2". Our results are in contrast with previous studies
reporting a recovery stroke longer than the effective stroke at
the individual cilia level.14 We believe that this difference is
a consequence of the similar representation, in the envelope
model, of the drag exerted by individual cilia during the
effective and recovery strokes, respectively. This property of
the envelope model and its resulting limitations will be fur-
ther discussed in Sec. VI.

2. Group „Eulerian… asymmetry

Although individual material points display a near-
symmetric motion over the whole period, the collective be-
havior of the different surface elements and the phase differ-
ence in their motion leads to a symmetry-breaking at the
organism level. This was illustrated above by considering the
stretching/compression parameters S in both Lagrangian and
Eulerian coordinates, and observing that the near-symmetric
Lagrangian patterns show significant Eulerian asymmetry.

A similar disparity is apparent between the Lagrangian
#Fig. 16!a"$ and Eulerian #Fig. 17!a"$ tangential velocity
maps. The Eulerian asymmetry can be quantified using the
normalized temporal asymmetry ratio @̃1, the Eulerian
equivalent to @1 #Eq. !63"$,

Optimal unconstrained Optimal constrained
η ≈ 6.2%, Θmax ≈ 10.6◦, 〈U〉 = 0.058η ≈ 22.2%, Θmax ≈ 52.6◦, 〈U〉 = 0.33

t

t t

t

θ0 θ0

θθ

FIG. 15. !Color online" !Top" Lagrangian map in the !$0 , t" plane and !bottom" Eulerian map in the !$ , t" plane of the stretching parameter S for the
unconstrained swimming stroke !left" and the result of constrained optimization with efficiency 6.2% and maximum displacement 10.6° !right".
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@̃1!$" = log) <!u!$,t" * 0"
<!u!$,t" 9 0"* , !66"

and the results are shown on Fig. 17!b". We observe a sig-
nificant increase of this asymmetry factor in comparison to
the individual asymmetry measurement shown in Fig. 16!b".
While individual material points spend only a maximum of
20% more time performing the effective versus the recovery
stroke, a fixed Eulerian location on the swimmer near the
equator is part of the effective stroke for 90% of the period.
Note that while the results of Figs. 16 and 17 are shown for
the unconstrained optimal stroke, similar behavior is ob-
served for the strokes with constrained-displacement ampli-
tudes.

In optimal strokes, although the motion of individual
points on the swimmer surface is roughly symmetric, the
collective behavior of all surface points displays a global
symmetry-breaking between the two phases of the swimming
stroke !effective and recovery". As discussed in Sec. IV, such
breaking of the front-back symmetry in the squirming dy-

namics is essential to efficient swimming in order to ensure
that the effective stroke dominated by the swimming mode
covers most of the !$ , t"-plane.

D. Modal decomposition of the optimal stroke and
wave propagation

The emergence of global asymmetry from near-
symmetric individual motion typically occurs when the indi-
vidual displacement is harmonic with a spatially varying
phase. For example, trajectories of the form

$ = (!$0,t" = $0 + a!$0"cos!t − $0/v$" !67"

would correspond to exactly symmetric individual trajecto-
ries, but for sufficiently large amplitude a!$0", nonsymmetric
collective behavior is observed, thereby breaking the sym-
metry between upward and downward strokes !see Fig. 7".

1. Complex empirical orthogonal function
decomposition

The symmetry-breaking identified in the optimal strokes
is associated with a propagating wave reminiscent of the
metachronal waves observed on the surface of many ciliated
organisms.4 Here, we confirm the existence of this wave and
quantify its properties through the use of a complex modal
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FIG. 16. !Color online" Asymmetry in the motion of individual surface
points !Lagrangian approach". !a" Lagrangian velocity map, u$!$0 , t". !b"
Asymmetry in the motion of individual material points measured as: the
ratio of the period fraction with upward or downward velocity @1 !solid", the
ratio of the maximum !in absolute value" positive and negative velocities @2
!dashed-dotted", and the excentricity of individual trajectories @3 !dashed".
All three measures are plotted for the unconstrained stroke !-122.2% and
2max152.6°".
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FIG. 17. !Color online" !a" Surface velocity map of the Eulerian velocity,
u$!$ , t". !b" Eulerian asymmetry measured as the ratio @̃1!$" #Eq. !66"$ be-
tween the period fractions where the velocity at a fixed point is directed
upward vs downward. Data plotted for the optimal unconstrained stroke
!-122.2% and 2max152.6°".
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decomposition.40 This method is based on the extension of
classical empirical orthogonal functions !EOF" !also known
as proper orthogonal decomposition" to complex variables,
and is well-designed to study propagating two-dimensional
wave patterns.41

In the classical EOF method, a function of space and
time, f!$0 , t", is decomposed in a series of modes,

f!$0,t" = (
n

ãn!$0"b̃n!t" , !68"

designed in such a way that truncation of the infinite sum at
any order N minimizes the L2-norm of the remainder. The
CEOF decomposition performs the classical EOF decompo-
sition on the Hilbert transform F!$0 , t" of f!$0 , t". This tech-
nique is used here to study the displacement of surface points
from their mean position $0, which is decomposed as

(!$0,t" − $0 = Re)(
n

An!$0"Bn!t"*
= (

n
an!$0"bn!t"cos#An!$0" − /n!t"$ . !69"

This method is particularly powerful for our time-
periodic problem. For all the optimal swimming strokes ob-
tained in Secs. II and III, the first mode is so dominant that
the error introduced by restricting the sum in Eq. !69" to the
first mode is found to be less than 1%–2%. The characteris-
tics !temporal and spatial amplitude, and phase functions" of
this first mode are shown in Fig. 18 for both the uncon-
strained and constrained optimal strokes with decreasing dis-
placement amplitude. Note that the definition of an and bn in
Eq. !69" is not unique and one is free to choose a normaliza-
tion for one of these functions. We chose to normalize the

temporal amplitude so that %b1&=1. Similarly, the phase func-
tions A1 and /1 are defined up to an arbitrary additive con-
stant.

2. Propagating wave mode and phase velocity

In all cases plotted on Fig. 18, the temporal phase /1!t"
is found to be a linear function of time with unit slope, which
is consistent with the 2'-stroke period. The spatial phase
A1!$0" varies also linearly, except in narrow regions near the
poles. Outside these polar regions, the first complex empiri-
cal orthogonal function !CEOF" mode is therefore a progres-
sive wave of phase velocity

V$ = /̇1/A1!, !70"

where dot and prime denote, respectively, a differentiation
with respect to t and $0. This phase velocity can be under-
stood either as an angular velocity or a linear tangential ve-
locity along the swimmer surface !in radii per unit time".
Equivalently, the wavelength B of the optimal surface defor-
mation is defined as

B = 2'/A1! = 2'6V$6 , !71"

as the wave period is equal to 2'.
As the constraint on the maximum displacement 2max is

stiffened !and the swimming efficiency is reduced", the mag-
nitude of the wave velocity V$ and wavelength B are reduced
!A1! increases". The modal decomposition is used to deter-
mine the phase velocity for all the optimal strokes presented
in Sec. III, and the dependence of B !or V$" with 2max is
shown on Fig. 19. The maximum wave velocity is reached
for the stroke of maximum efficiency !and displacement", for
which the phase velocity magnitude is approximately equal
to 0.67 !in radians" corresponding to a wavelength of about
four radii !or two body lengths". For the stroke with smallest
amplitude shown in Fig. 18, the phase velocity magnitude is
reduced to about 0.27 corresponding to a wavelength of
about 1.5 radii. Note that this reduction of the phase velocity
and wavelengths with the stiffness of the constraint on the
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FIG. 18. Amplitude and phase characteristics of the dominant CEOF mode
in the unconstrained swimming stroke of maximum efficiency !thick solid
line: 2max152.6° and -122.2%" and in constrained optimal strokes !thin
lines": 2max144° and -121% !dashed", 2max125° and -112.5%
!dashed-dotted", 2max111° and -16.8% !dotted".

FIG. 19. !Color online" Variation of the wavelength B !or phase velocity
6V$6=B /2'" measured along the surface of the spherical swimmer, with the
maximum angular displacement, 2max. The star !blue online" corresponds to
the unconstrained optimal swimming stroke of Sec. II.
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maximum displacement was also apparent by comparison of
the slope of the recovery shock in Figs. 4 and 8.

The phase velocity of the wave is negative in $ !or posi-
tive in x" corresponding to a wave always traveling toward
the north pole, in the same direction as the swimming veloc-
ity, and thus in the opposite direction to the effective stroke.
Such metachronal waves are known as antiplectic.4,5 This
result is consistent with Taylor’s swimming sheet model for
which the swimming velocity and the wave velocity have
same direction for tangential deformations,3,35,42 whereas
normal displacements lead to wave and swimming velocities
of opposite directions !symplectic metachronal waves".3,26

Note finally that the waves quantified above are defined
in terms of $0 and t. The phase velocity is thus measured
using the Lagrangian label rather than the actual instanta-
neous position of the cilia. Because the amplitude of beating
is not small, this introduces a small difference between the
quantitative measure of the phase velocity we propose and
the phase velocity visually assessed, for example, from Fig.
4. A formal wave analysis in Eulerian coordinates leads to
insignificant changes to the conclusions of the Lagrangian
analysis.

3. Mode amplitude

The structure of the dominant mode presented on Fig. 18
also characterizes the amplitude of the tangential motion
through the spatial and temporal amplitude functions a1!$0"
and b1!t". The temporal amplitude was normalized to unit
mean value so that the spatial amplitude provides the physi-
cal value of the amplitude of displacement. We see that the
departure from unity of b1 is small confirming the structure
of the dominant mode as a traveling wave with spatial varia-
tions of its amplitude.

The spatial amplitude a1 is observed to match very well
the function 2!$0" obtained for each value of $0 as the am-
plitude of motion of the particular Lagrangian point. For the
unconstrained stroke it is maximal at the equator. As the
constraint on maximum displacement is stiffened, the spatial
amplitude is reduced !2max in Figs. 11 and 14 corresponds to
the peak of this curve" and its profile is flattened. As strokes
with smaller 2max are considered, the displacement ampli-
tude of individual surface elements displays smaller dispari-
ties between equatorial points and the rest of the surface.
Due to the spherical symmetry, the shape function a1 must
go to zero near the poles and can therefore not be constant
over the whole surface of the swimmer. However, we notice
that for the most constrained case plotted in Fig. 18 the spa-
tial amplitude is close to 2max for 30° &$0&150°. This re-
sult is particularly interesting as the strokes of ciliated mi-
croorganisms correspond to the lower end of the 2max-range
considered here, where the shape function is the flattest. In
such cases, the surface elements display, apart from the
poles, a constant amplitude along the swimmer. This is con-
sistent with the physical intuition that individual cilia do not
“know” whether they are located near the pole or the equator
and therefore, the beating properties !other than the phase"
should be expected to be constant over the surface of the
organism.

4. Scaling of the swimming-to-wave velocity ratio

In the limit of small-amplitude displacements, the swim-
ming sheet model first introduced by Taylor shows that the
swimming velocity !scaled by the wave propagation speed"
is a quadratic function of the displacement amplitude.3,26

This scaling also applies to surface motions of larger ampli-
tudes, and for a large variety of ciliated microorganisms, it
has been established that U /c2,!kl"2 with ,20.25−0.5
and c is the wave velocity, l is the cilia length, and k is the
wave number !see Fig. 20 in Ref. 4". We plot in Fig. 20 the
variations of U / 6V$6 with kDmax where Dmax=2max is the
maximum linear displacement amplitude and k=1 / 6V$6 is the
wavenumber of the optimal strokes !the stroke period and
swimmer’s radius have been normalized to 2' and 1, respec-
tively". We observe the same quadratic scaling of U / 6V$6
with kDmax, with a numerical prefactor which lies in the
same range.

A few comments must however be made. First, the re-
sults of Fig. 20 in Ref. 4 use the length l of an individual
cilium rather than the maximum displacement. For most cili-
ated organisms, a good estimate of the cilia length is ob-
tained as l22Dmax.

4 In addition, most ciliated organisms re-
viewed in Ref. 4 are not spherical but actually elongated in
the swimming direction !such as the one shown in Fig. 1".
For such an organism, the wave velocity along the surface is
very close to its component along the swimming direction,
while these quantities differ by a factor ' /2 on a sphere. The
factor U /Vx is therefore increased if the projection Vx of 6V$6
along ex is considered. As a result of these rescalings, one
would find that U /c10.1–0.2k2l2, which is close but not
exactly similar to the U /c10.25−0.5k2l2 obtained in Ref. 4.
Additionally, we observe that the optimal strokes correspond
to waves traveling faster than the swimming velocity, while
many microorganisms show much slower wave speeds !re-

FIG. 20. !Color online" Ratio of the swimming velocity to the wave speed,
U /V$, as a function of the maximum tangential displacement multiplied by
the optimal wave number. As in other figures, results are binned and error
bars are given both horizontally and vertically. The star !blue online" corre-
sponds to the unconstrained optimal swimming stroke of Sec. II. The two
solid lines correspond, respectively, to U /V$= !kDmax"2 /4 and U /V$

= !kDmax"2 /24.
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sulting in U / 6V$6*1". This limitation was already mentioned
in Ref. 5 and points to the limits of the envelope model.

VI. DISCUSSION

In this paper we have considered a spherical envelope
model !so-called squirmer" to investigate energetics in cilia
dynamics and locomotion. Allowing only tangential but
time-periodic deformations, we have used an optimization
method based on a variational approach to derive computa-
tionally the stroke leading to the largest swimming effi-
ciency. The optimal stroke was shown to display weak La-
grangian asymmetry, but strong Eulerian asymmetry,
indicative of symmetry-breaking at the whole-organism
level, but not at the level of individual cilia. We then added a
constraint in the optimization approach to penalize large-
amplitude deformation of the surface, together with a nu-
merical ansatz, and derived a complete optimization diagram
where all values of the swimming efficiency between 0% and
50% !mathematical upper bound" could be reached. We were
also able to construct a swimmer which is 50% efficient,
although it is mathematically singular. The deformation ki-
nematics of the optimal strokes were always found to be
wavelike, which we analyzed using a formal modal decom-
position approach and is reminiscent of metachronal waves
in cilia arrays.

Our optimization procedure always leads to swimming
strokes displaying antiplectic waves. This is, in fact, an in-
trinsic feature !and admittedly, a limitation" of the squirmer
envelope model. In a real ciliated organism, the effective and
recovery strokes correspond to very different shapes of the
individual cilium.4,5 This asymmetry defines the effective
and recovery strokes, independently from the coordination of
neighboring cilia. In the present envelope model, such an
asymmetry is not represented, as only the tangential dis-
placement of cilia tips is prescribed, and thus the effective or
recovery nature of the stroke is determined by the collective
behavior.

Previous calculations in the limit of small deformations
and harmonic waves for the swimming sheet model4,42 or the
squirmer model35 have shown that the swimming velocity is
always oriented in the same direction as the propagating
wave. A physical argument leading to the same conclusion in
the squirmer geometry can be proposed as follows. In the
envelope model with tangential displacements, the half-
stroke in the direction of the wave propagation corresponds
to a compression of the surface. The definition of the average
swimming velocity from Eq. !23" as a geometrically
weighted-average of the Eulerian surface velocity identifies
the effective stroke !of opposite direction to the swimming
velocity" as the stroke where the surface is stretched because
it occupies a greater part of the velocity map in the Eulerian
!$ , t"-plane #see Fig. 17!a"$. The wave and the effective
stroke therefore have opposite directions and the metachro-
nal wave is antiplectic.

This can also be seen mathematically. For the general
swimming strokes in Eq. !67", we can obtain using Eq. !23"
that

%U& # v$ = −
1

4'
-

0

'-
0

2'

7a!$0"g!!t − $0/v$"

#sin#$0 + a!$0"g!t − $0/v$"$82dtd$0 9 0.

!72"

As a result, a deformation wave traveling from the south to
the north pole !v$90" imposes a northward swimming ve-
locity in the same direction as the wave. Although we do not
prove this result here for arbitrary periodic functions (!$0 , t",
it appears to be a general result. The simplified assumptions
of the envelope model used here therefore prevent us to con-
clude on the relative efficiency of both types of metachronal
waves.

Our work was but a first attempt at an optimization ap-
proach to cilia dynamics and could be extended in a variety
of ways. First and foremost, one should allow deformations
normal to the swimmer surface to take place. In that case the
swimmer would display time-periodic shape changes, and
the spherical-harmonics framework will no longer be appli-
cable. A full numerical approach would thus have to be
implemented to derive the instantaneous swimming speed
and energetics. Another possible extension would allow for
nonaxisymmetric deformation to occur, in which case the
swimming kinematics would also be including a rotation.
The dissipation arguments presented in Ref. 35 suggest that
any such rotation would be suboptimal, but it would be in-
structive to also obtain that result from an optimization ap-
proach !see also Refs, 36 and 43". The straightforward ex-
tension of our results to other shapes with tangential
deformations, in particular prolate spheroidlike, would also
be biologically relevant. Finally, one should consider other
biologically relevant transport quantities, such as the flux of
nutrients transported by the swimming-induced flow.
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