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brothers, Laurent and Stéphane, for their continuous encouragement and affection

throughout the years even after I moved to the other side of the world.

I would like to thank my research advisor, Stefan Llewellyn Smith, for his

support and advice from our first meeting at Ecole Normale Supérieure in Paris

throughout the four years of my PhD. He offered his guidance and encouragement

when I needed them the most, while at the same time teaching me to be an

independent scientist. I would also like to extend my gratitude to Eric Lauga for

many helpful conversations over the last couple of years, for his valuable feedback

on my work and his insight on the international academic world and for making

me discover low-Reynolds number locomotion.

I am also grateful to my other doctoral committee members for accepting

to follow the progression of my work and offer precious comments and advice

on the direction of my research. I would like to thank Paul Linden from whom I

learned a lot about environmental flows and the peer-reviewed scientific publishing

process, Bill Young for several helpful discussions on conservation laws in point

vortex models and Qiang Zhu for his valuable expertise on solid dynamics and fish

swimming. I would like to extend my gratitude to Glenn Ierley whose availability

and helpful suggestions on spectral methods were much appreciated.

I would like to thank Laurent Jacquin and Patrick Huerre for their encour-

xv



agement and guidance, while at Ecole polytechnique and, later on, when applying

for graduate school, as well as Marie-Solange Tissier and Ecole des Mines de Paris

for their mentoring and support.

I would finally like to thank all my friends, here in San Diego and back

in France, for their support and all that we have shared.

I would like to acknowledge the generous support of Joan and Irwin Jacobs

through the Jacobs Graduate Fellowship. The research presented in this disserta-

tion was also supported by the National Science Fundation (award CTS-0133978)

and the Human Frontier Science Program (Research Grant RGY 0073/2005).

Chapter 2 and Chapter 3, in part, have been published in Theoretical and

Computational Fluid Dynamics, “An unsteady point vortex method for coupled

fluid-solid problems” by S. Michelin and S. G. Llewellyn Smith, 2009, 23, 127–

153, (Springer), doi:10.1007/S00162-009-0096-7. The dissertation author was the

primary investigator and author of this material.

Some material drawn from Chapter 3 and Chapter 4 has been accepted

for publication in Theoretical and Computational Fluid Dynamics, “Falling cards

and flapping flags: understanding fluid-solid interactions using an unsteady point

vortex method” by S. Michelin and S. G. Llewellyn Smith, 2009 (Springer), doi:

10.1007/S00162-009-0117-6. The dissertation author was the primary investigator

and author of this material.

Chapter 4, in part, has been published in the Journal of Fluid Mechan-

ics, “Vortex shedding model of a flapping flag” by S. Michelin, S. G. Llewellyn

Smith and B. J. Glover, 2008, 617, 1–10 (Cambridge University Press), doi:

10.1017/S0022112008004321. The dissertation author was the primary investi-

gator and author of this material.

Chapter 5, in part, has been accepted for publication in the Journal of

Fluids and Structures, “Linear stability analysis of coupled parallel flexible plates

in an axial flow” by S. Michelin and S. G. Llewellyn Smith (Elsevier Science),

doi:10.1016/j.jfluidstructs.2009.06.002. The dissertation author was the primary

xvi



investigator and author of this material.

Chapter 6, in part, has been published in Physics of Fluids, “Resonance

and propulsive efficiency of a heaving flexible membrane” by S. Michelin and S.

G. Llewellyn Smith, 2009, 21 (7), 071902, (American Institute of Physics), doi:

10.1063/1.3177356. The dissertation author was the primary investigator and au-

thor of this material.

xvii



VITA
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Sébastien Honoré Roland Michelin

Doctor of Philosophy in Engineering Sciences (Aerospace Engineering)

University of California, San Diego, 2009

Professor Stefan G. Llewellyn Smith, Chair

The coupling between the motion of a solid body and the dynamics of the

surrounding flow is essential to the understanding of a large number of engineering

and physical problems, from the stability of a slender structure exposed to the

wind to the locomotion of insects, birds and fishes. Because of the strong coupling

on a moving boundary of the equations for the solid and fluid, the simulation of

such problems is computationally challenging and expensive. This justifies the

development of simplified models for the fluid-solid interactions to study their

physical properties and behavior.

This dissertation proposes a reduced-order model for the interaction of

a sharp-edged solid body with a strongly unsteady high Reynolds number flow.

In such a case, viscous forces in the fluid are often negligible compared to the

fluid inertia or the pressure forces, and the thin boundary layers separate from the

solid at the edges, leading to the shedding of large and persistent vortices in the
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solid’s wake. A general two-dimensional framework is presented based on complex

potential flow theory. The formation of the solid’s vortical wake is accounted for by

the shedding of point vortices with unsteady intensity from the solid’s sharp edges,

and the fluid-solid problem is reformulated exclusively as a solid-vortex interaction

problem.

In the case of a rigid solid body, the coupled problem is shown to reduce

to a set of non-linear ordinary differential equations. This model is used to study

the effect of vortex shedding on the stability of falling objects.

The solid-vortex model is then generalized to study the fluttering insta-

bility and non-linear flapping dynamics of flexible plates or flags. The fluttering

instability and resulting flapping motion result from the competing effects of the

fluid forcing and of the solid’s flexural rigidity and inertia. Finally, the solid-vortex

model is applied to the study of the fundamental effect of bending rigidity on the

flapping performance of flapping appendages such as insect wings or fish fins.

xxi
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Introduction and thesis outline

In comparison with the vast literature available on the dynamics of solids

in vacuum or the motion of fluids in infinite or fixed-wall domains, research at the

interface of these two subjects on the coupled dynamics of fluids and solids is rather

recent. Such problems are concerned with the coupled motion of a solid and the

surrounding fluid or the coupled motion of an enclosed flow and its boundaries. As

will be pointed out in the next Chapter, the understanding of such situations can

be particularly difficult when the dynamics are strongly coupled — when it is not

possible for example to neglect the motion of the solid boundary when solving for

the fluid flow, or when the fluid effect on the solid’s motion cannot be understood

without solving in detail for the fluid motion.

Such coupled situations are nonetheless present in almost every engineer-

ing domain. Only a few examples are listed below. The instability resulting from

the interaction between the wind forcing and the structural response of the Tacoma

Narrows bridge that eventually led to its collapse is a dramatic famous example

of the importance of fluid-solid interactions in the design of slender structures

like bridges. Winds also interact with vegetation and influence the development

of plants and their individual or collective behavior (de Langre, 2008). The dy-

namics of flexible pipes conveying fluids is another classical example of a strongly

1
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coupled fluid-structure interaction problem that can lead to divergence or flutter

instabilities of the whole system also known respectively as the “garden-hose” and

“fire-hose” instabilities (Paidoussis, 1998). In blood circulation, the elasticity of

the arterial walls is an important element in the regulation of the pulsatile blood

flows throughout the whole organism, and a weakening of these elastic proper-

ties can be responsible for the formation of aneurysms (see for example Lasheras,

2007). Fluid-solid interactions are also an essential element of locomotion in fluids

for biological species such as birds, insects, fishes and bacteria (Childress, 1981;

Triantafyllou et al., 2000; Wang, 2005), but also for man-made applications such

as aircrafts and helicopters.

The coupling between the fluid and solid motions, though always present,

can have a more or less important effect on the resulting dynamics of the solid,

depending on the relative order of magnitudes of the fluid and solid properties.

For example, if Tel, Tsolid and Tfluid represent respectively the characteristic time-

scales associated with the solid’s internal dynamics (e.g. periods of elastic waves

on the body surface), the solid’s motion (e.g. the flapping period of an insect

wing) and the fluid’s motion (e.g. a typical time-scale of the flow far from the

body or relaxation time of the flow dynamics due to a change in the position of

the boundaries), then different regimes can be identified (de Langre, 2001). If

Tel � {Tfluid, Tsolid}, then the effect of flexibility can probably be neglected to

a good approximation, as the deformation waves along the solid body propagates

almost instantaneously compared to the outside flow time scale. The solid can then

be treated as rigid. If Tfluid � Tsolid, then the rate of change in the flow at infinity

can be neglected compared to the rate of change induced by the solid’s motion. On

the other hand, if Tfluid � Tsolid, then the fluid flow adapts almost instantaneously

to the displacement of the solid boundary and quasi-steady approximations for the

fluid forces using drag coefficients might be used instead of solving for the full fluid

dynamics.

In strongly coupled fluid-solid interactions, the fluid and solid responses
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occur on similar time scales. Then steady results for the fluid forces on the solid

derived in steady or quasi-steady settings are in general no longer valid. This

dissertation focuses on such configurations, in which the motions of the solid and

of the surrounding fluid are strongly coupled. The theoretical analysis of such

configurations is challenging because of the unsteadiness of the coupled motions

and the nonlinearities of the problem due to the large displacement of the solid

boundaries. The computational simulation of such fluid-solid interactions is also

difficult, partly for the same reasons.

This dissertation presents the study of several fluid-solid interaction prob-

lems using a reduced-order model for the flow dynamics. Such an approach falls

between the full numerical simulation and the empirical application of steady re-

sults such as lift and drag coefficients to unsteady cases. It avoids the computa-

tional cost and complexity of the former while providing a more rigorous approach

to the fluid dynamics than the latter. Using particular properties of the flow field,

when viscous effects are limited to the formation of strong vortices from the solid’s

edges, we study the motion of both rigid and flexible bodies. Our interest lies both

in the stability of the fluid-solid system and the nonlinear dynamics resulting from

potential instabilities.

The dissertation is organized as follows. In Chapter 2, an overview of

high-Re fluid-solid interaction problems is presented, together with computational

challenges related to the strong coupling of the fluid and solid motions. Some nu-

merical techniques that have been developed for these strongly coupled problems

are also briefly introduced. Examples of reduced-order models for such problems

are presented. Such models are particularly useful to obtain qualitative and quanti-

tative information on the main physical phenomena involved, but the assumptions

of each model must be carefully studied with respect to the particular regime con-

sidered. Here, we focus on two-dimensional fluid-solid interaction for which the

flow is characterized by the shedding of vortex structures from sharp edges on the

solid body. An inviscid model is presented based on a representation of the wake
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of the solid using point vortices with unsteady intensity.

Chapter 3 then applies this reduced-order model to the motion of a rigid

body. Taking advantage of the time-independent solid geometry and using the

unsteady point vortex model, the fluid-solid problem is reduced to a set of non-

linear ordinary differential equations (ODE) for the solid and the vortices. This

framework is then used to study the experimentally-observed destabilizing effect

of vorticity shedding on the broadside-on fall of a thin card.

The remainder of the dissertation is concerned with deformable elastic

objects. The fluid-solid interaction becomes more complex as the number of degrees

of freedom in the body motion becomes large or infinite. One now needs to solve

not only for the center of mass position and general orientation of the body, but also

for its internal dynamics. Chapters 4 through 6 consider flexible structures with

internal bending rigidity and infinitely small thickness (referred to as plates, sheets

or flags), and placed in parallel flows (or equivalently, pulled at a constant velocity

through a fluid at rest). In Chapter 4, the flag is clamped at its leading edge

and can move passively under the combined actions of the flow and of its internal

elasticity. The fluttering instability leading to the flapping mechanism of flexible

flags is investigated, as well as the characteristics of the flapping motion. The

case of one flag is presented in detail, and some insight on the coupled dynamics

of two parallel plates is presented, particularly the nature of the observed coupled

modes. The flow is described using the point vortex approach presented in Chapter

2. The nonlinear description of the solid dynamics allows us to consider large

displacements of the sheets, not only their linear stability.

Chapter 5 then proposes a theoretical investigation of the linear stability

of plate assemblies. The focus lies on small-amplitude motions and on the linear

stability of an array of Q parallel plates clamped at their leading edge in a parallel

flow. The nature of the coupled modes and the influence on the overall stability

of the relative distance is investigated in detail for two and three plates and some

general results are drawn in the case of Q plates.
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In Chapter 6, the effect of solid flexibility on the propulsive performance

of a flapping apparatus is investigated, by generalizing the model of Chapter 4

to the case of a heaving flexible sheet. The sheet is here a representation of a

two-dimensional section of an insect wing. At the leading edge, the motion and

orientation is imposed by the operator (the insect), and the remainder of the wing

reacts passively to this forcing, under the influence of its inertia, of its rigidity and

of the flow forcing.

Finally, Chapter 7 summarizes the main conclusions of the present dis-

sertation on both the point vortex method and the particular fluid-solid problems

considered throughout this work. The applicability and limits of the point vortex

model are discussed as well as possible extensions of this model to other problems

where its significantly-reduced computational cost and low order representation of

the solid’s wake makes it attractive.
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A reduced-order model for
high-Re fluid-solid interactions

2.1 Introduction and motivation

Complex interaction phenomena can arise from the coupled motions of a

solid body and a surrounding fluid, such as the trajectories of falling tree leaves

and paper cards (Willmarth et al., 1964; Smith, 1971; Field et al., 1997; Belmonte

et al., 1998; Mahadevan et al., 1999; Andersen et al., 2005b) or the wind-induced

flapping of flags (Zhang et al., 2000; Watanabe et al., 2002b; Balint and Lucey,

2005; Shelley et al., 2005; Eloy et al., 2008).

In both cases, the motion of the solid is significantly modified by the

presence of a surrounding flow, and its motion can only be understood by solving

for the fluid and solid dynamics together. For example, solving the equation for

the falling paper card without including any fluid effect would lead to the classical

result of Newtonian mechanics that the card falls along a straight vertical line

without any rotation and with velocity increasing linearly in time. This behavior

would be strictly independent of the mass of the card. We know from our daily

experience of falling tree leaves that this prediction is incorrect and the effect of

the fluid must be taken into account. For a falling sphere, the presence of the

fluid could be included to a good approximation, and without solving for the fluid

motion explicitly, by including a linear or quadratic drag force. Such a model

6
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based solely on viscous drag forces could be adapted to the geometry of a card

by changing the drag coefficient. However, it is unable to reproduce such complex

trajectories as tumbling and fluttering regimes. In particular, for a thin solid, a

more detailed description of the unsteady fluid motion and of its coupling to the

solid’s is necessary. This very simple physical situation, sometimes referred to

as Maxwell’s problem (Maxwell, 1854), illustrates the complexity of representing

properly fluid-solid interactions. In Chapter 3, we revisit this problem using the

particular reduced-order method presented at the end of this Chapter.

The Reynolds number, defined as Re = UL/ν, with U the characteristic

flow velocity, L the typical dimension of the solid body and ν the kinematic viscos-

ity of the fluid, is a measure of the relative importance of inertial and viscous forces

in the flow. In both the falling card and flapping flag problems, Re is large enough

for viscous effects to be confined in thin boundary layers close to the surface of the

solid.

High-Re fluid-solid interactions are essential for aerial and aquatic biolog-

ical locomotion: birds, insects and fishes flap their wings and fins to create around

them a flow able to generate the thrust and lift forces necessary to their motion

in their environment (Triantafyllou et al., 2000; Wang, 2005). Understanding the

physical mechanisms involved in such locomotion schemes is an ongoing challenge

from both a biophysical and an engineering point of view. If the dynamics of a

gliding bird can resemble the fixed-wing aerodynamics and lift generation at the

core of aircraft design, most other bird flight maneuvers such as take-off and land-

ing, and flapping flight techniques used by insects belong to a completely different

range of physics, as they are fundamentally unsteady (Childress, 1981). In the

same way, fishes use strongly unsteady stroke patterns to create their swimming

motion, and differ significantly from man-made underwater vehicles whose propul-

sion and maneuvering are based, like an aircraft’s, on the physics of steady flows

over profiled elements (rudders and propeller blades). As engineers have recently

dedicated a lot of research efforts on the development of new and more energy-
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efficient propulsion schemes, biomimetic designs seem particularly attractive and

require a better understanding of the physics involved in such locomotion modes.

The interest for insect flight mechanisms has also been greatly enhanced in the

recent years by the development of unmanned micro-aerial vehicles, whose signifi-

cantly reduced weight compared to a traditional aircraft makes them more suitable

for unsteady flapping flight.

Much remains to be understood on the dynamics of a single fish or insect

in an otherwise uniform flow, but also on hydrodynamical mechanisms leading

to potential reduction in the energy consumption. Some fish species have been

observed to take advantage of the vortex street created by the flow over obstacle

or other fishes to maintain a stationary position at lower energy cost (Liao et al.,

2003a,b). Recent experimental (Beal et al., 2006) and numerical studies (Eldredge

and Pisani, 2008) have shown that a fish can swim passively upstream in the vortex

street created by a cylinder.

Several other experimental studies have emphasized the possibility of gen-

erating locomotion from passive fluid-solid interactions. In an experiment by Van-

denberghe et al. (2004, 2006), a purely vertical heaving motion of a horizontal

plate was observed to generate a transverse motion. This symmetry breaking was

investigated numerically by Alben and Shelley (2005). Childress et al. (2006) con-

sidered a passive artificial paper bug able to hover in an oscillating air column. We

understand here by passive locomotion a situation in which the motion of the solid

body (or the propulsive force) in a particular direction results from the interaction

with the fluid – a forcing can be applied by an operator but in another direction

(e.g. vertical heaving motion generating a horizontal velocity).

The present dissertation focuses on such high-Re fluid-solid problems,

where viscous effects are limited to thin boundary layers around the solid and

most of the fluid action on the solid is the result of pressure forces created by

the highly unsteady flow. Several particular applications will be discussed: the

fall of a rigid paper card (Chapter 3), the stability and flapping of elastic solids
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exposed to parallel flows (Chapters 4 and 5) and propulsion using a flexible wing

(Chapter 6). The last topic is closely related to the biological locomotion schemes

used by insects or fishes. The different techniques and approaches presented in

this dissertation are however not limited to these particular situations, and could

be applied to other fluid-solid interaction problems.

2.2 Numerical simulations of high-Re fluid-solid

interactions

The complexity of the flows involved in the examples of fluid-solid inter-

actions presented above excludes a purely theoretical approach. The numerical

simulation of the coupled problem provides valuable insight on the structure of the

flow, the different forces applied on the solid and many more physical quantities

that are not always accessible from experiments. Several challenges however arise

from the coupling of the solid’s and fluid’s dynamics and we present them in this

section, as well as some example of computational techniques used to overcome

these difficulties.

2.2.1 General form of the equations of fluid-solid interac-
tion

In all of the previously mentioned applications, the fluid motion can be

described satisfyingly by the incompressible Navier–Stokes equations for a Newto-

nian fluid, which can be written, once non-dimensionalized using the fluid density

ρ, the typical flow velocity U and length scale L as

∂u

∂t
+ (u · ∇)u = ∇ · σ, with σ = −pI +

1

Re

(
∇u +∇uT

)
, (2.1)

∇ · u = 0. (2.2)

Here, u and p are respectively the velocity and pressure field in the flow, and σ is

the stress tensor. On the solid boundary S, the flow velocity satisfies the no-slip
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boundary condition

u(x) = uS(x) ∀x ∈ S. (2.3)

In the inviscid limit (Re = ∞), the viscous contribution to the stress tensor dis-

appears and the no-slip boundary conditions must be replaced by the continuity

of normal velocity on the solid’s surface

u(x) · n = uS(x) · n(x) ∀x ∈ S, (2.4)

with n the local normal to the solid boundary. The equations of motion for the

fluid simplify then into the Euler equations

∂u

∂t
+ (u · ∇)u = −∇p, ∇ · u = 0. (2.5)

The solid’s dynamics is described using Newton’s law, which can be writ-

ten as

dpS
dt

=

∫
S

(σ · n) dS + f , (2.6)

dLS

dt
=

∫
S

x× (σ · n) dS + T , (2.7)

with pS and LS the total linear and angular momentum of the solid, n the unit

normal pointing into the fluid and f and T external force and torque on the solid

(e.g. gravity (Chapter 3) or forcing by the operator (Chapter 6)). These equations

are valid for both rigid and flexible solid bodies. In the case of a flexible solid,

additional information on the internal dynamics must be given to fully describe

the solid’s deformation (see for example Chapter 4).

In the case of a rigid body, pS and LS are linear functions of the center

of mass velocity U and rotation rate Ω of the solid body pS

LS

 = M ·

 U

Ω

 , (2.8)

with M the inertia matrix. The boundary condition (2.3) then becomes

u(x) = U + Ω× (x− xC) ∀x ∈ S, (2.9)

with xC the position of the solid’s center of mass.
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2.2.2 Numerical simulation of fully-coupled fluid-solid in-
teractions and its challenges

In the case of a rigid body, the motion of the solid is described by a set

of Ordinary Differential Equations (ODE) for the solid’s position and orientation

(2.6)–(2.7). The fluid motion is on the other hand described by a system of Partial

Differential Equations (PDE) for the fluid velocity and pressure (2.1)–(2.2). This

difference in the nature of the equations generally requires the use of parallel cou-

pled solvers for the fluid and solid dynamics. The main difficulty in the simulation

of fully-coupled fluid-solid interactions – where the motions of the fluid and solid

are not prescribed but are the result of their coupled dynamics – resides in the

positioning of the grid used for the fluid solver and the numerical implementation

of the coupling between the fluid and solid solvers. This coupling appears through

the kinematic boundary condition (2.3) or (2.4) and the forcing by the fluid on the

right-hand side of the solid’s equation. Both couplings occur on the solid’s bound-

ary, whose position is itself the result of the coupled dynamics. The situation is

even more complex in the case of a flexible body that can deform under the action

of the flow, as the solid’s shape is also the result of the coupled dynamics of the

fluid and solid.

The form of the coupling makes the use of explicit schemes attractive

because implicit schemes require solving iteratively for the solid’s position and the

pressure and velocity fields in the fluid simultaneously. However, the coupling of

the solid and fluid dynamics introduces some new stability constraints on the time-

step used that were not present for example in the computation of the flow past a

solid body whose motion is prescribed. The time-step required for stability of the

coupled simulation is much smaller than the time-step required for high-accuracy,

making the use of efficient implicit formulations an attractive alternative (see for

example Alben, 2008b).
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2.2.3 An overview of commonly-used techniques

Two approaches are commonly used to overcome these difficulties: cou-

pled fluid-solid solvers and immersed boundary methods. These two general tech-

niques differ mostly in the choice of the grid for the fluid domain.

In the first approach, the solid and fluid motions are treated by two

coupled solvers. This approach is well illustrated by the work of Connell and Yue

(2007) on a Fluid-Structure Direct Simulation (FSDS) method to solve for the

motion of a flapping flag. The fluid dynamics is solved by discretizing the Navier–

Stokes and continuity equations (2.1)–(2.2) onto a grid fitted to the deformable

solid body. The position of the solid body is obtained by discretizing the equations

for an elastic and infinitesimally thin membrane. The use of two separate solvers

requires to solve iteratively for the velocity and pressure fields in the flow together

with iterative solving for the position of the solid, and every update in the solid’s

position requires also to update the grid used for the fluid. Stability issues due

to added mass in that iterative process must be treated carefully (see for example

Connell and Yue, 2007). However, having two independent solvers also allows for

independent development and validations (see Connell, 2006, for more details).

In the case of a rigid body, there is no need to redefine the grid for the

fluid domain at each modification of the solid’s geometry. Instead, the equations

for the flow velocity and pressure can be solved in a co-moving frame in which

the solid boundary is fixed. The formulation is particularly simplified in the two-

dimensional case of a cylindrical body with elliptic cross-section (see for example

Huang, 2001; Wang, 2000a,b; Pesavento and Wang, 2004; Andersen et al., 2005b;

Alben, 2008b), but the approach is, in theory, applicable to any body shape.

In the second approach, the Eulerian form of the fluid equations (2.1)–

(2.2) is solved on a fixed grid, defined independently from the position of the solid

body, whose motion is solved in a Lagrangian fashion (Peskin, 1972; Mittal and Iac-
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carino, 2005). These methods are referred to as Immersed Boundary Methods. The

continuous form of equations (2.1)–(2.2) is solved on this grid and the effect of the

solid body is introduced in the form of a distribution of point forces that transmits

to the fluid the internal stresses in the solid, thereby enforcing implicitly the no-slip

boundary condition (2.3). This method was initially introduced by Peskin (1972,

1977) in the study of blood flow through a deformable heart valve and was recently

used in the study of falling bodies (Mittal et al., 2004) and of filaments flapping in

soap-films (Zhu and Peskin, 2002, 2003). The Eulerian–Lagrangian formulation is

particularly well-suited for problems with moving boundaries as it avoids having

to recreate a mesh every time the geometry or position of the solid boundary is

modified (Mittal and Iaccarino, 2005). Defining a fixed grid independent of the ge-

ometry of the domain boundary also permits the use of Cartesian grids and efficient

computational methods (e.g. spectral methods). Immersed boundary methods are

also well-adapted to problems with an elastic body as the internal forces in the

solid can be stated explicitly. A purely rigid solid requires more attention as sta-

bility problems arise (the characteristic time-scale of the restoring force tends to

zero).

An alternative approach to deal with rigid body problems has been pro-

posed using a volume penalization method (Angot et al., 1999). The Eulerian–

Lagrangian approach remains the same and the grid used for the fluid flow is fixed

and does not depend on the body position. The additional forcing in the fluid

equations is distributed not only on the surface of the fluid-solid boundary but in

the whole solid body. The physical idea behind the volume penalization method is

to represent the solid body as a porous medium, with a permeability that tends to

zero. This approach was recently coupled to the equations of motion of a solid body

to study the fall of a card and a particular insect flapping scheme (Kolomenskiy

and Schneider, 2008; Kolomenskiy et al., 2008).

One of the main limitations of such Eulerian–Lagrangian formulations

resides in their computational cost as Re is increased in order to resolve properly
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the boundary layers whose thickness decreases with Re (e.g. like Re−1/2 for lam-

inar boundary layers). The grid should be thin enough to have several points in

the boundary layer, but since the grid is generated independently from the body

position, this generally requires a larger number of points than when using a struc-

tured grid fitted to the body shape. A trade-off is then necessary between the cost

of re-meshing the fluid domain after each change in the body shape and the cost

associated with an increased number of grid points.

2.3 Reduced-order model for sharp-edged solid

bodies

Although a number of methods are available to compute the coupled

motion of a solid body and the surrounding flow, the computational cost of such

techniques is generally high, even for two-dimensional problems. This justifies a

parallel effort to obtain reduced-order models of such interaction problems. Such

models are not intended to replace full numerical simulations but instead reproduce

the main physical features at a reduced computational cost. Hence a first physical

assessment of the problem’s physics can be obtained. Such reduced-order models

can also be used as a surrogate for numerical simulations where the computation

cost of such simulation is prohibitive (e.g. optimization problems). The point

vortex method presented in this dissertation is such a model. Before describing

its physical basis and mathematical formulation, a brief review of other reduced

order models is presented. These fall into two different categories, depending on

whether they provide an empirical formulation for the fluid forces or a simplified

representation of the fluid flow from which fluid forces can be computed exactly.

The former includes models for the fluid drag in terms of a constant drag coefficient.

The latter includes models such as added-mass theory or the point vortex method

presented in this dissertation: a simplified representation of the flow is adopted

(e.g. purely irrotational flow or irrotational flow with vortex shedding satisfying
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the regularity condition) from which the forces on the solid body are computed

exactly.

2.3.1 Added mass

In the limit of zero viscosity, if the flow is started from rest, it remains ir-

rotational at all time, and the velocity field u can be obtained from a flow potential

φ that satisfies the following Laplace problem:

∇2φ = 0 in the fluid domain,

∂φ

∂n
= uS · n on the body, (2.10)

∇φ→ U∞ at infinity.

In the case of a rigid solid body moving in a fluid at rest at infinity, the

fluid-solid problem can be described using the inviscid theory developed by Kirch-

hoff (see Lamb, 1932, Chapter VI). The system (2.10) is linear in the boundary

condition on the solid body. Using the boundary condition (2.9) for a rigid solid

body, and defining the generalized velocity vector VT = (U∗T ,ΩT ), where U∗

is the velocity vector of the center of mass referred instantaneously in the frame

(e1,e2,e3) moving with the body, the flow potential is obtained as

φ =
6∑
i=1

Viφi, (2.11)

with φi satisfying the following problem:

∇2φi = 0 in the fluid domain (2.12)

∇φi → 0 at infinity (2.13)

∇φi.n =

 ei · n (1 ≤ i ≤ 3)

ei−3 · (x× n) (4 ≤ i ≤ 6)
on the solid body, (2.14)

Then the kinetic energy of the fluid may be expressed as

T =
1

2
MijViVj (2.15)
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with M the symmetric added-mass tensor whose coefficients are determined from

Mij = ρ

∫
S
φi
∂φj
∂n

ds. (2.16)

The total kinetic energy of the {fluid + solid} system is conserved, and one observes

that the effect of the fluid is a non-isotropic added inertia. The force and torque on

the solid body have components that can be obtained (in the same frame (e1,e2,e3)

rigidly attached to the body) from Kirchhoff’s theory (Lamb, 1932) as

Fj = −MijU̇i − εjklMliUiΩk, (2.17)

Tj = −Mj+3,iU̇i − εjklMl+3,iUiΩk − εjklMliUkUi, (2.18)

with 1 ≤ i ≤ 6 and 1 ≤ j, k, l ≤ 3.

A simple physical interpretation is provided by the example of a plate

impulsively accelerated from rest. For an acceleration parallel to the plate, the

motion can occur without any fluid displacement (the plate has zero thickness),

and there is no resistance from the fluid (viscosity is absent here). On the other

hand, if the plate is moved in the normal direction, a resistive force appears because

some fluid needs to be moved from one side of the plate to the other to allow

the displacement, thereby increasing the inertia of the system. The added mass

coefficients therefore depend on the geometry of the solid. More examples of the

computation of added mass coefficients can be found in Newman (1977). Note

that, contrary to the physical inertia tensor of a solid, the added mass tensor can

have non-diagonal terms coupling translation and rotation. As a result, for some

non-symmetric bodies, a purely linear acceleration can generate a force orthogonal

to the acceleration or a torque. The non-diagonal terms of M are also associated

with properties of the potential far from the body. A discussion of the vanishing of

such dipolar terms in two-dimensional problems was presented in Llewellyn Smith

et al. (2008).

The physical argument for added mass theory remains valid for a flexible

body: an acceleration of the solid will encounter fluid resistance equivalent to an
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added inertia as fluid needs to be pushed around the moving body. However, in

the case of a flexible body, no such elegant formulation exists as the number of

degrees of freedom in the solid deformation is not necessarily finite, and added

mass depends on the instantaneous shape of the solid.

2.3.2 Quasi-steady empirical models

In some other special circumstances, the forces on a solid can be deter-

mined from the solid’s motion without solving for the whole flow, for example, in

some steady flow situations. The best-known such result is the Kutta-Joukowski

lift theorem, that states that the lift on a two-dimensional airfoil moving horizon-

tally at a velocity U in a fluid of density ρ with a circulation around the airfoil

equal to Γ (this circulation is in general the result of the shedding of a starting

vortex from the trailing edge of the airfoil, that has moved away from the wing) is

equal to ρUΓ (see for example Saffman, 1992).

Quasi-steady empirical models have been proposed to include additional

fluid effects other than added inertia to better fit the description of a particular

problem. For example, Tanabe and Kaneko (1994) proposed an empirical model

for a falling card in which fluid forces are the superposition of three different

contributions: added mass, viscous drag (with non isotropic drag coefficients to

account for the different aspect ratios of the body considered) and a lift force

similar to the result of the Kutta-Joukowski theorem. This theorem requires the

knowledge of the circulation around the body, and Tanabe and Kaneko (1994)

assume that Γ takes the steady state value obtained for a plate. However, such a

result is only valid in steady flows and at small angle of attack, two assumptions

that are clearly violated in the case of a falling card and this strongly limits the

validity of such an approach (Mahadevan et al., 1995; Tanabe and Kaneko, 1995).

More recently, a similar model was proposed for a falling ellipse that

allows the circulation to depend on more than just the angle of attack and the

translation velocity, but also includes a contribution from the rotation and a cor-
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rection to take into account stall effects at high angle of attack (Pesavento and

Wang, 2004; Andersen et al., 2005a). The model relies on the determination of 6

non-dimensional coefficients that are expected to depend on the Reynolds num-

ber and can be computed to fit the result of direct numerical simulations. Such

a model is an improvement compared to the added mass approach and the work

of Tanabe and Kaneko (1994), but it still fails to include unsteady effects of the

shedding of vorticity. Such effects are expected to be important in a large number

of situations including the ones considered in this dissertation like the falling card

problem or insect flapping flight.

2.3.3 Vortex shedding in fluid-solid interactions

In section 2.1, several applications of fluid-solid interactions with rela-

tively high Reynolds number were presented. In all these applications, the flow is

characterized by the presence of regions of concentrated vorticity (vortices). The

vorticity is the result of the solid body’s motion in the flow and is created in the

boundary layers whose thickness is a decreasing function of Re. These boundary

layers separate into free shear layers and roll up on themselves to produce these

vortical structures. The separation and vortex shedding are even more pronounced

when the solid body has a sharp edge (e.g. the trailing edge of a flapping wing).

These vortices are essential elements of numerous fluid-solid interaction problems.

The shedding of staggered rows of vortices in classical or reversed Von-Kármán

streets is associated with the production of drag or thrust by a flapping body.

Insects and fishes heavily rely on the formation of a vortex wake to create the lift

and thrust forces necessary for their motion. The unsteady nature of this vortex

shedding must be taken into account when describing the dynamics of the flow

around the solid body.

Such features are not incorporated in an added mass approach where the

flow is purely potential, and this omission can lead to significant modifications

in the behavior of the solid body as will be discussed in more details in section
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3.4.3. The unsteady effect of vortex shedding is in general also not included into

the quasi-steady models discussed in section 2.3.2. The purpose of the inviscid

vortex methods is to account for the shedding of vorticity from the solid in a more

accurate manner, while still retaining a simplified representation of the flow by

neglecting viscous forces.

2.3.4 Inviscid vortex methods

In the applications considered here, the viscous drag is in general much

smaller than the pressure contributions to the fluid forces. Futhermore, it was pre-

viously reported on some test cases using direct numerical simulation, that above

intermediate values of the Reynolds number (Re ∼ 200–1000) and for laminar

flows, the fluid forces depend only weakly on Re (Wang, 2000a). A first approxi-

mation to the flow problem therefore consists in neglecting viscosity by considering

an inviscid flow representation. However, even if it has a negligible effect on the

fluid forces, viscosity is the critical element leading to the shedding of vorticity

from the sharp edges of a solid body by separation of the thin boundary layers,

as mentioned in the previous section. To be physically accurate, an inviscid rep-

resentation should retain this information.

The distinction must be emphasized here between a purely inviscid ap-

proach (added mass) and an inviscid vortex method: in the former, all effects of

viscosity are neglected. In the latter, the viscous contributions to the fluid forces

on the solid are neglected and the slip boundary condition is applied (2.4), but the

vortex shedding effect of viscosity is maintained by introducing manually vorticity

singularities in the flow. The amount of vorticity as well as its initial location is

however not arbitrary: the point vortices or vortex sheets must be started from

the sharp edge of the solid body responsible for the shedding of vorticity. The

presence of a sharp edge in potential flow leads to a velocity singularity in the flow

velocity there. The intensity of the shed vorticity is determined by satisfying the

regularity condition on the flow field at the shedding edge (also known as Kutta
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condition), thereby guaranteeing that the flow is parallel to the corner’s tangent,

as is the case for boundary layer separation in the real problem.

We focus here on two dimensional problems. These are in general a

good approximation when the solid is close to cylindrical with a span much larger

than the size of its cross-section (e.g. dragonfly wing). However, some purely

three-dimensional effects will not be included in this theory, such as the wing-tip

vortices responsible, for example, for an aircraft’s wake vortices. The exact effect of

these wing-tip vortices on the performance of insect flapping flight is still debated.

The two-dimensional assumption allows the use of the powerful tools of complex

potential theory.

In inviscid vortex methods, the shedding of vorticity can be continuous

or discrete. In the former case, at each time step of the simulation a new element

of vorticity is created that is later on advected with the flow with a constant cir-

culation. This method was introduced initially by Clements (1973). An equivalent

formulation was proposed more recently for the flow past a rigid plate (Jones, 2003)

and generalized to a flexible membrane or elastic sheet (Shukla and Eldredge, 2007;

Alben and Shelley, 2008; Alben, 2009). The solid’s wake is then represented as a

vortex sheet whose position is advected using the Birkhoff–Rott equation (see for

example Saffman, 1992) and circulation acts as a Lagrangian tracer on the vortex

sheet. The intensity of vorticity added to the sheet is determined by the regularity

condition at the shedding edge.

The point vortex method used in this dissertation belongs to the dis-

crete case and is described in more details in section 2.4. Instead of creating a

new element of vorticity at each time step, the intensity of the last shed vortex

is modified so as to satisfy continuously the regularity condition at the shedding

edge. These point vortices with unsteady intensity (also known as Brown–Michael

vortices (Brown and Michael, 1954)) are advected by the flow using a modified

equation to enforce the conservation of momentum around the vortex and associ-

ated branch cut (see Rott, 1956, and section 2.4.4). The intensity of the vortices
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varies monotonically in time to represent the irreversible nature of vortex roll-up

(Graham, 1977; Cortelezzi and Leonard, 1993; Keller, 1998). This shedding crite-

rion is presented in more details in section 2.4.2. This representation was used to

study a purely translating flow past a semi-infinite plate (Cortelezzi and Leonard,

1993; Cortelezzi, 1995) and the control of vortex shedding past a finite plate under

an imposed normal flow using suction behind the plate (Cortelezzi, 1996; Cortelezzi

et al., 1997). Cortelezzi et al. (1997) also compared the behavior of this discrete

shedding method to a continuous shedding representation.

These two approaches present the advantage that no arbitrary choice is

made for the time of shedding, the intensity of the shed vorticity or the initial po-

sition of the vortices. Intermediate methods have been proposed in which vortices

with steady intensity are shed but not at each time step in order to reduce the

computational cost (see for example Mason, 2003; Xiong and Kelly, 2008). The

main disadvantages of such a method are that the regularity condition is satisfied

only at the time-steps when a new vortex is shed, and the initial position of the new

vortex is not determined in a unique way, but instead seems somewhat arbitrary.

The main advantage of the point vortex approach over the continuous

vortex sheet method resides in its simplicity. The point vortex model does not

require solving an integro-differential equation for the motion of the free vortex

sheet. The numerical solution of such an equation requires the discretization of

the sheet into a set of vorticity elements (Smith, 1968; Pullin, 1978). A smoothing

kernel must be introduced to avoid numerical issues linked to ill-posedness of the

free vortex sheet equation (Krasny, 1986a,b). The vortex sheet started from the

sharp corner of a solid body will roll-up on itself in an infinitely tight spiral (Pullin,

1978). In numerical simulations, the last vortex element inside the spiral deserves

particular treatment. Smith (1968) and Pullin (1978) explicitely state that this

last vortex and the corresponding branch cut must be force-free which is equivalent

to the Brown–Michael model. It is therefore of interest to understand how a purely

Brown–Michael vortex model behaves when coupled with the solid motion.



22

2.4 The Brown–Michael point vortex model

2.4.1 Description

We consider the motion of a cylindrical solid body of sharp-edged cross-

section and infinite span in a fluid. The flow around the solid is assumed two-

dimensional, incompressible, inviscid and initially at rest. According to Kelvin’s

circulation theorem, it remains irrotational at all time and potential flow theory

is used to describe the flow. In the absence of vortex shedding, the presence of

sharp edges on the solid body generates an algebraic velocity singularity there. To

satisfy the regularity condition at each of the sharp corners, vorticity is introduced

in the flow in the form of point vortices with unsteady and monotonically increas-

ing intensity (in magnitude). In the following, we simply refer to these vortices

as unsteady point vortices. This method was previously used to study the vortex

shedding past a finite or semi-infinite plate with prescribed orthogonal translation

(Cortelezzi and Leonard, 1993; Cortelezzi, 1996; Cortelezzi et al., 1997) – the pur-

pose of the present work is to generalize the method to arbitrary motions of a

general body, including rotation, and to formulate the fully coupled problem.

The point vortex, whose intensity is adjusted at each time to cancel ex-

actly the singularity in the velocity field at the generating sharp corner, is a low-

order representation of the roll-up of the vortex sheet shed in a real flow from the

solid corner by the separation of the boundary layers. In this model, the vorticity

is considered to be concentrated at one point, and the vorticity of the remainder of

the sheet is neglected. The reader is referred to Cortelezzi (1993) for more details.

In complex potential flow theory, the point vortex must be connected to the gen-

erating corner by a branch cut for the point vortex logarithmic complex potential

to be single-valued. The complex velocity is continuous across the branch cut as is

the streamfunction (imaginary part of the complex potential). However, the real

part of the complex potential is discontinuous and the jump is equal to ±Γn with

Γn the intensity of the corresponding point vortex.
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2.4.2 Irreversible vortex roll-up and shedding criterion

Through the regularity condition, the intensity of the unsteady point

vortex is adjusted in time, representing the infinite roll-up of a vortex sheet and

the transfer of vorticity from the shedding edge to the vortex core. It is not

physically possible to unroll such a vortex sheet since this would correspond to a

negative diffusion inside the core. To include this physical argument in the point

vortex model, we require that the intensity of the point vortices does not decrease

in magnitude. If the intensity of a point vortex reaches an extremum, this vortex

will keep a steady intensity later on and a new unsteady vortex is started from the

same generating corner to enforce the regularity condition at all time. Graham

(1977) first discussed this shedding criterion, as well as other possible shedding

criteria for point vortices in the flow around a sharp wedge. At any time in the

flow past a solid body with P generating corners, P vortices are being shed with

unsteady intensity Γ1(t), ..., ΓP (t) to satisfy the regularity of the flow at each of

these corners. There may be other vortices present in the flow, which were shed

in the past, and whose intensities ΓP+1,..., ΓN have been frozen.

2.4.3 Equation of motion for a point vortex with unsteady
intensity

Several models have been proposed for the motion of point vortices in the

presence of solid bodies. In Kirchhoff’s equation, the velocity of the point vortex

is that of the desingularized background flow and Newton’s second law is satisfied

everywhere in the fluid except at the position of the vortex itself (Lamb, 1932).

However, for an unsteady point vortex, this approach results in an unbalanced

force on the branch cut (Rott, 1956). To satisfy the conservation of momentum

around both the vortex and the branch cut, this equation needs to be modified.

Denoting żn the velocity of the point vortex n with position and intensity (zn,Γn),
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shed from the corner of (time-varying) position zn,0, we have

żn + (zn − zn,0)
Γ̇n
Γn

= w̃n, (2.19)

with w̃n the desingularized complex velocity of the fluid at the position of the

vortex. Equation (2.19) is usually referred to as the Brown–Michael equation

(Brown and Michael, 1954), although it was in fact first introduced by Edwards

(1954) in the study of the steady three-dimensional vortex sheet shed by a delta

wing. In this steady three-dimensional setting, the third dimension plays the role

of the time-dependence in (2.19). The Brown–Michael equation was then proposed

by Cheng (1954) and Rott (1956) for unsteady two-dimensional flows and point

vortices with unsteady intensity. A derivation of (2.19), based on a conservation

of fluid momentum argument is presented below.

2.4.4 Conservation of fluid momentum around the vortex
and branch cut

In this section we provide a conservation of momentum argument for the

Brown–Michael equation (2.19) based on complex analysis. This is essentially a

formalization of the physical arguments of Brown and Michael (1954) written in

the language of the present work (see also Saffman, 1992). For a general contour C
enclosing only fluid and moving with a (spatially-dependent) velocity uc, Newton’s

second law for the fluid inside C is given by

Ṁ = −
∫
C
pn dl −

∫
C
ρu [(u− uc) .n] dl, (2.20)

where the left-hand side is the rate of change of the momentum in C and the terms

on the right-hand side are respectively the force applied by the outside fluid on the

contour and the flux of momentum through C. Using complex notation, w = u−iv,

and Bernoulli’s equation

p = p0(t)− ρ(Ḟ + ˙̄F + ww̄)/2, (2.21)
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Figure 2.1: Conservation of momentum around the unsteady point vortex and
its corresponding branch cut.

(2.20) becomes

Ṁ = − iρ

2

∫
C

(
Ḟ + ˙̄F

)
dz +

iρ

2

∫
C
w (w − wc) dz +

iρ

2
w̄c

∫
C
wdz̄. (2.22)

When shedding an unsteady vortex from corner n, the logarithmic form

of the complex potential leads to a branch cut between zn,0 and zn. We choose

here to define it as the straight line connecting these two points (but its specific

location is arbitrary). We now consider a contour Cε enclosing the vortex and the

branch cut as shown on Figure 2.1. As ε goes to zero, Cε encloses only the vortex

and the branch cut.

The chosen contour crosses the branch cut. This is not problematic as we

are not carrying out an inverse Fourier transform or other integral that requires

avoiding branch cuts. On the contrary, we are integrating a function whose real

part is discontinuous, and this is why, physically, there is a net force. In (2.22),

the last two integrals only involve w, a single-valued function analytic everywhere



26

except at the vortex position. The intensity of the vortex is chosen to satisfy

the regularity condition so that w is bounded at the generating corner zn,0. The

existence of the branch cut only affects the first integral. The integrand Re(F ) is

discontinuous across the branch cut, but this discontinuity is finite and equal to

±Γn.

Note that Graham (1980) uses a contour enclosing all the vortices and

branch cuts as well as the solid. This contour can be used to derive an expression

for the force on a solid from the expansion of the potential at infinity of the same

form as the one considered in this paper, but uses the Brown–Michael equation

(2.19) to obtain this result. In particular only one contour is used, which cannot

lead to separate equations for each unsteady vortex.

A careful calculation shows that∫
Cε

Re [−i log(z − zn)] dz = −2π(zn − zn,0) +O(ε). (2.23)

The complex potential and velocity can be decomposed as

F =
Γn
2iπ

log(z − zn) + F̃n(z), w =
Γn

2iπ(z − zn)
+ w̃n(z), (2.24)

with F̃n and w̃n single-valued and analytic on and inside Cε except at the vortex

position zn. Near the vortex, the velocity of the contour is wc = ˙̄zn. Using these

results, the integrals in (2.22) can be evaluated exactly and when ε→ 0, we obtain

Ṁ → iρ
[
Γ̇n(zn − zn,0) + Γn(żn − ¯̃wn)

]
.

However, when ε → 0, the surface enclosed in Cε goes to zero and the velocity is

bounded along the branch cut. Near the vortex, the flow is purely azimuthal so

when the contour is shrinking down, the linear momentum enclosed in Cε goes to

zero, leading to the Brown–Michael equation (2.19).

The derivation detailed here shows that the Brown–Michael equation

leads to Newton’s second law being satisfied in the fluid around the vortex and

around the branch cut. Any choice of contour C enclosing only part of the branch
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cut would have led to a similar equation

żn + (zn − z∗)
Γ̇n
Γn

= w̃n,

with z∗ the position of the crossing point of C with the branch cut. Kirchhoff’s

equation corresponds to z∗ = zn and only conserves the fluid momentum around

the vortex. However, only the choice z∗ = zn,0 corresponding to the Brown–Michael

equation (2.19) guarantees the conservation of momentum in an integrated sense

around the whole branch cut. If z∗ 6= zn,0, there exists an unbalanced force on

the remainder of the branch cut between zn,0 and z∗. Nothing in this argument

depends on the shape of the body.

2.4.5 The Brown–Michael model and conservation of an-
gular momentum

Following the same approach as in section 2.4.4, we consider a contour

C moving with a spatially-dependent velocity uc and enclosing a finite surface A
containing only fluid. The conservation of angular momentum for the fluid inside

C can be written as

Σ̇ = −
∫
C
p (r× n) dl −

∫
C
ρ (r× u) [(u− uc) .n] dl, (2.25)

where Σ is the total angular momentum inside C

Σ =

∫∫
A
ρ (r× u) dS, (2.26)

and r is the position vector measured with respect to a fixed point in the inertial

reference frame. Note that Σ is well-defined even if C encloses a point vortex:

close to the vortex, the flow is purely azimuthal and behaves like 1/r′ with r′ the

distance to the vortex core, and Σ converges there. Using Bernoulli’s equation

(2.21), (2.25) can be rewritten in complex notation, defining Σ = Σe3 with e3 the

unit vector in the third dimension,

Σ̇ = −ρ
2

Re

[∫
C

(
Ft + F̄t

)
z̄dz +

∫
C
zw2dz − wc

∫
C

(wz − w̄z̄) dz

]
. (2.27)
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We now apply this result to the contour Cε defined in the previous section

(Figure 2.1). The complex velocity is continuous across the branch cut as is the

imaginary part of F . Re(F ) is discontinous across the branch cut and the discon-

tinuity is equal to ±Γn. Near the corner, the flow has been regularized through

the regularity condition that determines Γn and both w and F have finite values

there. Therefore, all the contour integrals converge near the corner as ε goes to

zero (Figure 2.1). For small ε, the second and third integrals’ contributions around

the branch cut are O(ε) as w is continuous across the branch cut.

Computing the O(1) contributions of all three integrals in (2.27), leads

as ε→ 0 to

Σ̇ = −ρ
2

Re
[
Γ̇n
(
|zn,0|2 − |zn|2

)
+ 2Γnzn (w̃n − ˙̄zn)

]
. (2.28)

with w̃n the desingularized flow velocity at the vortex position, as defined in (2.24).

As ε tends to zero, the area enclosed in Cε also tends to zero. The angular mo-

mentum per unit area is finite even near a point vortex. Therefore, the left-hand

side of (2.28) tends to zero with ε. If the point vortex satisfies the Brown–Michael

equation (2.19), the right-hand side of (2.28) does not vanish with ε → 0, but

instead creates a residual unbalanced torque on the branch cut equal to

Tb = −ρΓ̇n
2
|zn − zn,0|2 . (2.29)

We notice that this unbalanced torque is proportional to the vortex shedding rate.

Angular momentum is therefore conserved in the case of vortices with steady in-

tensity, and only the vortices being currently shed introduce this additional torque.

Tb is also proportional to the square of the distance between the vortex and its

generating corner. The physical interpretation of this additional term is therefore

the following: physically, vorticity is shed from the generating corner where the

boundary layer separates into a free shear layer. The present discrete shedding

model, instead of introducing a new element of vorticity close to the shedding

corner, modifies the intensity of the last shed vortex to satisfy the regularity con-

dition. This instantaneous transfer of vorticity from the generating corner to the
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vortex core induces an instantaneous change of the flow angular momentum that

is reflected in this unbalanced torque on the branch cut.

The fact that the Brown–Michael vortex model cannot satisfy at the same

time conservation of both linear and angular momenta in an integral sense around

the vortex and branch cut is, however, not a surprise, and is inherent to any discrete

representation of the continuous physical vorticity shedding. Introducing a point

vortex in the flow provides three additional degrees of freedom for the system: the

vortex position (2) and its intensity (1). The regularity condition guarantees the

finiteness of the flow velocity at the shedding corner and gives one constraint on

the vortex system. The conservation of both linear and angular momenta would

provide three additional constraints for a total of four constraints for three degrees

of freedom. It is therefore not possible to satisfy these four constraints at the same

time and one needs to make a choice on the conservation laws and flow constraints

to be enforced. The Brown–Michael model enforces the regularity condition and

conservation of linear momentum. In that regard, it is an improvement compared

to a Kirchhoff vortex model that satisfies neither momentum conservation laws.

Other vortex shedding models have been discussed in the literature to overcome

the non-conservation of angular momentum (Howe, 1996), but it is necessary to

point out that any model that removes any unphysical torque, cannot satisfy both

the regularity condition and the conservation of linear momentum.

2.5 Reduced order models of fluid-solid interac-

tions using Brown–Michael vortices

In Chapters 3, 4 and 6, the previously described vortex model will be cou-

pled to the equations of motion for the generating solid body to obtain a reduced-

order representation of the fluid-solid interaction problems of interest. Formally,

the flow is entirely determined by the knowledge of the position and velocity of the
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solid boundary, of the vortices’ intensity and position and of the total circulation

at infinity. The flow problem can be formulated as follow for the complex potential

F = φ+ iψ with φ the velocity potential and ψ the streamfunction:

F is analytic in the fluid domain except at z = zn

F̃n = F − Γ
2πi

log(z − zn) is analytic in z = zn

Im
(
∂F
∂s

)
= Im

(
wS

∂zS
∂s

)
on the solid body

Re
(∫
C∞ dF

)
= Γ∞,

(2.30)

with zn and Γn the position of the point vortices. The solid boundary is defined

as a closed non-intersecting curve in the complex plane zS(s) with 0 ≤ s ≤ L and

zS(0) = zS(L). wS = ∂zS/∂t is the complex velocity of the boundary (we use here

the same classical convention w = u − iv as for the fluid velocity). C∞ is a circle

of radius R → ∞ encircling the body and all the vortices present in the flow and

Γ∞ is the circulation at infinity.

Through Kelvin’s theorem, Γ∞ is a constant of the problem and in the

remainder of this dissertation, unless indicated otherwise, the system is started

from rest so that Γ∞ = 0. The solution of (2.30) for the complex velocity w =

dF/dz is unique. Note also that the unsteady nature of Γn is irrelevant in solving

for F . From F and w, the pressure is obtained from Bernoulli’s theorem (2.21).

From the pressure field, all the forces and torques applied by the fluid on the solid

can be computed and used on the right-hand side of the solid body dynamics. The

coupling of the fluid and solid dynamics (Figure 2.2a) is replaced by a coupled

solid-vortex problem (Figure 2.2b).

In the coupled fluid-solid formulation, the coupling occurs through the

kinematic boundary conditions (2.3) or (2.4) and the stress applied by the fluid on

the solid boundary f = σ · n (with σ given in (2.1) and n the outward-pointing

normal on the solid boundary). In the coupled vortex-solid approach, the coupling

occurs through the regularity condition at each shedding corner that determines

the intensity of the unsteady point vortices and the pressure forces on the solid

boundary that are implicit functions of the vortices’ properties (zn,Γn).
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Equations of 
motion:

- Navier-Stokes eqn. 
- Continuity eqn.

Solid 
dynamics

Equations of 
motion:

- Newton’s law 
- Internal dynamics

Fluid 
dynamics

Variables:
Solid boundary position

f = σ · n

Fluid stresses on 
solid boundary

Kinematic boundary 
condition:
u = uS or

u · n = uS · n

Variables:
Fluid velocity

xS(s) u(x)

(a) Fluid-solid coupled problem

Equations of 
motion:

- Brown-Michael eqn.

Solid 
dynamics

Equations of 
motion:

- Newton’s law 
- Internal dynamics

Vortex 
dynamics

Variables:
Solid boundary position

Pressure forces

Regularity condition

Variables:
Vortex position & 

intensity
zn,Γn

zS(s)

Γn(t) = ...

p(s,Γn, zn, ...)

(b) Vortex-solid coupled problem

Figure 2.2: Schematic representation of (a) the complete fluid-solid coupled
problem and (b) the reduced-order model using the Brown–Michael point vortex
representation.
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The treatment of the solid dynamics as well as the computation of the

complex potential differs depending on the problem considered and the type of solid

(rigid or flexible, finite area or infinitesimally thin). In the case of a rigid solid

body, a general framework for the coupled solid–vortex problem is presented in

Chapter 3 using conformal mapping theory. Although it is in theory generalizable

to deformable solids using time-dependent conformal maps, in the case of flexible

sheets (Chapters 4 and 6) a simpler treatment of the potential flow is possible by

representing the deformable thin solid as a vortex sheet attached to the solid.

In the case of a rigid solid body or a deformable body with a discrete

set of degrees of freedom (e.g. three-link swimmer), the solid–vortex problem il-

lustrated on Figure 2.2(b) can be written in terms solely of ordinary differential

equations, allowing a particularly efficient solution using any ODE solver such as

Matlab’s ode45. For a continuously deformable body, the solid dynamics requires

the solution of a partial differential equation coupled to the ODE for the vortices’

properties. In both cases, the computational cost is significantly lower than for a

direct numerical simulation of an equivalent flow (the computations can typically

be performed in less than a few minutes on a personal laptop computer).

Chapter 2 and Chapter 3, in part, have been published in Theoretical and

Computational Fluid Dynamics, “An unsteady point vortex method for coupled

fluid-solid problems” by S. Michelin and S. G. Llewellyn Smith, 2009, 23, 127–

153 (Springer), doi:10.1007/S00162-009-0096-7. The dissertation author was the

primary investigator and author of this material.
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Motion of a rigid sharp-edged
body shedding vortices

3.1 Introduction

In Chapter 2, we presented a general inviscid model to study the coupled

dynamics of a solid body with sharp edges and laminar high-Re flows in the two-

dimensional limit. A potential flow representation is used and point vortices with

unsteady intensity are shed from the generating sharp corners. Using the linearity

of Laplace’s equation, the complex potential and velocity field are obtained by

linear superposition. Assuming the system is started from rest, the circulation at

infinity must be equal to zero. Hence the solution for the flow velocity is unique

and entirely determined by giving the position and intensity of each point vortex,

and the position and velocity of the solid body.

In this Chapter, we focus on the particular case of a two-dimensional

rigid body. The position of any point in the solid body is determined by only

three variables, the position of the body’s center of mass and an orientation angle.

Formally, the number of unknowns in the system is finite and equal to 3N + 3

with N the number of vortices present in the flow. Taking advantage of this

finite numbers of degrees of freedom, the purpose of this Chapter is to obtain the

equations of motion for the fluid and the solid body as a finite set of ordinary

differential equations.

33
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By definition, the geometry of a rigid body is time-independent and

the position of its boundary is simply obtained by rotation and translation of

a time-independent contour (e.g. the reference position of the solid body). In

two-dimensional potential flow problems, conformal mappings can be a powerful

technique: if one is able to find a function ζ = f(z) mapping any point outside

the solid boundary in the physical plane C onto a domain of same connectivity C

in the mapped ζ-plane such that f is analytic and univalent outside of C, then the

complex potential in the physical plane F (z) and in the mapped plane F̃ (ζ) are

simply related by

F (z) = F̃ (f(z)).

If the body is simply connected, then Riemann’s mapping theorem en-

sures that f always exists such that the outside of C in the physical plane can

be mapped onto the outside of the unit circle (see for example Nehari, 1952).

The geometry of the solid body can then be easily obtained using the conformal

mapping

z = z0(t) + beiα(t)f−1(ζ), (3.1)

with z ∈ C and ζ ∈ C , z0 the position of a reference point fixed relative to the solid

body and α(t) an orientation angle. Equation (3.1) isolates the time-dependence

of the solid boundary position into a translation and a rotation of a fixed contour

defined by f−1(ζ).

In this Chapter, a general sharp-edged solid body is considered. Point

vortices with unsteady intensity are shed from the sharp edges to enforce the

regularity of the flow at the generating corner, following the model presented in

section 2.4. The intensity of a point vortex is a monotonic function of time: when a

vortex reaches a maximum intensity, its intensity becomes frozen and a new vortex

is started from the corresponding corner (see section 2.4.2).

The Chapter is organized as follows. In section 3.2, the equations of
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motion are obtained for the coupled motion of a general sharp-edged solid body

and Brown–Michael point vortices as a set of nonlinear ODEs. The forces applied

on the solid by the fluid are analyzed in terms of added inertia and transfer of

linear and angular momenta to the vortices. The small-time behavior of these

equations is analyzed further in section 3.3. This framework is then applied to

the particular case of a falling card in a fluid initially at rest in section 3.4. The

stability of the broadside-on fall position is investigated and the present vortex

shedding model is compared to the results obtained with added inertia only. The

shedding of vorticity, and more particularly the transfer of horizontal momentum

to the vortex wake, are shown to be responsible for the destabilization of the

broadside-on position, consistently with experimental observations. Finally, some

conclusions on the general method for rigid bodies with arbitrary shapes as well

as on the falling card problem are drawn in section 3.5.

3.2 Equations of motion of a sharp-edged rigid

body shedding vortices

The motion of the solid body is studied in the inertial laboratory frame

using a fixed system of axes. z = x+ iy and w = u− iv are the complex variables

describing respectively the position and velocity in the physical space. Conformal

mapping is used to describe the solid geometry and compute the flow around the

body. We write ζ for the position in the mapped plane.

3.2.1 Geometry

The geometry and motion of the solid body are described by mapping

its physical boundary C from the circle C of radius a centered at the origin in the

mapped plane through the transformation

z = c+ eiθg(ζ), (3.2)
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C

zn(t),Γn

Physical plane (z) Mapped plane (ζ)

ex

ey

a

ċ

θ

z1(t),Γ1(t)
z2(t),Γ2(t)

z3(t),Γ3(t)

z4(t),Γ4(t)

c

z1,0

z2,0

z3,0

z4,0

ζ4,0
ζ3,0

ζ2,0

ζ1,0

ζ1(t),Γ1(t)

ζ2(t),Γ2(t)

ζ3(t),Γ3(t)

ζ4(t),Γ4(t)

ζn(t),Γn

C

Figure 3.1: Notation used for the motion of a general solid body. (Left) In the
physical plane, the position is noted by z = x+ iy and the physical contour of the
solid body is C. The position of the center of mass is c and the orientation θ is
measured as the angle between a reference direction in the solid and the horizontal
axis. (Right) The problem is considered in the mapped plane, where positions are
noted by ζ. The contour C is mapped onto C in the physical space through the
mapping (3.2).

where c is the position of the centroid in physical space and θ denotes the rotation

of the solid body compared to a reference configuration (note that the definitions of

c, θ and g are interdependent). In the following, we will consider only homogeneous

bodies so c is also the position of the center of mass. This notation is summarized

on Figure 3.1. The function g maps the outside of C in the mapped plane onto the

outside of the solid body C in the physical plane. We assume that this mapping is

univalent on and outside of C (each point outside the solid C corresponds to one

and only one point outside C in the mapped plane). We focus on mappings g of

the form

g(ζ) =
M∑

j=−1

Gj

ζj
, (3.3)
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satisfying the following properties:

• g′ has no zero outside of C , and a finite number P of zeros on C itself, at

ζp,0 = aeiφp with 0 ≤ φp ≤ 2π for 1 ≤ p ≤ P . We further assume that

g′′(ζp,0) is non-zero and finite: these points correspond to corners of the solid

boundary C in the physical plane, where both edges of the sharp corner have

the same tangential direction.

• G−1 = 1, so that g(ζ) ∼ ζ at infinity.

• c is the position of the centroid of the body, therefore (see for example

Llewellyn Smith et al. (2008))

M∑
k,l=−1,k+l≥−1

l GkGl Ḡk+l

a2(k+l)
= 0. (3.4)

Only the first of the above conditions is restrictive as the second and third can

always be achieved by redefining the parameter a and the variables θ and c. Al-

though we restrict ourselves to solid bodies with flat corners (zero angle), this form

of mapping allows to describe a wide variety of solid body shapes with sharp edges.

The area and moment of inertia with respect to the center of mass of this

body can be computed as

S =
1

2
Im

[∫
C

g(ζ)g′(ζ)dζ

]
= π

(
a2 −

M∑
k=1

k|Gk|2
a2k

)
, (3.5)

I =
M
4S Im

[∫
C

(g(ζ)2 − g(ζ)2)g(ζ)g′(ζ)dζ

]
. (3.6)

withM the mass of the solid body. We assume here that the solid is homogeneous.

A complicated expression for I can be obtained explicitly in terms of the coefficients

Gk.

3.2.2 Complex potential and velocity around the moving
solid body

The solid body is shedding vortices from its P sharp edges during its

motion. At time t, we denote by ζn the positions of the vortices in the mapped
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plane, by zn their corresponding positions in the physical plane and by Γn their

intensites, with 1 ≤ n ≤ N . By convention, vortex p is being shed from corner

p corresponding to ζp,0 = aeiφp in the mapped plane (1 ≤ p ≤ P ). The (N − P )

other vortices have a frozen intensity and have been shed and released in the past

(see section 2.4.2). Therefore, ΓP+1,ΓP+2, ....ΓN are independent of time while the

first p vortices have unsteady intensity Γ1(t), ...,ΓP (t). This convention requires

renumbering the vortices when a new vortex is started: N is incremented and the

vortex that was just frozen becomes vortex N . We assume that there is no flow

and no net circulation at infinity (this is the case for example when the system is

started from rest according to Kelvin’s circulation theorem).

The complex potential can then be obtained as a linear superposition of

the contribution of the motion of the body and of the different vortices:

F = Fb +
N∑
n=1

ΓnFn. (3.7)

The potential Fb is harmonic outside the solid body and the corresponding velocity

decays like z−2 at infinity. On the solid boundary C, it satisfies (see for example

Crowdy et al. (2007)):

Re [−iFb] = Re
[
−i ˙̄c(z − c)− ω

2
|z − c|2

]
, (3.8)

with ω = θ̇, the angular velocity of the solid. This can be easily related to the

Schwarz problem on the unit disk and can be solved using the Poisson formula,

defining U = − ˙̄ceiθ,

Fb = U(ζ − g(ζ)) +
a2

ζ
Ū − iωr(ζ), r(ζ) =

M+1∑
l=1

Rl

ζ l
and Rl =

M−l∑
k=−1

ḠkGl+k

a2k
, (3.9)

with 0 ≤ l ≤M + 1. Note that the velocity potential r(ζ) due to the rotation has

a dipolar component at infinity unless R1 =
∑
GlḠl+1/a

2l = 0 as investigated in

Llewellyn Smith et al. (2008).

The potential due to each point vortex satisfying the no-flow boundary

condition on the solid and the zero-circulation condition at infinity can be obtained
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in the mapped plane using the circle theorem as:

Fn =
1

2πi
log

[
ζ − ζn
ζ − a2

ζ̄n

]
. (3.10)

This definition differs from the one in Milne-Thomson (1968) because the circula-

tion at infinity must be zero here.

Finally, the complex potential F = φ+ iψ is obtained by linear superpo-

sition, as is the complex velocity w = u− iv = dF/dz:

F = U(ζ − g(ζ)) +
a2

ζ
Ū − iωr(ζ) +

N∑
n=1

Γn
2πi

log

(
ζ − ζn
ζ − a2

ζ̄n

)
, (3.11)

w = ˙̄c+
e−iθ

g′(ζ)

[
U − a2

ζ2
Ū − iωr′(ζ) +

N∑
n=1

Γn
2πi

(
1

ζ − ζn
− ζ̄n
ζζ̄n − a2

)]
. (3.12)

From (3.8), the potential r(ζ) satisfies Re(r(aeiφ)) = g(aeiφ)g(aeiφ)/2 for 0 ≤ φ ≤
2π. Differentiating this relation twice with respect to φ, and applying it at ζp,0,

remembering that g′(ζp,0) = 0, leads to the following relations:

Im
(
ζp,0r

′
p

)
= 0, Re

[
ζp,0r

′
p + ζ2

p,0

(
r′′p − g′′pgp

)]
= 0, (3.13)

where we defined for convenience of notation gp = g(ζp,0) and similarly, g′′p , r′p and

r′′p are the values of the corresponding functions of ζ when evaluated at ζp,0.

3.2.3 Regularity condition and motion of the vortices

The regularity condition at the shedding edges zp,0 imposes that w is

finite there. In (3.12), the term between brackets must vanish at ζp,0 to cancel

the singularity introduced by g′ vanishing at these points. Using ζp,0 = a2/ζ̄p,0, we

obtain

2Im (Uζp,0)− ωζp,0r′p +
N∑
n=1

Γn
2π

(
1 + 2Re

[
ζp,0

ζn − ζp,0

])
= 0, 1 ≤ p ≤ P. (3.14)

Note from (3.13) that all terms in (3.14) are real.
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Rewriting the complex potential in (3.11) as F = F̃n+ Γn
2πi

log(ζ− ζn), the

regularized velocity (2.19) is

w̃n =
e−iθ

g′(ζn)

[
dF̃n
dζ

(ζn)− Γn
4iπ

g′′(ζn)

g′(ζn)

]
, (3.15)

where the last term is known as the Routh correction (Lin, 1941; Clements, 1973).

Using (3.2), (3.12) and (3.15), the equation of motion for the vortices (2.19) be-

comes, in the mapped plane,

g′(ζn)ζ̇n + (g(ζn)− g(ζn,0))
Γ̇n
Γn

= −iωg(ζn) +
1

g′(ζn)

[
Ū − a2

ζ̄2
n

U + iωr′(ζn) (3.16)

−
∑
j 6=n

Γj
2πi

(
1

ζ̄n − ζ̄j
− ζj
ζj ζ̄n − a2

)
+

Γn
2πi

(
ζn

ζnζ̄n − a2
+
g′′(ζn)

2g′(ζn)

)]
.

3.2.4 Forces and torques on the solid body

In this section, explicit expressions are derived for the total force and

torque on the body, which are defined as the integral of the pressure forces and

torques over the body surface. This definition ensures that the transfer of energy

from the fluid to the solid (work of the total force and torque) is the opposite of the

transfer of energy from the solid to the fluid (integral along the body of the pressure

multiplied by the normal velocity, as identified in the energy conservation equation

obtained from Euler’s equations). At this point, one can naturally wonder whether

the total energy of the system is conserved in such a formulation. However, it is

very difficult to define the energy of the system here since the kinetic energy of

a fluid with point vortices is infinite. Although the integral of the fluid kinetic

energy converges far from the body and vortices due to the absence of net flow

or circulation there, each point vortex introduces a logarithmic singularity in the

kinetic energy of the flow. We do not attempt here to suggest or prove that the

regular part of the kinetic energy should be a conserved quantity. Instead, we focus

on the conservation of linear and angular momenta as both quantities are finite,

even for a flow with point vortices.
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Force

The force on a solid body shedding vortices can be obtained from the

results of Sedov (1965) in terms of complex integrals over the body:

f = fx + ify = iρ
N∑
n=1

zn,0Γ̇n +
iρ

2

∫
C
w2dz +

d

dt

[
iρ

∫
C
zwdz

]
+ ρSc̈ (3.17)

with c the position of the solid’s centroid and zn,0 the position of corner n in the

physical plane. The integrands in (3.17) are analytic functions of z except at the

positions of the different vortices. According to Cauchy’s theorem, the integration

contour can be stretched to infinity without changing the value of the integrals

provided that the contribution around each vortex is removed:
∫
C =

∫
C∞ −

∑∫
Cn

with Cn an infinitesimally small circle around the n-th vortex and C∞ a circle of

radius R� 1 encircling the solid body and all the vortices at all time (see Figure

3.2). On C∞, the complex potential and complex velocity can be expanded as

F = F0 +
a1

z
+
a2

z2
+O(R−3), w = −a1

z2
− 2a2

z3
+O(R−4) (3.18)

and (3.18) defines the variables a1 and a2, while near the n-th vortex,

w =
Γn

2πi(z − zn)
+ w̃n +O(z − zn). (3.19)

Using (3.18) and (3.19) as well as (2.19), the force on the solid body (3.17) simplifies

to

f = 2πρ
da1

dt
+ ρS

d2c

dt2
. (3.20)

The expression for a1 can be obtained from (3.2) and (3.11). At infinity,

ζ = ze−iθ − (ce−iθ +G0)−G1
eiθ

z
+O(R−2), (3.21)

and after expanding (3.11) for ζ →∞, we obtain

a1 =

[
a2Ū −G1U − iωR1 +

N∑
n=1

iΓn
2π

(
ζn −

a2

ζ̄n

)]
eiθ, (3.22)
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C

C∞

C1
C2

C3

C4

Cn

Figure 3.2: Details of the contours used in the computation of the integrals
in (3.17) with analytic integrand outside the body except at the position of the
vortices. From Cauchy’s theorem, the contour integral on C can be replaced by
a contour integral on a circle C∞ with radius going to infinity, if the contribution
from each of the infinitesimally small circular contours Cn encircling each vortex
(steady or unsteady) is removed.

so that the force (3.20) becomes

f = ρeiθ
[
(2πa2 − S) ˙̄U − 2πG1U̇ − 2πiR1ω̇ + iω(2πa2 − S)Ū (3.23)

− 2πiωG1U + 2πR1ω
2 + i

d

dt

N∑
n=1

Γn

(
ζn −

a2

ζ̄n

)
− ω

N∑
n=1

Γn

(
ζn −

a2

ζ̄n

)]
.

Barycentric torque on the solid body

The computation by Sedov (1965) of the torque applied by the fluid on

the body about a fixed point can be extended easily to the case of a point moving

in the laboratory frame. If this point is taken to be the centroid of the solid body

(or equivalently its center of mass since we will consider here only homogeneous
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bodies), the torque simplifies further to:

T ∗ =
ρ

2

N∑
n=1

|zn,0 − c|2Γ̇n +
ρ

2
Re

[
2 ˙̄c

∫
C
(z − c)wdz −

∫
C
(z − c)w2dz

+
d

dt

∫
C
|z − c|2wdz

]
. (3.24)

The integrands are analytic functions of z except for the last integral

A =

∫
C
|z − c|2wdz. (3.25)

However, on the mapped circle C , we have ζ̄ = a2/ζ and therefore, on the contour

of the solid body C,

|z − c|2 = g(ζ)g(ζ) =

(
M∑

k=−1

Gkζ
−k

)(
M∑

j=−1

Ḡjζ
j

a2j

)
= R0 +

M+1∑
l=1

(
Rl

ζ l
+
R̄lζ

l

a2l

)
,

(3.26)

with the definition of Rl in (3.9) for 0 ≤ l ≤ M + 1. Using the previous equation

as well as (3.12), one obtains:

A =

∫
C

[
R0 +

M+1∑
l=1

(
Rl

ζ l
+
R̄lζ

l

a2l

)]
.

[
U

M∑
k=1

kGk

ζk+1
− Ū a

2

ζ2
+ iω

M∑
l=1

lRl

ζ l+1
(3.27)

+
N∑
n=1

Γn
2πi

(
1

ζ − ζn
− ζ̄n
ζζ̄n − a2

)]
dζ.

Using Cauchy’s theorem, the previous integral can be computed as

A = −
N∑
n=1

Γn

[
R0 +

M+1∑
l=1

(
Rl

ζ ln
+
R̄l

ζ̄ ln

)]
− 2πω

M+1∑
l=1

l|Rl|2
a2l

(3.28)

+ 2πi

(
−R1U + U

M∑
l=1

lGlR̄l

a2l

)
,

and from the centroid condition (3.4), we also have

M∑
l=1

lGlR̄l

a2l
= R1. (3.29)

Hence, finally,

A = −
N∑
n=1

Γn [R0 + 2Re (r(ζn))]− 2πω
M+1∑
l=1

l|Rl|2
a2l

− 4πIm (R1U) . (3.30)



44

Note that A is real.

Considering the other integrals in (3.24), the integrands are analytic ex-

cept at the position of the different vortices, and we can therefore apply the same

technique used for the force in the previous section by stretching the integration

contour to infinity and removing the contribution of the infinitesimally small con-

tours around each vortex. Doing so, we obtain for the torque:

T ∗ =
ρ

2

N∑
n=1

|zn,0 − c|2Γ̇n + ρRe

[
N∑
n=1

Γn(w̃n − ˙̄c)(zn − c)− 2πia1 ˙̄c

]
+
ρȦ

2
, (3.31)

with a1 and A respectively defined in (3.22) and (3.30). Using (2.19), and g(ζn) =

(zn − c)e−iθ, T ∗ can be rewritten

T ∗ =
ρ

2

N∑
n=1

[
Γ̇n|g(ζn)− g(ζn,0)|2 +

d

dt
(Γn|g(ζn)|2)

]
− 2πρIm

[
Ua1e−iθ

]
+
ρȦ

2
.

(3.32)

Using (3.22) and (3.30), the barycentric torque is finally obtained as

T ∗ =
ρ

2

N∑
n=1

{
Γ̇n|g(ζn)− g(ζn,0)|2 +

d

dt

[
Γn

(
|g(ζn)|2 −R0 − 2Re (r(ζn))

)]
− 2ΓnRe

[
U

(
ζn −

a2

ζ̄n

)]}
+ 2πρIm[G1U

2] + 2πρωRe [R1U ] (3.33)

− πρω̇
M+1∑
l=1

l|Rl|2
a2l

− 2πρIm
[
R1U̇

]
.

Conservation of total momentum and comparison with the case of steady
vortices

It is enlightening to compare the expressions (3.20) and (3.32) for the

motion of a solid body shedding unsteady point vortices to the situation where

the solid body does not shed vorticity but moves in a flow with pre-existing point

vortices of steady intensity. Ramodanov (2000) derived the equations of motion

of a cylinder and a single point vortex with steady intensity. It was also shown

that the equations of motion of a two-dimensional solid body and N point vortices

with steady intensity are Hamiltonian (Shashikanth et al., 2002; Shashikanth, 2005;

Borisov et al., 2007b; Kanso and Oskouei, 2008).
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From Kanso and Oskouei (2008), the force fs and barycentric torque T ∗s
on the solid body in the case of an inviscid flow with point vortices of steady

intensity are obtained as

fs = −dpfluid
dt

, (3.34)

T ∗s e3 =
ρ

2

d

dt

(
N∑
k=1

Γk||xk − c||2
)

e3 − ċ× pfluid +
ρ

2

d

dt

∫
C
||x− c||2(n× u)ds

(3.35)

with xk the position vector of vortex k and pfluid the fluid linear momentum

pfluid = ρ

∫
C

x× (n× u)ds+ ρ

N∑
k=1

Γkxk × e3. (3.36)

In (3.20), 2πa1 = i
∫
C∞ zwdz and using the identity (see for example

Sedov, 1965) ∫
C
zdψ =

dSc

dt
, (3.37)

the expression (3.20) derived for the force in the case of shedding of vortices

with unsteady intensity can be rewritten f = −ṗfluid with pfluid = −iρ
∫
C zdφ −

iρ
∑

Γkzk with φ the real part of the complex potential. This is equivalent (in

complex notation) to the expression (3.34) obtained from the Hamiltonian system

used in Kanso and Oskouei (2008). As in the derivation by Graham (1980) who

obtained a result similar to (3.20) for a fixed solid, the form of the equation of mo-

tion for the point vortices (2.19) is essential as it allows one to cancel exactly any

unbalanced force on the branch cut introduced by the shedding of a point vortex

with unsteady intensity (see section 2.4.4). The momentum is conserved in the

fluid in an integral sense around the vortex and the branch cut, which explains the

similarity with the result of the Hamiltonian theory in Kanso and Oskouei (2008).

Following a similar approach and transferring (3.35) to complex notation,

we observe that the three last terms on the right-hand side of (3.32) correspond

to the three terms on the right-hand side of (3.35) in the same order. The shed-

ding of unsteady point vortices introduces an additional term Tv in the barycentric
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torque applied on the solid, proportional to the product of the rate of change of

each vortex intensity and of the square of the distance between that vortex and

the generating corner.

A careful application of the conservation of angular momentum in an

integral sense around the vortex and branch cut shows that, because of the form

of (2.19), an unbalanced torque (2.29) remains on the branch cut equal to the

opposite of the additional term Tv (see section 2.4.5). Our analysis is therefore

consistent with other studies on complex potential flows, in the sense that linear

momentum is conserved, and the rate of change of the total angular momentum is

equal to the opposite of the torque applied by the fluid on the branch cut.

The existence of this additional term is inherent to the vortex model

chosen here as discussed in section 2.4.5. Because of the limited number of degrees

of freedom available for the position of the point vortex (its intensity is fixed by the

regularity condition), it is not possible to satisfy at the same time the conservation

of linear and angular momentum around the vortex and branch cut.

Added inertia contributions and momentum transfer to the vortices

In (3.23) and (3.33), the terms not involving Γn can be identified to

added mass terms (see section 2.3.1). For the general shape considered here, the

added-mass coefficients can be recovered from (3.23) and (3.33). Considering the

reference directions 1 and 2 of added mass theory to coincide with the horizontal

and vertical axes when θ = 0, then the 3 × 3 symmetric added-mass tensor Mij

with i, j = 1, 2, 6 is obtained as (see for example Newman (1977))

M = ρ


2π [a2 + Re(G1)]− S −2πIm(G1) −2πIm(R1)

−2πIm(G1) 2π [a2 − Re(G1)]− S 2πRe(R1)

−2πIm(R1) 2πRe(R1) π
∑ l|Rl|2

a2l

 · (3.38)

The terms proportional to Γn or Γ̇n are additional forces and torques

resulting from the shedding of vorticity. Using the results of section 3.2.4, they
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can be divided into two kinds: those arising from the transfer of angular momentum

and linear momentum from the solid to the fluid as explained in Shashikanth et al.

(2002) and an additional torque, corresponding to an additional transfer of angular

momentum because of the vortex representation chosen here.

3.2.5 Coupled equations of motion

We assume here that an external force F(t) and torque T (t) are applied

on the solid body. The system of equations for the coupled vortex–solid problem

is:

Mc̈ = F(t) + ρeiθ
[
(2πa2 − S) ˙̄U − 2πG1U̇ − 2πiR1ω̇ + iω(2πa2 − S)Ū

− 2πiωG1U + 2πR1ω
2 + i

d

dt

N∑
n=1

Γn

(
ζn −

a2

ζ̄n

)
(3.39)

− ω
N∑
n=1

Γn

(
ζn −

a2

ζ̄n

)]
,

Iω̇ = T (t) + 2πρIm[G1U
2] + 2πρωRe [R1U ]− πρω̇

M+1∑
l=1

l|Rl|2
a2l

− 2πρIm
[
R1U̇

]
+
ρ

2

N∑
n=1

{
Γ̇n|g(ζn)− g(ζn,0)|2 − 2ΓnRe

[
U

(
ζn −

a2

ζ̄n

)]
(3.40)

+
d

dt

[
Γn

(
|g(ζn)|2 −R0 − 2Re(r(ζn))

)]}
,

g′(ζn)ζ̇n + (g(ζn)− g(ζn,0))
Γ̇n
Γn

= −iωg(ζn) +
1

g′(ζn)

[
Ū − a2

ζ̄2
n

U + iωr′(ζn)

−
∑
j 6=n

Γj
2πi

(
1

ζ̄n − ζ̄j
− ζj
ζj ζ̄n − a2

)
+

Γn
2πi

(
ζn

ζnζ̄n − a2
+
g′′(ζn)

2g′(ζn)

)]
,

(3.41)

2Im (Uζp,0)− ωζp,0r′p +
N∑
n=1

Γn
2π

(
1 + 2Re

[
ζp,0

ζn − ζp,0

])
= 0, 1 ≤ p ≤ P (3.42)

with U = − ˙̄ceiθ. At time t, the number of real unknowns is 2N+P+3 [position and

orientation of the solid body (3 unknowns), position of the vortices (2N unknowns)
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and intensity of the vortices being presently shed from each corner (P unknowns),

the other intensities having been frozen to a known value]. The system (3.39)–

(3.42) is a system of 2N + P + 3 equations [2 from Newton’s second law (3.39),

1 from the conservation of angular momentum (3.40), 2N for the position of the

vortices (3.41) and P from the regularity condition at each corner (3.42)].

3.3 Small-time behavior and vortex shedding

The system is started from rest at t = 0 and evolves from this rest position

because of an external force (e.g. gravity) or torque. The motion of the sharp edges

induces the shedding of vortices from each corner. When a new vortex is started

from a generating corner, the right-hand side of the equation of motion (3.41) for

this vortex is singular as the vortex and its image conjugate are at the same point.

We show in the following that the distance between the generating corner and the

vortex in the mapped plane varies like a fractional power of time, consistent with

the singular behavior at t = 0. The following section uses the same approach as

in Cortelezzi and Leonard (1993) and Cortelezzi (1995), whose results are thereby

extended to arbitrary body shapes and motions. We focus on the vortex shedding

and, as in Cortelezzi and Leonard (1993), assume first that the solid motion is

known. The initial behavior of the solid body can then be obtained from the

small-time analysis of (3.39)–(3.40).

3.3.1 Shedding of the first vortices

We first consider the case of the first vortex shed from each of the P

generating corners when the motion of the solid is started. We assume that initially

U ∼ U0t
α and ω ∼ ω0t

β.

Defining the reduced variable ηp such that ζp = ζp,0(1 + ηp) and keeping
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only the dominant terms in (3.41) and (3.42), we obtain for 1 ≤ p ≤ P

2Im(Uζp,0)−ωζp,0r′p +
Γp
π

Re

(
1

ηp

)
= 0, (3.43)

g′′pηpη̇p +
g′′pη

2
p

2

Γ̇p
Γp

=
1

a4g′′p η̄p

[
−2iIm(Uζp,0) + iωζp,0r′p −

iΓp
2π

(
1

ηp + η̄p
+

1

2η̄p

)]
,

(3.44)

as the contribution of vortices j 6= p to the regularity condition at corner p and to

the induced velocity on vortex p are negligible. Remembering that ζp,0r
′
p is real (see

equation (3.13)), we can define the real quantity Fp(t) = 2Im(Uζp,0) − ωζp,0r′p ∼
Fp0t

µ, with µ = min(α, β) and obtain

Γp = − 2πηpη̄p
ηp + η̄p

Fp(t) (3.45)

ηpη̇p +
η2
p

2

Γ̇p
Γp

= − iFp(t)

a4|g′′p |2η̄p

(
1− ηp(3η̄p + ηp)

2(ηp + η̄p)2

)
. (3.46)

If we decompose the complex number ηp into its polar representation, we obtain

a system of equations identical to the one derived by Cortelezzi (1995) for the

shedding of Brown–Michael point vortices from a semi-infinite plate with imposed

motion. This is intuitively reasonable, as the initial shedding is expected to be

driven by the local behavior of the flow, so the present approach generalizes previ-

ous results to arbitrary bodies with both translation and rotation. Using the same

method as in Cortelezzi (1995), we obtain that, initially,

zp − zp,0 =
ζ2
p,0g

′′
peiθ

2
η2
p, ηp = e−iπ

4
sgn(Fp0)

[
|Fp0|

a4(2µ+ 1)|g′′p |2
√

2

]1/3

t(µ+1)/3,

Γp = −sgn(Fp0)π

[
2F 4

p0

(2µ+ 1)a4|g′′p |2
]1/3

t(4µ+1)/3. (3.47)

Here, η2
p is purely imaginary and g′′pζ

2
p,0eiθ is the orientation of the local tangent.

Hence, the first vortices are shed orthogonally to the shedding corner.

We have shown that if U and ω initially have power-law behaviors, tα

and tβ, the circulation of the vortices behaves like t(4µ+1)/3 and the distance to
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the shedding corner like t2(µ+1)/3, where µ = min(α, β). Taking this information

into account, we observe that in (3.39) and (3.40) the added mass terms initially

dominate the contribution of the vortices. Under prescribed external forces and

torques, the initial motion of the solid body is driven by added inertia. The

influence of vortex shedding only becomes important later on. This is particularly

convenient for the solution of this problem as it allows one to solve for the initial

solid motion using added mass theory and then use the result for U and ω to

determine the initial behavior of the vortices.

3.3.2 Shedding of subsequent vortices

When a vortex reaches a maximum intensity at t = ts, its intensity is

frozen and a new vortex is started from the corresponding shedding corner to

satisfy the regularity condition there. The vortices are also reindexed so as to keep

the first P vortices be the ones with unsteady intensity. The equation of motion

for the new vortex needs to be solved analytically at small time as the right-hand

side of (3.41) displays an initial singularity as for the first vortices. Without loss of

generality, we assume that the new vortex is shed from corner 1. This new vortex

is labelled 1 while the vortex that was just frozen becomes vortex N . Because

Γ̇N = 0 and is continuous at t = ts, the velocity of all vortices 2 ≤ j ≤ N are

continuous as well as their intensity and so is the velocity and rotation rate of the

solid body.

As before, we define η so that ζ1 = ζ1,0(1 + η). Substitution in (3.42)

leads to:

2Im(Uζ1,0)− ωζ1,0r
′
1 +

Γ1

π
Re

(
1

η

)
+

N∑
n=2

Γn
2π

[
1 + 2Re

(
ζ1,0

ζn − ζ1,0

)]
= 0. (3.48)

We assume that η ∼ τ δ, Γ1 ∼ τ γ (with τ = t − ts and ts the time of shedding)

and that Re(η) is not initially negligible compared to |η|; by dominant balance

in the previous equation, enforcing the regularity condition at t = t±s , we obtain

γ = δ + 2. Then, the effect of the new vortex in the right-hand side of (3.41) is



51

negligible and by dominant balance δ = 1/2 and γ = 5/2. The equation of motion

(3.41) simplifies, keeping only the dominant terms and using (3.42),

ζ2
1,0g

′′
1

(
ηη̇ +

5η2

4τ

)
=− iωg1 +

1

g′′1ζ
2
1,0

[
2Uζ1,0 + iωr′′1ζ

2
1,0 (3.49)

+
N∑
n=2

iΓn
2π

(
ζ2
k ζ̄

2
1,0

(ζjζ1,0 − a2)2
− ζ̄2

1,0

(ζ̄1,0 − ζ̄n)2

)]
,

where all quantities other than η are evaluated at τ = 0. The right-hand side of

the previous equation is O(1), and corrections to that approximation would only

add terms of order O(τ) that are initially negligible. Using (3.13), (3.14) and

ζ1,0ζ̄1,0 = a2,

a4|g′′1 |2
(
ηη̇ +

5η2

4τ

)
= 2Re(Uζ1,0) + iω

(
ζ1,0r′1 − ḡ1g′′1ζ

2
1,0 + r′′1ζ

2
1,0

)
(3.50)

−
N∑
2

Γn
π

Im

(
ζ1,0ζn

(ζn − ζ1,0)2

)
.

This can be integrated for η to give

η2 =Cτ, with

C =
4

7a4|g′′1 |2
[
2Re(Uζ1,0) + iω

(
ζ1,0r′1 − ḡ1g′′1ζ

2
1,0 + r′′1ζ

2
1,0

)
(3.51)

−
N∑
2

Γn
π

Im

(
ζ1,0ζn

(ζn − ζ1,0)2

)]
.

From (3.13), we observe that C, and therefore η2, are purely real. In physical

space,

z1 − z1,0 =
C

2
eiθg′′1ζ

2
1,0τ, (3.52)

and the vortex is shed parallel to the local tangent at the shedding corner whose

direction is given by eiθg′′1ζ
2
1,0. This result extends to arbitrary motions and shapes

the result obtained by Cortelezzi and Leonard (1993) for a semi-infinite plate in

pure translation. It is consistent with the physical analysis of Graham (1977): at

the time of shedding, the vortices already present cancel the normal background

flow through the regularity condition and the flow is therefore dominated by the
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tangential component at the corner, which carries the newly shed vortex parallel

to the tangential direction. Note that we restrict ourselves here to the case of flat

corners (zero angle). In the case of a finite angle, the direction of shedding depends

on the direction of the flow at the corner (Graham, 1977).

3.3.3 Favorable and unfavorable shedding conditions

If C > 0, η is purely real and the vortex goes out of the solid body.

However, if C < 0, η is purely imaginary and this violates the initial assumption

of this analysis that Re(η) is not negligible compared to Im(η). Carrying out

the small-time analysis to the next order shows that ζ1 is located on the circle

C . Hence, in the physical plane, the vortex is pushed by the flow onto the solid

boundary C. This is problematic as the vortex and its image would be at the

same position and this introduces a singularity in the equations. The case C < 0

is of the same nature as the limitations to the vortex sheet method presented in

Jones (2003) and Jones and Shelley (2005). In those works, it is observed that the

integration fails if a newly shed Lagrangian element of the vortex sheet is forced to

remain on the solid boundary by the outside flow. Our numerical simulations with

prescribed motions confirm the observations by Jones (2003) that this problem

occurs mainly at low angles of attack when Re(Uζ1,0) is negative, but that it can

also occur at high angles of attack, when the solid body is forced to interact with

its own wake. Cortelezzi and Leonard (1993) considered the occurrence of such an

event to be the result of a numerical error. This does not contradict our analysis as

the situations considered numerically by Cortelezzi and Leonard (1993) involved

the motion of a plate normal to itself with no reversal of the direction of motion,

so that vortices are always carried away from the plate. In that case, C < 0 does

not occur.

We refer to the case C > 0 (resp. C < 0) as favorable (resp. unfavor-

able) shedding conditions. The case C < 0 is the main limitation of the present

method. It is expected that a purely inviscid approach cannot resolve this issue, as
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physically, in such a situation of shedding at low angle of attack, the new vortex is

expected to remain trapped near the shedding edge and interact with the bound-

ary layer, a situation that is not described well by an inviscid model. However,

because of the discrete shedding mechanism used here, the occurrence of C < 0 is

only problematic when a new vortex is being shed.

3.4 Example: stability of the broadside-on fall

of a two dimensional flat plate.

In this section, we use the method outlined previously for a general solid

body to study the particular case of a falling two-dimensional flat plate. This prob-

lem, known as Maxwell’s problem (Maxwell, 1854), has been extensively studied

experimentally for objects such as falling disks (Willmarth et al., 1964; Field et al.,

1997) and long falling plates (Smith, 1971; Belmonte et al., 1998; Belmonte and

Moses, 1999; Andersen et al., 2005b). The similar problem of the oscillatory mo-

tion of a rising buoyant cylinder was also investigated recently (Fernandes et al.,

2005, 2007). Depending on Re and the relative inertia of the fluid and solid, differ-

ent regimes have been observed. Defining Re based on the solid’s chord or width,

the typical terminal velocity and the fluid viscosity, it was observed that, below a

critical Rec (typically Rec ∼ 200), the fall in the broadside-on (horizontal) position

is stable. Initial non-zero angles lead to viscously dampened fluttering oscillations

(Willmarth et al., 1964). At higher Re, the dampened regime is not observed.

From a non-horizontal initial orientation, three regimes are typically observed: pe-

riodic fluttering, periodic tumbling or chaotic (Smith, 1971; Field et al., 1997).

More recently two-dimensional numerical simulations were performed for a falling

ellipse using moving fitted grids (Huang, 2001; Andersen et al., 2005b). Using the

inviscid approach described in the present paper, we study as an example the ef-

fect of vortex shedding on the stability of the broadside-on fall. The experimental

and numerical results at large Re predict a destabilization of the broadside-on fall
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(Willmarth et al., 1964; Smith, 1971; Field et al., 1997).

A homogeneous plate of half-length l, massM and negligible thickness is

released from rest at t = 0 with an initial angle to the horizontal θ0 (−π/2 ≤ θ0 ≤
π/2), and falls under the effect of gravity so that F(t) = −iMg and T (t) = 0. Its

moment of inertia is I =Ml2/3. The center of mass of the plate is initially at the

origin of a fixed system of axes in the inertial laboratory frame. In the following,

all quantities are non-dimensionalized using the half-length l of the plate, the

density of the fluid ρ and gravity g as reference scales. Two non-dimensional

parameters characterize the problem: θ0, the initial release angle, and the ratio of

solid and fluid inertia identified as the Froude number in Jones and Shelley (2005):

Fr =M/2ρl2.

3.4.1 Equations of motion

Coupled equations for the vortex-plate system

The plate of unit half-length is obtained using the particular mapping:

g(ζ) = ζ +
a2

ζ
(3.53)

with a = 1/2. In the framework of the present paper, all the coefficients Gj are

zero except for G−1 = 1 and G1 = a2 = 1/4. From (3.9), we obtain that all Rj are

equal to zero except for R0 = 2a2 = 1/2 and R2 = a4 = 1/16. The solid body has

two sharp corners, φ1 = 0 and φ2 = π, corresponding to ζ1,0 = a and ζ2,0 = −a,

where g′′1 = 2/a = 4 and g′′2 = −2/a = −4 (see Figure 3.3). The complex potential

(3.11) and velocity (3.12) simplify to

F = −2ia2Im(U)

ζ
− iωa4

ζ2
+

N∑
n=1

Γn
2πi

log

(
ζ − ζn
ζ − a2

ζ̄n

)
, (3.54)

w = ˙̄c+
ζ2e−iθ

ζ2 − a2

[
U − a2

ζ2
Ū +

2iωa4

ζ3
+

N∑
n=1

Γn
2πi

(
1

ζ − ζn
− ζ̄n
ζζ̄n − a2

)]
(3.55)
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Figure 3.3: Notation of Figure 3.1 adapted for the particular case of a falling
card. The position of the plate’s center of mass is noted c and the orientation θ
is the angle between the plate and the horizontal axis. In the mapped plane, the
two shedding corners ζ1,0 and ζ2,0 are the intersections of the circle C with the
horizontal axis.

where, as before, ċ = −Ūeiθ. The plate is infinitely thin so S = 0 and there is no

buoyancy effect. The only force externally applied on the plate is gravity. In non-

dimensional form, the system of coupled equations for the motion of the vortices

and the plate is obtained from (3.39)–(3.42).

2Fr(c̈+ i) = eiθ

[
−iπIm(U̇) + πωIm(U) + i

d

dt

N∑
n=1

Γn

(
ζn −

a2

ζ̄n

)
(3.56)

− ω

N∑
n=1

Γn

(
ζn −

a2

ζ̄n

)]
,

(
2Fr

3
+
π

8

)
ω̇ = πIm[U ]Re[U ] +

1

2

N∑
n=1

{
Γ̇n
|ζn − ζn,0|4
|ζn|2

− 2ΓnRe

[
U

(
ζn −

a2

ζ̄n

)]
+

d

dt

[
Γn
(
ζnζ̄n − a2

)(
1 +

a2

ζ2
n

+
a2

ζ̄2
n

− a2

ζnζ̄n

)]}
, (3.57)
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(
1− a2

ζ2
n

)
ζ̇n +

(ζn − ζn,0)2

ζn

Γ̇n
Γn

= −iω

(
ζn +

a2

ζn

)
+

ζ̄2
n

ζ̄2
n − a2

[
Ū − a2

ζ̄2
n

U−

− 2iωa4

ζ̄3
n

−
∑
j 6=n

Γj
2πi

(
1

ζ̄n − ζ̄j
− ζj
ζj ζ̄n − a2

)
(3.58)

+
Γn
2πi

(
ζn

ζnζ̄n − a2
+

a2

ζ̄n(ζ̄2
n − a2)

)]
,

±Im (U) + ωa+
N∑
n=1

Γn
4πa

(
1± 2Re

[
a

ζn ∓ a

])
= 0. (3.59)

The system (3.56)–(3.59) is a complete system of ordinary differential equations

for the plate’s position c and orientation θ, the vortices positions zn (or equivalently

ζn in the mapped plane) and the two unknown intensities Γ1 and Γ2.

The limit case Fr = 0 deserves some additional comment. In that case,

the left-hand side of (3.56) vanishes while the left-hand side of (3.57) does not.

However, on the right-hand side of (3.56) added-mass terms depend on c̈ through U̇

and therefore (3.56) does not degenerate into an algebraic equation. Furthermore,

in the case Fr = 0, the forcing gravity term disappears, and the solution of (3.56)–

(3.59) is trivial: the body does not move and no vortex is shed.

Small-time behavior

We have shown in section 3.3.1 that initially, the effects of vortex shedding

are negligible compared to added-inertia. Retaining only added-inertia terms, by

dominant balance in (3.56) and (3.57), we obtain that ċ and therefore U are initially

linear functions of time while ω ∼ t3. The small-time behavior of the falling card

is obtained from (3.56) and (3.57) defining c = xc + iyc:

ω̇ = O(t2), ẍc = − π sin 2θ0

2(π + 2Fr)
+O(t), ÿc = −1 +

π cos2 θ0

π + 2Fr
+O(t) (3.60)

which is equivalent to the results of Jones and Shelley (2005), since in both the

point vortex and the vortex sheet methods, the initial behavior of the falling card

is dominated by added mass effects. The initial acceleration of the plate makes

an angle θf with the vertical (tan θf = ẍ/ÿ) which depends on both θ0 and Fr



57

ċ
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Figure 3.4: (Left) When the plate is released with an initial orientation θ0, its
initial velocity and acceleration make an angle θf with the vertical axis. Note that
θf < 0 if θ0 > 0. (Right) Variations of θf with θ0 for different values of Fr . The
case θ0 < 0 is obtained by symmetry.

(see Figure 3.4). For all Fr , the plate falls vertically if θ0 = 0 (broadside-on)

or θ0 = ±π/2 (edge-on). For large Fr (heavy plate), the plate’s initial fall is

almost vertical (|θf | � 1) as the inertia of the fluid is negligible compared to the

solid’s. For small Fr (light plate), the plate tends to slide initially parallel to itself

(θf ∼ θ0−π/2) in order to reduce the relative flow normal to the plate that induces

the largest added inertia.

Then, we obtain from (3.60) and U = − ˙̄ceiθ that initially

U ∼ U0t, with U0 =

(
π sin θ0

π + 2Fr
− 2iFr eiθ0

π + 2Fr

)
t. (3.61)

From the results of section 3.3.1, the initial motion of the two vortices is obtained

as

z1 − (c+ eiθ0) = z2 − (c− eiθ0) =
ieiθ0t4/3

2

[
2Fr cos θ0

3
√

2(π + 2Fr)

]2/3

, (3.62)

Γ1 = −Γ2 = 4πt5/3
[

Fr 4 cos4 θ0

6(π + 2Fr)4

]1/3

.

The trajectories of the vortices relative to the plate are initially symmetric as their

initial motion is driven by the normal component of the local flow, that is identical

for each of the shedding corners.
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Numerical solution

The system of ODEs (3.56)–(3.59) is solved using the variable time-step

Matlab ODE solver ode45.The integration is done analytically using (3.60) and

(3.62) over the first time step ∆t (typically 10−5) because the solver can not handle

directly the singular initial behavior of (3.58). The event tracking function is used

to detect when Γ̇1 or Γ̇2 vanishes at which point the integration is stopped, the

corresponding vortex intensity becomes frozen, the vortices are reindexed accord-

ingly and a new vortex is started. As for the first vortices, the system is integrated

by hand for the first time step, using the results of section 3.3.2 whose main result

(3.51) becomes, in the particular case studied here,

ζ1 ∼ ζ1,0(1 + η), with η2 =
4τ

7

[
2Re(U)−

N∑
n=2

Γn
π

Im

(
ζn

(ζn − ζ1,0)2

)]
. (3.63)

As discussed in 3.3.3, η2 is purely real, and depending on its sign, leads to favorable

or unfavorable shedding conditions. In the former case, a new vortex is started

successfully and the integration is carried on further using the ODE solver. In the

latter case, the integration stops since the shedding of the new vortex cannot be

handled using an inviscid vortex method.

3.4.2 Fall of a horizontal card

When the card is released initially with θ0 = 0, the problem is symmetric

with respect to the vertical axis, and this symmetry remains at all time. The card

falls vertically with θ = 0 (broadside-on). One vortex is shed from each corner with

opposite intensities and symmetric positions with respect to the vertical axis. The

intensity of these vortices never reaches an extremum so no new vortex is shed.

We denote by dv = Im(z1− c) = Im(z2− c) the vertical distance between the plate

and the vortex pair.

Both fluid effects (added inertia and vortex shedding) tend to slow down

the plate (see Figure 3.5a) as they both correspond to a transfer of negative vertical
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Figure 3.5: Broadside-on fall of a card (θ0 = 0) for Fr = 1. (a) Vertical velocity
of the plate: (solid) full vortex shedding model, (dashed) added inertia only and
(dotted) fall in vacuum. (b) Intensity of the right vortex. (c) Vertical distance dv
between the vortex pair and the plate. In each plot, the insert gives a logarithmic
plot of the corresponding quantity obtained with the full vortex shedding model
to identify scalings.
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momentum to the fluid. Figure 3.5 allows us to identify different phases in the

broadside-on fall. During the first phase (t < 1 for Fr = 1), the motion of the plate

is dominated by added inertia and gravity. The distance dv and intensity Γ1 follow

the scaling laws obtained in (3.62). After a transition phase (1 < t < 15), during

which the vortex shedding influence becomes important and the plate acceleration

quickly decreases, a long-time regime is achieved in which the fluid forces almost

balance gravity. Although the plate dynamics does not seem to follow an exact

power-law, its vertical velocity behaves almost like
√
t. The vortex wake intensity

grows linearly in time and its distance to the plate varies like t1/4. This distance

varies much slower than the plate vertical position, so the vortex pair seems trapped

in the wake of the falling card.

As in Jones and Shelley (2005), when redefining the time scale such that

t′ = t
√

Fr and rescaling the other quantities accordingly, the time evolution of the

different quantities for different values of Fr collapse onto similar evolution curves

(see Figure 3.6). With this new reference time-scale, the evolution of the system

is almost independent of Fr . Note that the agreement is best at low Fr (typically

Fr < 1).

3.4.3 Comparison with added mass analysis

Before studying the behavior of a falling card released with a non-zero

angle, we present a brief summary of the solid motion obtained by representing

the fluid effects with added inertia only. This also will be useful in the remaining

sections to emphasize the effect of vortex shedding. In this section only, the fluid

forces and torques are entirely given by the added inertia contribution. Viscosity

and vorticity are both neglected. The equations of motion can be obtained from

added-mass theory (Newman, 1977) or directly from (3.56)–(3.57) by removing the
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The different quantities (velocity, circulation) are rescaled accordingly.

contribution of the vortices:(
2Fr

π
+ sin2 θ

)
ẍc −

1

2
sin 2θÿc = θ̇ (ẏc cos 2θ − ẋc sin 2θ) ,

−1

2
sin 2θẍc +

(
2Fr

π
+ cos2 θ

)
ÿc = −2Fr

π
+ θ̇ (ẏc sin 2θ + ẋc cos 2θ) , (3.64)(

1

8
+

2Fr

3π

)
θ̈ =

(
ẋ2
c − ẏ2

c

2

)
sin 2θ − ẋcẏc cos 2θ.
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From (3.64) or its equivalent in a system of axes attached to the plate, an equation

for the orientation θ only can be obtained (Mahadevan, 1996)(
1

8Fr
+

2

3π

)
θ̈ +

t2 sin 2θ

(π + 2Fr)
= 0, with θ̇(0) = 0 and θ(0) = θ0 (3.65)

and the motion of the plate’s center of mass is recovered from θ using

ẋc = − πt sin 2θ

2(π + 2Fr)
, ẏc = − t

π + 2Fr

(
2Fr + π sin2 θ

)
. (3.66)

The solution of (3.65) has an oscillatory behavior with decreasing amplitude as

confirmed by the WKB solution valid for small initial angle θ0 and t� 1:

θ(t) ∼ C0√
t

cos

(
t2

√
12πFr

(π + 2Fr)(3π + 16Fr)
+ φ0

)
, (3.67)

with C0 and φ0, two constants obtained by matching with the initial behavior.

Exploring the parameter space (θ0,Fr) shows that, in two dimensions, added inertia

only produces a fluttering behavior with algebraically decreasing amplitude and

linearly increasing frequency. This is consistent with other theoretical studies that

showed that θ = 0 is a stable position and θ = ±π/2 an unstable position (Kozlov,

1989; Mahadevan, 1996). Adding asymmetric viscous drag can generate other

regimes like tumbling (Kozlov, 1990; Mahadevan, 1996). See also Borisov et al.

(2007a) for a more complete review of the asymptotic behavior of a falling solid

body in an ideal fluid with no shed vorticity.

For large Fr (heavy plate), the solid inertia is dominant and the motion

tends to a pure translation (oscillation in θ with zero frequency). For small Fr ,

the forcing on the solid occurs over a very long time scale Fr−1/2 and the motion

of the plate is negligible unless t� 1. The oscillation frequency grows the fastest

when both the solid and fluid inertia are comparable, emphasizing the fluid-solid

interaction nature of the fluttering motion.

These results show that an infinite-Re model based exclusively on added-

inertia (therefore neglecting both viscosity and vorticity shedding) fails to explain
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the destabilization of the broadside-on fall observed in high-Re experiments. The

shedding of vorticity from the plate edges is therefore essential to understand the

behavior of the falling plate when viscosity is neglected.

3.4.4 Stability of broadside-on fall

We now consider the case of a card released with a small non-zero ini-

tial angle θ0 using the vortex shedding model. A wide range of the parameter

space (θ0,Fr) was explored, leading to the following result: a card initially released

with a small non-zero initial angle undergoes fluttering oscillations with growing

amplitude (see Figures 3.7 and 3.8). The broadside-on fall position is therefore

unstable1; this is consistent with the results obtained using the full vortex sheet

representation (Jones and Shelley, 2005).

We are interested in the development of the instability and how it is

influenced by the two non-dimensional parameters Fr and θ0. Figures 3.7 and 3.8

show the behavior of the falling card for θ0 = π/1024 and increasing values of Fr .

In all three experiments, new vortices are shed according to the shedding criterion

described in the previous sections (three or four in the cases presented in Figures

3.7 and 3.8). The wake is dominated by a pair of strong counter-rotating vortices,

whose primary effect is to slow down the falling card. The asymmetry introduced

by the fluttering motion of the plate is clearly visible on the plot of the streamlines.

The plate undergoes a fluttering motion with growing amplitude as can be seen in

the variation of its orientation and horizontal position.

Scaling of the instability development

During this growing fluttering motion, the orientation angle is observed

to oscillate within an exponential envelope (Figure 3.9). We can define the growth

1We understand here by instability that for any small value of the initial angle (initial values
θ0 as low as π/215 were tested), the plate is observed to move away from the broadside-on
equilibrium. We do not attempt to provide a mathematical proof of the instability of the time-
dependent solution of equations (3.56)–(3.59).
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Figure 3.7: Fall of a card released with an initial angle θ0 = π/1024 and (a)
Fr = 0.75 and (b) Fr = 1.5 for 0 ≤ t ≤ 25. (Left) The plate position is plotted
every ∆t = 0.4. (Center-top) Evolution of the plate orientation (solid) and of the
horizontal position of its center of mass (dashed). (Center-bottom) Intensity of
the successively shed vortices. (Right) Streamlines of the flow around the falling
plate and positions of the vortices at t = 25. Positive (resp. negative) vortices
are represented with upward- (resp. downward-) pointing triangles. To show the
difference in velocity magnitude between the different cases, the spacing between
two streamlines corresponds to a difference in the streamfunction of 0.5 for all
values of Fr .
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Figure 3.8: Fall of a card released with an initial angle θ0 = π/1024 and Fr = 3
(same as in Figure 3.7).

rate σ of the instability characterizing the exponential envelope and a pseudoperiod

τ for the oscillations. Figure 3.9 shows the influence of Fr and θ0 on the evolution

of θ. We observe that the variations of θ/θ0 are independent of θ0 during the growth

regime. The influence of θ0 becomes important when θ reaches O(1) values and

the exponential growth saturates. The Froude number Fr is observed to influence

the pseudoperiod of the oscillations. However, the growth rate of the instability

(that determines the shape of the exponential envelope on Figure 3.9a) seems

independent of Fr .

This qualitative analysis is confirmed by the quantitative results of Figure

3.10. Focusing on the successive extrema of the orientation θm, we observe that

for all Fr , |θm| ∼ θ0eσt with σ = 0.23 (Figure 3.10a). The pseudoperiod τ of the

oscillations is obtained using the successive occurrences of θ = 0 and is plotted

on Figure 3.10(b) against Fr , showing a slow decrease of the pseudo-period with

Fr , and τ ∼ Fr−0.12. This very weak dependance in Fr is consistent with the

observations of Jones and Shelley (2005), when the different variables are rescaled
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Figure 3.9: Evolution of θ/θ0 in time. (Left) Influence of Fr : θ/θ0 is plotted for
θ0 = π/1024 and Fr = 0.2 (solid), Fr = 0.5 (dashed), Fr = 1 (dash-dotted) and
Fr = 5 (dotted). (Right) Influence of θ0: θ/θ0 is plotted for Fr = 1 and θ0 = π/4096
(solid), θ0 = π/2048 (dashed), θ0 = π/1024 (dash-dotted) and θ0 = π/512 (dotted).

appropriately to match the notation in Jones and Shelley (2005).

Characteristics of the growing-amplitude fluttering regime

During this phase, the vertical motion is at leading order identical to the

broadside-on solution obtained for θ0 = 0. The horizontal position experiences

oscillations with the same characteristics σ and τ as the θ-oscillations. The oscil-

lations of θ and xc are however not in phase: the maximum horizontal deviation

is reached slightly before the maximum orientation angle (Figures 3.7 and 3.8).

During this fluttering regime, the vortex wake is dominated by a pair

of counter-rotating vortices as in the case θ = 0. The asymmetry of the wake is

characterized by a net circulation around the solid body of Γb = −(Γ1 + Γ2) and

a difference between the vertical positions of the two vortices of δv = Im(z1 − z2).

For small θ0, Γb and δv remain small during the initial fluttering regime.

The dominant motion is vertical, and for non-zero θ, the angle of attack

at one edge (leading edge) is slightly smaller than at the other (trailing edge). The

vorticity shedding rate is expected to be slightly larger at the leading edge, and the

corresponding vortex remains closer to the shedding edge because of the Brown–
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Michael corrective term in (2.19) that tends to pull the vortex back to its shedding

corner. This corrective term represents the faster roll-up of a more intense vortex

sheet on itself, keeping the center of vorticity closer from the shedding corner.

An asymmetry in the vertical velocities of the vortices is therefore introduced and

the leading edge vortex moves downward faster with the plate than the other

vortex. For θ > 0, the left vortex (negative) grows faster than the right vortex

and Γ̇b > 0 and δ̇v > 0. We indeed observe that θ, Γ̇b and δ̇v are approximately

in phase throughout the oscillation (Figure 3.11a). Because of the small phase

difference between the horizontal and angular motions, the two vortices have about

the same vertical position (δv ∼ 0) and opposite intensities (Γb ∼ 0) when the plate

horizontal velocity changes sign (Figure 3.11b).

Destabilization and transfer of momentum to the vortices

A physical interpretation of this destabilization is obtained by considering

the fluid effect on the solid body. In this section, we will successively consider the

transfer of momentum (linear or angular) and of kinetic energy to the solid body.
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Figure 3.11: (a) Evolution of the rate of change of the circulation around the
body Γ̇b (solid), the relative vertical velocity of the vortices δ̇v (dashed) and the
orientation of the plate θ (dash-dotted) in the fluttering regime for Fr = 0.75 and
θ0 = π/1024. (b) Evolution of the circulation around the body Γb (solid), the
relative vertical distance between the vortices δv (dashed) and the horizontal plate
velocity vx (dash-dotted) in the fluttering regime for Fr = 0.75 and θ0 = π/1024.

Since the body is rigid, these two quantities are easily related. As discussed in

section 3.2.4, the fluid effects can be decomposed in two parts: added inertia and

transfer of linear and angular momentum to the vortices.

The equations of motion of the plate can be rewritten as

2Fr c̈ = −2i Fr + fa + f v,
2Fr

3
θ̈ = T a + T v, (3.68)

where the first term on the right-hand side of Newton’s second law is the gravity

forcing and a and v superscripts refer to forces and torques due to added inertia

and transfer of momentum to the vortices respectively. The vertical motion is at

leading order identical to the broadside-on case, so we focus on the horizontal and

angular motions of the plate.

The effects of vortex shedding and added inertia on the horizontal and

angular motions of the plate are analysed in Figure 3.12 by plotting the rate of

work of the different contributions as well as their integrated effect in time (that

is, the change of solid kinetic energy due to the corresponding force or torque). A

positive rate of work will be destabilizing: the forcing acts in the same direction
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Figure 3.12: Stabilizing and destabilizing effects of the fluid on the falling card for
Fr = 0.75 and θ0 = π/1024. (Top) Rate of work of the vortex contribution (solid),
the added inertia contribution (dashed) and the total (dash-dotted) horizontal force
(a) and torque (b) on the falling card. (Bottom) Horizontal (c) and rotational (d)
kinetic energy gain of the plate due to the vortices (solid) and the added inertia
contribution (dashed). The horizontal and rotational solid kinetic energy is also
plotted (dash-dotted). The sign of the horizontal velocity vx = Re(ċ) and angular
velocity ω is indicated for reference.
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as the motion. Figure 3.12(a)–(c) shows that added inertia tends to dampen the

horizontal side-to-side motion of the card, while the transfer of momentum to the

vortices has a destabilizing effect and creates a net energy gain. In the angular

motion, the effects of added inertia and of the vortices give opposite contributions

to the rotational work T ω on the plate, the former being slightly larger than the

latter (Figure 3.12b-d).

The transfer of horizontal momentum to the vortices is therefore at the

origin of the destabilization of the broadside-on fall and arises from the asymmetry

of the wake. We now propose a physical analysis of the origin of this destabilizing

horizontal momentum transfer. For a small enough initial angle, the fall of the

card is a perturbation of the symmetric case studied in section 3.4.2, with a pair of

counter-rotating vortices, with intensity and position in the mapped plane (Γ0, ζ0)

and (−Γ0,−ζ̄0). The vertical physical distance between the plate and the vortex

pair, defined in section 3.4.2, is then d
(v)
0 = ζ0 + a2/ζ0.

From section 3.2.4 and Kanso and Oskouei (2008), the horizontal linear

momentum of the vortices is obtained at leading order as

p(v)
x ∼

p1︷ ︸︸ ︷
Γ0δv − Γbd

(v)
0

p2︷ ︸︸ ︷
−4θΓ0Re

(
a2

ζ0

)
. (3.69)

The two terms on the right-hand side have the following interpretations:

• p1 is the horizontal momentum due to the asymmetry of the wake: if δv > 0,

the intrinsic velocity of the vortex pair is tilted to the right and the wake

carries positive horizontal momentum. In the same way, if Γ1 > |Γ2| (Γb < 0)

the asymmetry in the intensity of the vortices deflects the wake slightly to the

right, and corresponds to a positive horizontal vortex momentum. As δv and

Γb vary in phase (see Figure 3.11b), the first two terms in (3.69) have opposite

effects. p1 is observed to vary in a very good approximation like −vx, with

vx the horizontal velocity of the plate’s center of mass (Figure 3.13). The
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Figure 3.13: Evolution for θ0 = π/1024 and Fr = 0.75 of the different contri-
butions to the horizontal momentum associated with the vortices p1 (thick-solid)
and p2 (thick-dashed) as defined in (3.69). The plate’s horizontal velocity vx (thin
solid) and orientation θ (thin-dashed) are also plotted for comparison.

corresponding force −ṗ1 therefore behaves like a (negative) correction to the

plate’s inertia (not to be mistaken to the added inertia discussed in section

3.4.3). In particular, it tends to accelerate the plate’s horizontal motion at

the beginning of each half-period when |vx| starts increasing.

• p2 is the horizontal momentum associated with the image vorticity and is due

to the non-horizontal orientation of the plate: Γ0Re(a2/ζ0) corresponds to

the vortex momentum normal to the plate associated with the image vorticity

and is monotonically increasing in time. To a very good approximation, p2

varies in phase with −θ (Figure 3.13): for θ < 0 and a symmetric vortex

pair, the vortices would be deflected to the right, thereby inducing a positive

horizontal vortex momentum. The corresponding force on the plate −ṗ2

hence behaves like ω. As the horizontal and angular motions are almost in

phase (with the latter being slightly in advance on the former), the vortex

force associated with the rotation of the plate around its vortex wake is

acting in the same direction as the plate’s velocity throughout most of the
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oscillation.

In a summary, during the fluttering oscillations of the plate, the relative

motions of the plate and of the vortices, and particularly the resulting deflection

of vortex momentum associated with the image vorticity (similar to the behav-

ior of point vortices close to a wall), generates a destabilizing force that cannot

be damped by added inertia effects. This destabilization is transmitted to the

rotational motion of the plate through added inertia.

3.5 Conclusions

A general framework for the study of the two-dimensional coupled motion

of a sharp-edged solid body in a high-Re flow has been presented using potential

flow theory and a representation of the vortical wake in terms of point vortices

with unsteady intensity determined to satisfy the regularity of the flow velocity

on the solid body. The Brown–Michael vortex model, used previously to study

vortex shedding past a fixed semi-infinite or finite plate, has been extended to ar-

bitrary body shapes and coupled to the solid dynamics to provide a reduced-order

description of the fluid-solid problem in terms of ordinary differential equations

only. The forces and torques on the solid body have been analysed in terms of

transfer of linear and angular momentum to the vortices. This physically-based

model significantly reduces the computational cost and complexity of the simula-

tion of the fluid-solid problem compared to direct numerical simulations and also

compared to a continuous vortex sheet approach. In addition, the numerical and

physical difficulties of the vortex sheet model, due to the necessary smoothing of

the Cauchy kernel to regularize the free vortex sheet velocity and to the treatment

of the last Lagrangian vortex element, are not present here. The point vortex ap-

proach described here also provides a powerful tool for understanding the structure

of the vortical wake and its influence on the solid body.

The method was then used in the simple geometry of a flat plate to
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study the fall of a rigid card in a fluid initially at rest. The different forces and

torques applied by the fluid on the card were analysed. The broadside-on fall,

where the plate falls in its horizontal position, was found to be unstable and,

for small initial angles, a fluttering regime with growing amplitude was observed.

This is in agreement with numerous experimental and numerical studies at high

Re present in the literature. Using the reduced-order representation of the vortex

wake provided by the point vortex model, it was shown that the destabilization is

caused by the deflection of linear momentum associated with the vortices by the

plate’s fluttering motion around them. The net effect is an amplification of the

horizontal motion which then amplifies the rotation amplitude of the fluttering

motion through the coupling of rotation and translation by added inertia. In

comparison, a representation of the fluid effects exclusively in terms of added inertia

was found unable to predict such a behavior. This example shows the physical

validity of the proposed model as well as the interest of a low-order representation

to understand the destabilization mechanism.

Further integration of the coupled equations of motion showed different

possible regimes, including the flip of the card once the θ oscillations reach a finite

amplitude, and the transition to rotating patterns that can be identified with the

tumbling regimes observed experimentally. This is an improvement compared to

the vortex sheet approach, in which the shedding failure occured always before

the flip of the card. The integration eventually breaks down at an unfavorable

shedding event, limiting our ability to study the influence of θ0 and Fr on the

long-time regime.

The unsteady point vortex method is therefore limited, as is the vortex

sheet method, by its inability to represent vortices that are not shed away from

the solid body. Failure events were identified when a new vortex is being shed

under unfavorable conditions, where the outside flow tends to push the newly shed

vortex back onto the shedding corner. This situation occurs mostly in leading-

edge shedding conditions at small angle of attack, and this limitation is inherent
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to the inviscid nature of the flow representation chosen here. Several solutions

could be considered to overcome this shedding failure including the shedding of

multiple vortices at the same time, or the absence of shedding of a new vortex:

under such conditions, the flow velocity is singular at the shedding edge, where

the bound vorticity doesn’t vanish, hence representing the attached vortex. The

shedding of a vortex from that corner would then be restarted at a later time when

the conditions are favorable. However, the inviscid nature of these representations

might pose a problem as viscous effects and interaction of the leading-edge vortex

with the boundary layers on the solid body are expected to play an important role.

Despite this limitation, the point vortex method presented here is a pow-

erful tool in a large variety of situations where leading-edge shedding is not present

or is neglected. Its computational simplicity makes it suitable for a large number

of situations where the cost of direct numerical simulation is prohibitive (e.g. op-

timization problems). The point vortex method was also recently used to study

the coupling between flexible bodies and high Re flows (Michelin et al., 2008) as

presented in Chapter 4.

Chapter 2 and Chapter 3, in part, have been published in Theoretical and

Computational Fluid Dynamics, “An unsteady point vortex method for coupled

fluid-solid problems” by S. Michelin and S. G. Llewellyn Smith, 2009, 23, 127–

153 (Springer), doi:10.1007/S00162-009-0096-7. The dissertation author was the

primary investigator and author of this material.

Some material drawn from Chapter 3 and Chapter 4 has been accepted

for publication in Theoretical and Computational Fluid Dynamics, “Falling cards

and flapping flags: understanding fluid-solid interactions using an unsteady point

vortex method” by S. Michelin and S. G. Llewellyn Smith, 2009 (Springer), doi:

10.1007/S00162-009-0117-6. The dissertation author was the primary investigator

and author of this material.



4

Passive flapping of flexible flags in
axial flow

4.1 Introduction

A fluttering instability can develop from the interaction of the internal

dynamics of an elastic structure and an axial flow. The flapping of wind-forced

flags is a canonical example of such an interaction problem, which is also of in-

terest in various other engineering (Watanabe et al., 1991, 2002a,b) and medical

applications (Huang, 1995; Balint and Lucey, 2005). This instability arises from

the competition between the destabilizing effect of the aerodynamic pressure and

the stabilizing effect of the (small) bending rigidity of the structure.

The fluttering flag instability has been the focus of a large number of

experimental studies including soap-film (Zhang et al., 2000), water-tunnel (Shel-

ley et al., 2005) and wind-tunnel experiments (Eloy et al., 2008). Recently, full

numerical simulations of the coupled fluid and solid dynamics have been carried

out using immersed-boundary methods (Zhu and Peskin, 2002) and coupled fluid–

solid solvers (Connell and Yue, 2007). The latter study identified three possible

behaviors for the flag: stable and flat, periodic flapping, and chaotic. These ex-

perimental and numerical studies considered two-dimensional configurations in the

limit where the width of the flag is large enough for deformations in the third di-

mensions to be neglected. Another domain of active research is the opposite limit

75
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of small aspect ratio and the fluttering of thin ribbons or strips (e.g. Datta and

Gottenberg, 1975; Yadykin et al., 2001; Lemaitre et al., 2005).

To understand the onset of the instability, several papers have focused on

the linear stability of the flat position (see the review by Paidoussis, 2004). The

two-dimensional linear stability of infinite flexible plates under axial flow was first

studied by Rayleigh (1878). More recently, Kornecki et al. (1976) carried out a

linear stability study of the two-dimensional problem, modelling the wake behind a

finite-length clamped plate as a distribution of vorticity (see Eloy et al., 2008, with

increased numerical resolution), and Argentina and Mahadevan (2005) proposed a

similar approach and investigated the effect of the drag-induced tension. Eloy et al.

(2007) carried out a linear stability analysis including three-dimensional effects (see

also Shayo, 1980; Lucey and Carpenter, 1993).

In all these studies, only one elastic sheet or plate was considered. Re-

cently, experiments (Zhang et al., 2000; Jia et al., 2007) and numerical studies

(Farnell et al., 2004) have also focused on the modification of the stability and

flapping properties in the case of two parallel filaments. Depending on their rel-

ative distance, the two filaments appear to lock either in-phase or out-of-phase.

Jia and Yin (2008) studied the case of two flapping filaments with one filament

positioned downstream from the other. Ristroph and Zhang (2008) identified an

anomalous drafting mechanism in a similar two-flag experiment: the upstream flag

experiences a reduction of drag because of the presence of a second flag directly

downstream.

The purpose of the present work is to propose a reduced-order model for

the flow over two-dimensional flags that is able to obtain the long-time behavior

and finite-amplitude flapping. It also reproduces the main characteristics of the

problem as observed in full numerical simulations and experiments while signifi-

cantly reducing the computational complexity. A potential flow representation is

used for the two-dimensional flow past an infinitely thin inextensible elastic strip

of finite length. The wake is represented by discrete point vortices, unlike the
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vortex sheet representation described in Alben and Shelley (2008). Here, the in-

tensity of the last point vortex shed is adjusted in time to satisfy the regularity of

the flow velocity at the trailing edge (Brown–Michael vortex) and a new vortex is

shed when the previous one reaches a maximum intensity (Cortelezzi and Leonard,

1993; Michelin and Llewellyn Smith, 2009c).

In section 4.2, the model used here is described in the case of a single flag.

The fluttering instability is investigated in section 4.3, as well as the characteristics

of the periodic flapping regime and their evolution as the flow velocity is increased.

The propagating waves (kinematic and dynamic) along the flags are also studied.

Section 4.4 focuses on the two-flag problem. After a brief presentation on the

generalization of the model to two plates or flags, the coupled flapping modes are

studied, as well as the modifications of the stability properties with the relative

distance.

4.2 Model

A two-dimensional model of a flapping flag of infinite span is considered.

The flag is inextensible and clamped at its fixed end; L, B and ρs are respectively its

length, bending rigidity per unit length and mass per unit area. The surrounding

fluid density is ρ, and a uniform horizontal flow at infinity U∞ is prescribed. In the

following, all quantities are non-dimensionalized using L, U∞ and ρ as reference

values. Positions and velocities are defined with respect to a fixed system of axes

with origin at the clamped end of the flag.

4.2.1 Solid model

A finite-displacement inextensible Euler–Bernoulli beam model is consid-

ered. The position of the flag is ζ(s, t) (0 ≤ s ≤ 1 is the arclength), and θ(s, t)

is the angle between the local tangent and the horizontal axis (see Figure 4.1).

We note the elastic torque M(s, t), the tension T (s, t) and the normal elastic force
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ζ(s, t) θ(s, t)

ζ(s = 1, t)
Shedding cornerU∞

zN(t),ΓN(t)

zn(t),Γn
ζ(0, t) = 0

Clamped corner

Figure 4.1: Vortex shedding behind a flapping flag. The oncoming flow is hori-
zontal and vortices are shed from the trailing edge. The last vortex has unsteady
intensity, the other vortices have frozen circulation.

T (s + ds, t)

N(s + ds, t)

M(s + ds, t)

−M(s, t)−T (s, t)

−N(s, t)

Figure 4.2: Elastic forces and torques applied on a section of the flexible plate
between s and s+ ds

N(s, t) in the flag. By convention, these quantities represent the forces (or torque)

applied by the downstream part of the flag (s ≤ s′ ≤ 1) to the upstream section

(0 ≤ s′ ≤ s). The Euler–Bernoulli assumption for a slender beam states that the

elastic torque is related to the curvature by

M(s, t) = ηθs, (4.1)

with η the non-dimensional rigidity. The equation of motion of the flexible plate

is obtained by considering a section of the plate between s and s+ ds (Figure 4.2).

For infinitesimally thin plates, the rotational inertia of the section scales like (ds)2
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and can be neglected. The torque balance on the segment then leads to

N(s, t) +
∂M

∂s
= 0. (4.2)

Using (4.2), Newton’s second law for the plate’s segment becomes, together with

the inextensibility condition,

µζ̈ =
[
eiθ (T − iηθss)

]
s
− i[p]±eiθ, ζs = eiθ (4.3)

where a subscript s stands for ∂/∂s and dotted variables for ∂/∂t, with clamped–

free boundary conditions:

ζ(0, t) = θ(0, t) = 0, θs(1, t) = θss(1, t) = T (1, t) = 0. (4.4)

This model is equivalent to the one used in Alben and Shelley (2008). Here µ =

ρs/ρL and η = B/ρU2
∞L

3 are respectively the non-dimensional flag density and

bending rigidity, while
√
η is also the time-scale ratio of the response to the pressure

forcing and the bending stiffness. For comparison purposes with the linear stability

results of Eloy et al. (2008), we will also use in the following the alternative non-

dimensional parameters

M∗ =
1

µ
=
ρL

ρs
, U∗ =

√
µ

η
= U∞L

√
ρs
B
. (4.5)

Here U∗ is the free-stream velocity non-dimensionalized by the flag rigidity and

inertia.

4.2.2 Vortex shedding model

The vortex shedding model presented in Chapter 2 is used here to repre-

sent the wake of the flexible flags. The flow around the flag is assumed to be irro-

tational. To satisfy the regularity condition for the flow at the trailing edge, point

vortices are introduced following the method suggested by Cortelezzi and Leonard

(1993) and Cortelezzi (1996) for the prescribed flow over fixed semi-infinite and

finite plates, and applied in Michelin and Llewellyn Smith (2009c) to the coupled
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motion of a falling card and the surrounding fluid. In this approach, one point

vortex with unsteady intensity is released from each shedding corner. At each time

step, the intensity is adjusted so as to satisfy the regularity condition: the flow

velocity w must remain finite at the trailing edge. These vortices, with position

zn and intensity Γn, are also known as Brown–Michael point vortices (Brown and

Michael, 1954; Rott, 1956), and obey the modified equation of motion (see Chapter

2 and (2.19))

żn + (zn − ζ(1, t))
Γ̇n
Γn

= w̃n, (4.6)

where the overbar denotes the complex conjugate. The second term accounts for

the conservation of fluid momentum around the vortex and associated branch cut,

and w̃n is the desingularized flow velocity at the vortex position (Saffman, 1992).

When a vortex reaches maximum intensity, the intensity of this vortex

is frozen and a new vortex is started from the shedding corner (see section 2.4.2).

Because the angle of attack is always small in this problem, vortex shedding is

neglected at the leading edge and vortices are shed from the trailing edge only.

Therefore at any time, the vortex wake consists of N − 1 vortices (zj(t),Γj) with

steady intensity and one unsteady point vortex (zN(t),ΓN(t)).

4.2.3 Fluid model

The flow is assumed inviscid and the flag is infinitesimally thin. On both

sides of the flag, the normal velocity of the flow must be equal to that of the

flag. However, the presence of the flag introduces a discontinuity in the tangential

velocity, and the influence of the flag on the flow is that of an attached vortex

sheet. The potential flow around the deformable flag can therefore be solved by

representing the infinitely thin flag as a bound vorticity distribution κ(s, t) (Jones,

2003; Shukla and Eldredge, 2007; Alben and Shelley, 2008; Alben, 2009). The

complex flow velocity is the superposition of a uniform flow at infinity, and the

contribution of the vorticity distribution (bound vortex sheet for the flag and point
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vortices for the wake):

w = 1 +
1

2πi

[∫ 1

0

κ ds

z − ζ(s, t)
+

N∑
j=1

Γj
z − zj

]
. (4.7)

Using the Plemelj formula and following Shukla and Eldredge (2007), the normal

flow boundary condition on the flag Im[e−iθ(w̄ − ζ̇)] = 0 becomes a Fredholm

singular integral equation for κ. Assuming the system is started from rest, the

total circulation at infinity must vanish at all time (Kelvin’s circulation theorem).

Together with the regularity condition w(ζ(1, t), t) 6=∞, these two conditions can

be rewritten as a system of equations for κ and the intensity ΓN of the last shed

vortex (the others are known and frozen):

1

2π

∫ 1

0

Re

[
eiθ(s0)

ζ(s0)− ζ(s)

]
κ ds =Im

[
eiθ(s0)

(
1 +

1

2πi

N∑
j=1

Γj
ζ(s0)− zj

− ζ̇
)]

, (4.8)

∫ 1

0

κds+
N∑
j=1

Γj = 0, κ(1, t) = 0, (4.9)

where the integral on the left-hand side of (4.8) is understood as the principal

value. Note that because of the Cauchy-like form of the kernel in (4.8), the first

condition in (4.9) is necessary for the problem for κ to be well-posed (Tuck, 1980).

The desingularized velocity w̃n in (4.6) is

w̃n = 1 +
1

2πi

[∫ 1

0

κ ds

zn − ζ(s, t)
+
∑
j 6=n

Γj
zn − zj

]
. (4.10)

The initial position of the vortex at the corner of the solid induces a singularity in

(4.10). A small-time expansion of the vortex position can be performed following

Cortelezzi and Leonard (1993) and Michelin and Llewellyn Smith (2009c) and the

resulting analytic small-time solution is used for the first time step of each new

vortex. This small-time solution was presented in section 3.3 for the case of a rigid

body; the formalism is however unchanged when considering a flexible body, as we

are interested in the early stages of vortex shedding, on time scales much smaller

than the characteristic time of deformation of the solid body and for distances
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between the vortex and the trailing edge much smaller than the typical curvature

radius of the flag.

From Bernoulli’s theorem, the pressure jump across the flag is (writing

φ = Re(F ) for the real flow potential)

[p]±(s0) = − ∂

∂t

(
φ+ − φ−

)
− 1

2
Re
[
(w+ − w−)

(
w+ + w−

)]
= −Ds[φ]±

Dst
− Re

[(
w+ + w−

2
− ˙̄ζ

)
(w+ − w−)

]
, (4.11)

with w+ (resp. w−) the flow velocity on the upper (resp. lower) side of the flag,

and Ds/Dst the material derivative on the flag following the flag’s motion. Then,

by definition of κ, w+−w− = −κe−iθ, and by integrating the tangential component

from the leading edge (where φ+ = φ− since no vorticity is shed) to s0, we obtain

[φ]±(s0) = −
∫ s0

0

κ(s, t)ds. (4.12)

The pressure jump is then finally obtained as

[p]±(s0) =

∫ s0

0

κ̇ ds+ κ(s0)wp(s0), (4.13)

with wp the average of the relative tangential fluid velocities on either sides of the

flag (Jones, 2003; Alben and Shelley, 2008)

wp(s0) = Re

[
eiθ(s0)

(
1

2πi

∫ 1

0

κ(s)ds

ζ(s0)− ζ(s)
+ 1−

N∑
j=1

iΓj
2π(ζ(s0)− zj)

− ζ̇(s0)

)]
.

(4.14)

4.2.4 Numerical method for the flag problem

A system of equations for θ and T alone can be obtained by combining

both equations in (4.3):

Tss − θ2
sT = −[p]±θs − 2ηθsθsss − ηθ2

ss − µθ̇2, (4.15)

µθ̈ = −[p]±s − ηθssss +
(
T + ηθ2

s

)
θss + 2Tsθs. (4.16)
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Determining the flag position as ζ(s, t) =
∫ s

0
eiθds′ automatically satisfies the inex-

tensibility condition. Then the boundary conditions are obtained from (4.4) and

Newton’s second law applied to the whole flag as

θ(0, t) = θs(1, t) = θss(1, t) = T (1, t) = 0, (4.17)

µ

∫ 1

0

∫ s

0

eiθ
(

iθ̈ − θ̇2
)

ds′ds = T (0)− iηθss(0)− i

∫ 1

0

[p]±eiθds. (4.18)

The flag orientation θ is decomposed using the Chebyshev polynomials of the first

kind

θ =
J∑
j=1

cj(t)Tj(2s− 1), (4.19)

and equations (4.6), (4.8), (4.9), (4.13), (4.15) and (4.16) are used to integrate

cj(t) and (zn,Γn) in time using a second-order-accurate finite-difference scheme.

The fourth-order derivative in space in (4.16) is treated semi-implicitely and all

non-linear terms in (4.15)–(4.16) are evaluated explicitely. Chebyshev spectral

methods are particularly well-adapted to handle the square-root singular behavior

of the general solution of (4.8) near s = 0 and s = 1, and combine easily with

the numerical methods used to solve this integral equation (see appendix B). In

the simulations presented here, J = 50 polynomials were used in the expansion

(4.19). Test runs were performed with a higher number of polynomials without

any significant change in the accuracy of the results.

From (4.6), (4.10) and the time derivative of (4.8), Γ̇N , żn, κ̇ and therefore

[p]± are linear functions of the flag acceleration θ̈ (and therefore c̈j). At each time

step, using (4.6), (4.8), (4.9) and (4.13), the contribution to Γ̇N , żn and [p]± arising

from c̈j is computed in the form of a linear operator acting on c̈j, separately from

the remaining part of these quantities that can be evaluated explicitely. In (4.15)–

(4.16), the contribution of c̈j to the pressure can then be isolated and put on the

left hand side (acting in the same way as an added inertia term) to compute the

solid’s acceleration directly. The computational cost is thereby greatly reduced in

comparison with other methods (for example Alben and Shelley, 2008), since no
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iteration of the fluid-solid solver is necessary here. The second-order accuracy of

the solver was checked using (4.3) and the conservation of the flag energy:

Ė = Wp, with E =

∫ 1

0

[
1

2
µ|ζ̇|2 +

1

2
ηθ2

s

]
ds, Wp = −

∫ 1

0

[p]±Im
[
ζ̇e−iθ

]
ds,

(4.20)

where E is the total mechanical energy of the flag and Wp is the rate of work of

pressure forces.

4.3 Flapping of a single flag

The flag is initially at rest (θ(s, t < 0) = 0) and at t = 0 the horizon-

tal flow at infinity is ramped up continuously to its steady state value. A small

transient vertical perturbation is added to move the system from this trivial equi-

librium (perturbations of the form v = εtαe−βt were used; different values of α and

β were tested with no significant impact on the long-time behavior). In each run,

the rigidity and inertia of the flag are fixed, and the flow at infinity can be varied

inducing a change of the non-dimensional velocity U∗ defined in (4.5).

4.3.1 Three possible regimes

For a given inertia ratio M∗, three regimes were observed. For small U∗

(low wind speed), the initial perturbation creates a small motion of the flag that

quickly decays, and the flag returns to its rest position.

When U∗ is increased above a critical value U∗c (U∗c = 9.6 for M∗ = 3),

this rest position becomes unstable. For intermediate values of U∗ (9.6 ≤ U∗ ≤ 12

for M∗ = 3), a periodic flapping develops, after a transient regime, in which the

energy of the flag oscillates with an exponentially growing envelope. One point

vortex is shed during each half-stroke and the intensity of the point vortices have

alternating signs. Downstream from the flag (about one flag length’s away), these

point vortices arrange themselves in a weak von Kármán street and are advected

with U∞ close to the horizontal axis (Figure 4.3). This is in good agreement with
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Figure 4.3: Instantaneous streamlines for the flow over the flapping flag in the
periodic regime for M∗ = 3 and U∗ = 11.5. The grey lines are the streamlines.
For reference, the successive positions of the flag in a flapping cycle are plotted as
dashed lines.

the positioning of the centers of vorticity in the vortex sheet approach (Alben and

Shelley, 2008). This situation differs significantly from thrust-generating flapping,

where the vortices are advected faster due to their reversed von Kármán arrange-

ment (see Chapter 6).

The motion of the flag in this flapping regime is highly periodic. The

power spectra of the flag total energy (4.20) and tail orientation θ(1, t) display

sharp peaks (see the left-hand column of Figure 4.4a-b). Note that the orien-

tation spectrum contains only odd harmonics (ω0, 3ω0 ...) while the energy is

a quadratic function of the kinematic variables and its spectrum only contains

the even harmonics (2ω0, 4ω0,...). We also observe that the non-dimensional fun-

damental flapping frequency is not modified by the variation of U∗. This is in

agreement with experimental results showing a linear increase of the dimensional

flapping frequency with the imposed flow velocity (Shelley et al., 2005). In the

phase plot of the flag tail position, the outgrowing spiral corresponds to the insta-

bility development from the initial rest position, and convergence to a limit-cycle is

clearly seen for U∗ ≤ 12 (center column of Figure 4.4). The decreasing number of

oscillations (or spiral turns) shows an increase of the instability growth rate with

U∗ − U∗c . The horizontal force applied by the flag on its attachment pole at s = 0

also shows strong periodicity (right-hand column of Figure 4.4a–b).
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(a) M∗ = 3, U∗ = 10
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(b) M∗ = 3, U∗ = 12
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(c) M∗ = 3, U∗ = 13
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(d) M∗ = 3, U∗ = 15
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Figure 4.4: (Left) Frequency spectrum of the solid energy E (solid) and of the
tail orientation θ(1, t) (dashed) normalized by their maximum values for clarity,
(center) Tail vertical velocity vs. tail vertical displacement phase plot and (right)
Time variations of the horizontal force on the flagpole, plotted for M∗ = 3 and
U∗ = 10, 12, 13 and 15 (top to bottom).
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When the flow velocity is increased further, the periodicity breaks down.

The tail trajectory in the phase diagram shows a weaker limit-cycle behavior at

U∗ = 13 and periodicity is lost at U∗ = 15 (see center column of Figure 4.4).

A transition from a discrete energy spectrum (Figure 4.4a-b) to a broad-band

spectrum (Figure 4.4c-d) is observed. This strong unsteadiness, also observed for

the force on the flagpole, leads to snapping events (large acceleration of the flag

tail) inducing peak values of the force on the flagpole of up to ten times its mean

value in the flapping regime (see right-hand column of Figure 4.4d). A discussion

of the chaotic nature of the flag motion when the flow velocity is increased was

proposed in the work by Connell and Yue (2007).

4.3.2 Comparison with linear stability results

For a given M∗, the critical velocity U∗c is computed as the minimum

value of U∗ above which the state of rest of the flag becomes unstable. The

corresponding critical curve is plotted in Figure 4.5 in both the (M∗,U∗) and (µ,η)

planes for comparison with previous studies. We also plot for reference the results

from the linear stability analysis (Kornecki et al., 1976), which have been presented

and confirmed experimentally in Eloy et al. (2008). A summary of the method used

for the linear stability calculation is presented in appendix A.

We observe that the present point vortex method matches very well the

stability region predicted by the linear analysis, particularly the existence of several

branches corresponding to different mode structures, and does significantly better

than the vortex sheet model which underpredicts the critical velocity U∗c .

4.3.3 Flapping modes

As experimentally observed by Eloy et al. (2008) and predicted by the

linear stability analysis, each branch of Figure 4.5 corresponds to a different mode

structure: the first branch (M∗ < 1) corresponds to mode 2 (one neck), while

the second (1 < M∗ < 7) and third (8 < M∗ < 15) correspond respectively to
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Figure 4.5: Critical curve for the stability of the flag state of rest using the
present point vortex model (solid) and linear stability analysis presented in Eloy
et al. (2008) following the method of Kornecki et al. (1976) (dashed) (see appendix
A). The same critical curve obtained using the vortex sheet approach (Alben and
Shelley, 2008) is plotted (dotted) for comparison.

mode 3 (two necks) and mode 4 (three necks). This mode structure is observed

in the large-amplitude flapping results of our model (see Figure 4.6). Increasing

M∗ further, a mode 5 (four necks) can also be observed in our simulations (Figure

4.6d). The flapping mode structure seems to be determined by the most linearly

unstable mode. Several other forms of initial perturbations have been tested to try

to trigger a different mode (in particular transient periodic forcing at the desired

frequency) without any change in the resulting dominant mode structure in the

permanent regime.

4.3.4 Hysteresis behavior

Experimental studies on flapping flags have pointed out the hysteresis

behavior of the flag when the velocity of the flow at infinity is varied (Zhang et al.,

2000; Shelley et al., 2005; Eloy et al., 2008). Starting from rest, the flag remains

straight until the critical velocity U∗c1 is reached, at which point a periodic flapping

of large amplitude develops. However, if the flow velocity is subsequently reduced,

large scale flapping is maintained until U∗ = U∗c2, with U∗c2 < U∗c1.
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Figure 4.6: Flapping mode observed for different values of the inertia ratio. The
position of the flag is plotted every ∆t = 0.04.

Such behavior is observed here (Figure 4.7). The width of the hysteresis

cycle (∼ 4.5%) is comparable to that observed in Alben and Shelley (2008), but

much smaller than that observed in the experiments (∼ 20% for Eloy et al. (2008)).

Alben and Shelley (2008) suggested that dissipative effects of viscosity or structural

damping can be at the origin of these discrepancies.

4.3.5 Travelling waves along the flapping flag

This section focuses on the flapping regime that develops at intermediate

velocity U∗ and studies the propagation of waves along the flag in that regime.
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Figure 4.7: Hysteresis behavior at M∗ = 10: (solid) horizontal force on the
flagpole and (dashed) horizontal velocity of imposed flow. The critical velocity
U∗c1 = 10.1 is plotted for reference (dotted). Initially, when U∗ < U∗c1 the initial
perturbation is damped exponentially. Flapping develops when U∗ is increased
above the critical value. When U∗ is then gradually reduced, it is possible to
maintain a flapping state until U∗ = U∗c2 = 9.6 < U∗c1. If U∗ is further decreased,
the flapping amplitude decreases exponentially (not shown).

Complex Empirical Orthogonal Functions and propagating waves

Empirical Orthogonal Functions (EOFs) (also known as Proper Orthog-

onal Decomposition) are used to decompose a signal f(s, t) into a superposition of

normal modes f(s, t) =
∑
an(t)bn(s). The modes’ spatial and temporal structures

are such that, when truncated at any order, the root mean square of the residue

is minimized (Wallace and Dickinson, 1972). The Complex Empirical Orthogonal

Function (CEOF) decomposition is well-suited to identify moving patterns. The

EOF decomposition is applied to the complex function F = f + ifH where fH is

the Hilbert transform of f (see Barnett, 1983, for more details). We have

f(s, t) = Re

[∑
n

An(t)B̄n(s)

]
=
∑
n

an(t)bn(s) cos(ψn(t)− ϕn(s)), (4.21)

where An = aneiψn and Bn = bneiϕn can be obtained from the Singular Value

Decomposition of the discrete representation of F . The advantage of this method

becomes apparent when this decomposition is applied to the flag problem: for

example, for M∗ = 10 and U∗ = 11, θ can be represented by its first CEOF with a

root-mean-square error of less than 1%. The spatial amplitude b gives the shape of
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the mode considered, and the temporal amplitude a gives the temporal fluctuations

of the mode amplitude. In the highly periodic regimes considered here, a is very

close to a constant.

We are most interested in the phase functions ψ(t) and ϕ(s) whose vari-

ations are shown in Figure 4.8 for the first mode of the orientation, pressure force

and normal elastic force in the periodic flapping regime. The temporal phase ψ is a

linear function with a slope equal to the fundamental frequency ω0 of the mode and

the spatial phase ϕ has a linear trend away from the clamped corner, suggesting

the propagation of waves along the flag. A phase speed in s can be defined from

(4.21) as c(s) = ψ̇/ϕs. Because the flag deformation is not small, a wave traveling

along the flag with a velocity c(s) travels along the horizontal axis at reduced phase

velocity c(x). Then c(x) is of the same sign as c(s) and |c(x)| < |c(s)|.

Kinematic and dynamic waves along the flag

For the orientation angle θ, c(s) > 0 and the corresponding c(x) is close

to U∞: the deformation wave is created and advected by the outside flow. We

refer to this wave as the direct kinematic wave, as all the kinematic fields (orienta-

tion, position and velocity) follow the same pattern. A horizontal wave-speed not

greater than U∞ in this passive drag-producing configuration is consistent with the

work of Lighthill (1960), where thrust production is associated with deformation

waves travelling faster than U∞. Triantafyllou (1992) also showed that a linear de-

formation wave traveling along an infinite flag extracts energy from the flow if its

phase velocity is smaller than the outside flow velocity. In the permanent flapping

regime, the mean energy transfer from the flow to the flag is equal to zero, and

this is qualitatively consistent with the phase velocity being equal to the outside

flow velocity.

However, we observe that the pressure and normal elastic forces in the flag

have the form of a wave travelling upstream from the trailing edge where vorticity

shedding prescribes the pressure jump as (4.13) simplifies at the trailing edge to
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Figure 4.8: Temporal (left) and spatial (right) variations of the phase of the first
CEOF in the flapping regime at M∗ = 10 and U∗ = 11, for (top) the orientation of
the flag θ(s, t) and (bottom) the local pressure force (dash-dotted) and the normal
component of the elastic forces in the flag (dashed). The range of t used covers
about 16 periods of the flapping regime. ψ̇ > 0, therefore monotonic variations of
ϕ and ϕs > 0 (resp. ϕs < 0) indicate a wave travelling to the right (resp. left).

[p]± = −Γ̇N (Figure 4.8). This pressure disturbance is carried upstream along the

flag by its internal elasticity. Note that this reverse dynamic wave travels slower

than the direct kinematic wave propagates downstream. A similar behavior was

observed for the tension in the flag.

Limitations of the analysis

It is however difficult to go beyond the qualitative analysis of the propa-

gating waves presented above. The phase velocity is a locally defined quantity as ϕ

is not a linear function of s. In particular, in regions where the flapping amplitude

is small (necks), the phase varies rapidly with s, leading to smaller values of the

phase velocity.

The main obstacle to a quantitative comparison of the phase velocities

for various M∗ and U∗ resides in the large amplitude of deformation of the flag

during the flapping motion: the phase velocity computed here is a velocity along
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the flag (which is itself moving in time) and not simply along the horizontal axis.

Furthermore, the propagating waves imply that a given point on the flag does not

have a fixed horizontal position as in the limit of infinitesimally small deformations

(see Chapter 5). Instead, each point far enough from the leading edge displays a

vertical figure of 8 trajectory whose horizontal extent is non-negligible.

However, the physical concept behind the analysis is observed over the

whole spectrum of M∗ and U∗ considered: kinematic quantities such as θ(s, t) and

Im(ζ(s, t)) correspond to a direct wave traveling along the flag at a velocity close to

U∞, and we therefore suspect this wave is carried by the outside flow. In the mean

time, dynamic quantities such as the pressure jump and elastic forces correspond

to reverse dynamic waves whose phase velocity, averaged over the flag’s length,

varies between 1/3 and 2/3 of the outside flow velocity.

4.4 Flapping of two parallel flags

The approach presented in section 4.2 can be generalized easily to the

case of Q identical flexible plates (or flags), whose leading edges are clamped at

an equal distance D from each other. An additional non-dimensional parameter,

the relative distance between the plates, d, is introduced:

d =
D

L
. (4.22)

In this section, we are interested in the influence of d on the stability of the flat

state of rest of the plates and on the nature and properties of the coupled modes.

We first present briefly the equations of the problem for general Q before focusing

on the case Q = 2.
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4.4.1 Equations of motion of Q flexible plates shedding
point vortices

In the following, we note ζ(q)(s, t) and θ(q)(s, t) the position and orienta-

tion of plate q. The inextensibility condition for plate (q) leads to

ζ(q)(s, t) = (q − 1)d+

∫ s

0

eiθ(q)(s,t)ds. (4.23)

The position and intensity of the vortices shed from plate q are noted z
(q)
n and Γ

(q)
n

with 1 ≤ n ≤ Nq and Nq, the total number of vortices shed from the trailing edge

of plate q. The equation of motion of the vortices is directly obtained from (4.6)

as

ż(q)
n +

(
z(q)
n − ζ(q)(1, t)

) Γ̇
(q)
n

Γ
(q)
n

= w̃
(q)
n , 1 ≤ n ≤ Nq, 1 ≤ q ≤ Q. (4.24)

The effect of plate q on the flow is represented by a bound-vorticity distribution

κ(q)(s, t). The flow field is obtained as the superposition of the flow at infinity

and the contribution from the attached vorticity from each plate and from all the

vortices present in the flow:

w(z, t) = 1 +
1

2πi

Q∑
q=1

[∫ 1

0

κ(q)(s, t)ds

z − ζ(q)(s, t)
+

Nq∑
n=1

Γ
(q)
n

z − z(q)
n

]
. (4.25)

A system of integral equations for κ(q) is obtained from the continuity of normal

velocity on each plate. The conservation of circulation must be enforced for each

plate, considering a material contour initially enclosing plate q only. Together with

the regularity condition at the trailing edge of each plate, this leads to

1

2π

Q∑
k=1

∫ 1

0

Re

[
eiθ(q)(s0)

ζ(q)(s0)− ζ(k)(s)

]
κ(k)(s)ds

= Im

[
eiθ(q)(s0)

(
1 +

1

2πi

Q∑
k=1

Nk∑
j=1

Γ
(k)
j

ζ(k)(s0)− z(k)
j

− ˙
ζ(q)

)]
, (4.26)

∫ 1

0

κ(q)ds+

Nq∑
j=1

Γ
(q)
j = 0, κ(q)(1, t) = 0, for 1 ≤ q ≤ Q. (4.27)
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The pressure force applied on plate (q) is (4.13)

[p(q)]±(s0) =

∫ s0

0

κ̇(q)(s)ds+ κ(q)(s0)w(q)
p (s0), with (4.28)

w(q)
p (s0) =Re

{
eiθ(q)(s0)

[
1− ˙

ζ(q)(s0) +
1

2πi

Q∑
k=1

(∫ 1

0

κ(k)(s)ds

ζ(q)(s0)− ζ(k)(s)

+

Nk∑
j=1

Γ
(k)
j

ζ(q)(s0)− z(k)
j

)]}
.

Finally, the equation of motion for each plate is obtained as in (4.15)-

(4.16) as a system of equations for θ(q) and T (q) the tension in plate (q) (the

position of each plate being recovered using (4.23))

T (q)
ss − θ(q)2

s T (q) = −[p(q)]±θ(q)
s − 2ηθ(q)

s θ(q)
sss − ηθ(q)2

ss − µθ̇(q)2, (4.29)

µθ̈(q) = −[p(q)]±s − ηθ(q)
ssss +

(
T (q) + ηθ(q)2

s

)
θ(q)
ss + 2T (q)

s θ(q)
s ., (4.30)

θ(q)(0, t) = θ(q)
s (1, t) = θ(q)

ss (1, t) = T (q)(1, t) = 0 (4.31)

µ

∫ 1

0

∫ s

0

eiθ(q)
(

iθ̈(q) − θ̇(q)2
)

ds′ds = T (q)(0)− iηθ(q)
ss (0)− i

∫ 1

0

[p(q)]±eiθ(q)ds.

(4.32)

Equations (4.23)-(4.32) are integrated in time using the same method as outlined

for a single flag in section 4.2.4. The general method to solve the system of integral

equations (4.26)–(4.27) is discussed in more details in appendix B.

In the following, we present results for the case of Q = 2 coupled flexible

plates (see Figure 4.9).

4.4.2 Influence of the distance between plates on their
stability

In this section, the stability of two parallel identical flexible plates is

investigated. The flow is started from rest and ramped up to its unit long time

value at t = 0. A perturbation is introduced to the system in the form of either

(i) a small transient vertical component in the imposed flow as in section 4.3 or
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Figure 4.9: Flow past two identical flexible plates, with leading edge clamped
at a cross-stream distance D from each other.

(ii) a small transient vertical displacement of the leading edge of plate 1. The

latter option ensures the breaking of the symmetry between the two plates. No

significant difference in the stability threshold or long-term flapping behavior was

observed using the two methods.

The stability of the flat state of rest of a single flexible plate in an un-

bounded domain using the present unsteady point vortex method was presented in

section 4.3 and in Michelin et al. (2008). Guo and Päıdoussis (2000b) showed that

the presence of boundaries influences the stability characteristics of the flag in the

linear regime and a linear stability analysis of the case of several plates is presented

in Chapter 5. We are interested here in the modification of the critical stability

curve with the distance between the two flags. For a particular value of M∗ and d,

the critical value Uc(M
∗, d) is determined as the minimum U∗ for which the plates

do not return to their initial state of rest after a small transient perturbation was

applied.

Figure 4.10 shows the stability curve in the (M∗, U∗) plane for several

values of d. The stability of one single plate is also reported and corresponds to

the case d =∞. As a general result, the stability region is reduced and the state of

rest is destabilized by the proximity of a second plate. One can also observe that
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Figure 4.10: Position in the (M∗, U∗)-plane of the critical stability curve of two
flexible plates for d = 0.1 (thin solid), d = 0.2 (dash-dotted), d = 0.4 (dotted) and
d = 1 (dashed). The stability curve obtained for one isolated plate (d = ∞) is
also given for reference (thick solid). Below the critical curve, the two plates come
back to their flat state of rest after being perturbed. Above the critical curve, the
state of rest is unstable and flapping can develop.

heavier or shorter flags (small M∗) are more affected by the proximity of the second

plate. This can seem at first counter-intuitive as one might expect the closing gap

between the plates to have more influence for flags with low inertia. However, for

a single plate, a small M∗ also corresponds to dominant modes with larger spatial

structure (typically one-neck modes) while a larger M∗ corresponds to dominant

modes with shorter wave-length (see for example Michelin et al., 2008; Eloy et al.,

2008). If one considers that the relevant length ratio for the perturbation of a

particular mode is D/λ rather than D/L (with λ the mode’s characteristic length

scale), then modes with long wavelengths should be more influenced than modes

with shorter wavelengths.
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4.4.3 Coupled modes

The coupled motion of two identical flapping elastic sheets has recently

been the focus of soap-film (Zhang et al., 2000; Jia et al., 2007) and wind-tunnel

experiments (Schouveiler and Eloy, 2009). In both cases, it was observed that

the motion of two sheets positioned at a short enough distance locked into one

of the two following regimes: in-phase and out-of-phase. These two modes were

also observed in recent numerical simulations (Farnell et al., 2004; Zhu and Peskin,

2003) and preliminary results on the motion of two flexible plates using the point

vortex method presented in this dissertation confirmed the existence of in-phase

and out-of-phase coupled modes (Michelin and Llewellyn Smith, 2009a).

− in-phase mode: in this mode, the two plates display very similar motions (see

Figure 4.11a and Figure 6a of Jia et al. (2007)). During each half-period, one

vortex is shed from each plate’s trailing edge and the two vortices have the

same sign and intensity. For small enough d, their motion can be represented

as an advection by the outside flow and other vortices, combined with a

mutual rotation around their center of vorticity. In that regard, the wake

of two plates positioned at a short distance and flapping in phase is very

similar to that of one single flag. Because of the presence of the fluid flow

between the plates, the equivalent elastic plate has modified characteristics

(non-dimensional inertia and rigidity) compared to those of the individual

plates. These modifications are however expected to depend not only on the

plates’ separation but also on the shape of the flapping mode.

− out-of-phase mode: in the out-of-phase mode, the displacements of the two

plates are symmetric with respect to the horizontal axis. During each half-

period, one vortex is shed from each plate’s trailing edge but this time, the

two vortices have opposite intensities. The resulting wake pattern is quite

different from that of the in-phase mode: the vortices shed during the same

half-period form a vortex pair, which is advected faster or slower than the
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Figure 4.11: Streamlines of the flow past two plates with M∗ = 0.5 and U∗ = 8,
(a) in the in-phase flapping mode with d = 0.15 and (b) in the out-of-phase flapping
mode with d = 0.7. The position of the vortices is also indicated with upward-
(resp. downward-) pointing triangles corresponding to positive (resp. negative)
intensity.
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background flow, depending on its orientation. Within one period of flapping,

two vortex pairs are formed, one of them catching up on the other because of

this disposition. As a result, the two vortices shed from the same trailing edge

get closer and the vortex pair system can rearrange itself into two vortex pairs

consisting of vortices shed from the same plate. The resulting self-advection

of these vortex pairs induces a V -shape wake (see Figure 4.11b and Figures

6b–d of Jia et al. (2007)).

For given solid and flow characteristics, the soap-film results of Zhang

et al. (2000) showed that at large distance d, the filaments tend to lock in an out-

of-phase regime, and as d was decreased, a transition was observed toward in-phase

modes. Jia et al. (2007) repeated the experiment and also varied the filaments’

length, observing that this transition from out-of-phase to in-phase flapping is not

necessarily present. Instead, in the case of long filaments, the out-of-phase mode

was observed for both large and small d.

A similar phenomenon is observed here using the point vortex representa-

tion for the wake: for some values of M∗ and U∗, the transition from out-of-phase

to in-phase flapping is indeed observed with decreasing d (see Figure 4.11). How-

ever, the existence of the transition seems to be determined not only by the relative

distance d, but also by the mass ratio M∗ and non-dimensional flow velocity U∗.

For example, for M∗ = 5 and U∗ = 11, we observed a persistence of the in-phase

flapping even at large distances (two or three times the plate’s length). This is also

confirmed by looking at the nature of the dominant mode predicted by the linear

stability analysis (see Michelin and Llewellyn Smith, 2009b, and Chapter 5).

Our ability to produce a map of the regimes observed in the (M∗, U∗, d)-

space is however strongly limited by the impossibility for this model to represent

the contact between two plates. For small plate separation d, a contact between

the plates becomes very likely, particularly during the transient regime just after

the perturbation (when the two plates’ motions are not locked yet) or in an out-

of-phase mode. Contact of the two filaments was indeed observed in soap-film
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experiments (see Figure 4 in Zhang et al., 2000).

4.4.4 Confinement and its effect on the flapping properties

Beyond the influence of the presence of a second flapping structure in the

vicinity of the first one, a question of interest lies in the modification of the flapping

regime (e.g. amplitude) and the resulting drag on the attachment of the plate with

varying plate separation. Figure 4.12 presents the evolution with d of the flapping

characteristics for the in-phase flapping mode observed for M∗ = 5 and U∗ = 11.

The proximity of the two plates induces an increase in the flapping amplitude,

scaling as d−1/2. No significant modification of the flapping frequency is observed.

Therefore, the velocity of the plates’ trailing edges also increases for decreasing d,

and the scaling is the same. The total energy of each plate (4.20) therefore scales

like d−1. An increase of the flapping velocity and amplitude induces stronger

vortices shed by the plate, resulting in an increase in the momentum carried by

the vortices and therefore the average drag on each of the plate.

This result points out the influence of confinement on the passive response

of flexible structures to an imposed parallel flow. The increased amplitude of

flapping with smaller d is consistent with the physical idea that the proximity of

the two plates induces a mutual destabilization. In parallel plate assemblies as

used in cooling systems for example, this increased instability or flapping motion

amplitude is to be controlled to avoid damage on the structure (Miller, 1960; Kim

and Davis, 1995). From another point of view, one can also see that the mechanical

energy stored in each plate is greater than that of a single flag flapping in the same

flow. If one is interested in the design of energy harvesting systems, assuming

the existence of a technology to harvest the bending energy of a flexible plate or

membrane (see Allen and Smits, 2001, for other examples of energy harvesting

systems based on this idea), then the use of assemblies of flexible plates rather

than uncorrelated structures would be beneficial as more energy is extracted by

the plates from the flow.
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Figure 4.12: Evolution and scalings of the flapping characteristics with the
relative distance d in the in-phase flapping mode of two plates with M∗ = 5 and
U∗ = 11.

4.5 Conclusions

We have shown that the unsteady point vortex model is able to reproduce

both qualitatively and quantitatively the physical characteristics of the flapping

of a flexible flag. The use of point vortices rather than full vortex sheets removes

several computational issues due to the kernel singularities in the advection of free

vortex sheets, and significantly reduces the computational complexity and cost.

The stability of the flag’s state of rest and the structure of the flapping

modes were studied and found to be in very good agreement with the analysis of

Kornecki et al. (1976), which has been successfully compared by Eloy et al. (2008)
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to experimental results. An analysis of the flapping regime showed the existence

of direct kinematic waves (orientation, position and velocity) travelling with the

same direction and velocity as the imposed flow, and the existence of reversed

dynamic waves (pressure jump and elastic force) travelling in the opposite direction

and carrying upstream along the flag the pressure change induced by the vortex

shedding at the trailing edge. The study of these wave dynamics, in particular the

variations of their phase velocity with the flag characteristics, is however limited

by the strongly nonlinear deformation of the flag.

The model was also extended to the coupled motion of two flexible plates.

We showed that the proximity of another plate had a destabilizing effect on the flat

state of rest, but that the loss in stability was strongly dependent upon the relative

inertia of the fluid and solid. In the fully-developed regime, two coupled modes

were observed, in-phase and out-of-phase, but a map of the observed regime in

the (M∗,U∗,d)-plane could not be obtained because of the possibility for the plates

touching, a situation observed experimentally but impossible to represent in our

model. Finally, a scaling of the flapping mode characteristics with the relative

distance d was obtained. This analysis of the stability of multiple coupled plates

is complemented by the linear stability analysis presented in Chapter 5.

In the present geometry, the flexible flag is clamped at its leading edge

parallel to the flow in an infinite domain of fluid. Several other situations of in-

terest should be studied to extend the present work in particular the effect of the

presence of a solid wall on the flag stability (see the linear stability analysis of Guo

and Päıdoussis, 2000b). The present model can also be extended to study flapping

structures tethered to massive substrates: the plate is in that situation clamped

orthogonally to the imposed flow onto a solid wall. The present model would then

account for the shedding of vorticity from this structure as it reconfigures under the

influence of the wind flow. A very similar geometry was recently considered in a

soap-film experiment (Alben et al., 2002, 2004). Alben et al. (2004) also proposed

a theoretical computation of the equilibrium shape. This problem is of interest
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to understand the reduction of the drag coefficient on botanical structures using

shape reconfiguration (Vogel, 1989; Harder et al., 2004).

Chapter 4, in part, has been published in the Journal of Fluid Mechan-

ics, “Vortex shedding model of a flapping flag” by S. Michelin, S. G. Llewellyn

Smith and B. J. Glover, 2008, 617, 1–10 (Cambridge University Press), doi:

10.1017/S0022112008004321. The dissertation author was the primary investi-

gator and author of this material.

Some material drawn from Chapter 3 and Chapter 4 has been accepted

for publication in Theoretical and Computational Fluid Dynamics, “Falling cards

and flapping flags: understanding fluid-solid interactions using an unsteady point

vortex method” by S. Michelin and S. G. Llewellyn Smith, 2009 (Springer), doi:

10.1007/S00162-009-0117-6. The dissertation author was the primary investigator

and author of this material.
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Linear stability analysis of
coupled parallel flexible plates in
an axial flow

5.1 Introduction

In Chapter 4, we studied the dynamics of a single flag or flexible plate,

and of two coupled plates in a parallel flow using a point vortex representation of

the vortex wake and an elastic Euler–Bernoulli model for the plates. We considered

large displacements of the plate and not only its linear stability analysis. Although

the numerical simulation of the fully-developed regime allows for the study of

various properties of the regime (flapping amplitude, drag,...), the impossibility of

simulating a contact between the plates using this approach significantly limited

our ability to identify the nature of the coupled modes (in-phase or out-of-phase).

In this Chapter, we focus instead on the linear stability analysis of the problem of

multiple coupled parallel flexible plates in an axial flow. Although we won’t be able

to study directly the properties of the fully-developed regime using this approach,

the properties of the linear modes, and in particular those of the dominant (or

most unstable) mode, are of interest as they influence the structure of the nonlinear

regime (see section 4.3.3).

The flapping motion, also observed experimentally (Zhang et al., 2000;

Shelley et al., 2005; Eloy et al., 2008) and in full numerical simulations (Connell and

105
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Yue, 2007; Zhu and Peskin, 2002) is the result of the destabilization of the plate’s

straight position by fluttering under the competing effects of aerodynamic pressure

forcing, solid inertia and solid flexural rigidity. In that regard, the nature of the

instability is similar to that of flow-conveying pipes (Paidoussis, 1998). Beyond

the fundamental interest of this instability and the resulting flapping motions,

this mechanism is at the origin of the flapping of flags in the wind and is also

of interest for engineering (Watanabe et al., 2002b) and biomedical applications

(Huang, 1995; Balint and Lucey, 2005). Hydroelastic instabilities of parallel-plate

assemblies are also important in the study of industrial cooling systems, as found

in some nuclear reactors (Miller, 1960; Kim and Davis, 1995; Guo and Päıdoussis,

2000a).

Since the first two-dimensional stability analysis by Rayleigh (1878), sev-

eral models have been proposed to understand the instability threshold in the case

of a single elastic plate. Shelley et al. (2005) considered the one-dimensional linear

stability of a flag of infinite span and length under parallel flow forcing. Lemaitre

et al. (2005) used a slender-body approximation to study the linear stability of long

elastic ribbons. Kornecki et al. (1976) studied the linear stability of a finite-length

cantilevered plate of infinite span, using a representation of the vortical wake as a

vortex sheet (Theodorsen, 1935; Bisplinghoff et al., 1955), and Argentina and Ma-

hadevan (2005) used a similar approach to study the influence of in-plane tension

and finite span on the stability threshold. Guo and Päıdoussis (2000b) consid-

ered the stability of a finite-length two-dimensional plate in a channel with various

boundary conditions, using a simpler representation of the wake. Eloy et al. (2007)

used the same approach to investigate the influence of three-dimensional effects on

the stability of a finite-length cantilevered plate.

In the case of multiple parallel elastic plates, the imposed flow acts both

as a forcing and a coupling mechanism between the motion of the plates. When

the distance between the plates is of the order of or less than their length, it

is expected that their dynamics will be strongly coupled. Zhang et al. (2000)
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generalized their soap-film experiment to two parallel filaments and showed that

the filaments’ dynamics became coupled and that, depending on their relative

distance, in-phase and out-of-phase modes could be observed (Figure 5.1). This

observation was confirmed by Jia et al. (2007) who also considered filaments of

various lengths. Depending on the length of the filaments, they observed either

a transition from out-of-phase to in-phase flapping when bringing the filaments

close together, or a persistence of the out-of-phase mode even at small separation.

These results suggest that the nature of the observed regime is strongly dependent

on more than just the relative distance between the different plates or filaments.

Numerical simulations (Zhu and Peskin, 2003; Farnell et al., 2004; Huang et al.,

2007; Michelin and Llewellyn Smith, 2009a) have also reported the existence of

these two classes of regimes. Tang and Päıdoussis (2009) presented a numerical

study of the stability criteria for the in-phase and out-of-phase modes. More

recently, Schouveiler and Eloy (2009) considered three and more coupled plates

in a wind-tunnel experiment and observed various mode structures (Figure 5.1).

In particular, in the symmetric mode, the middle plate was observed to remain

still. Guo and Päıdoussis (2000a) studied the linear stability of an infinite number

of parallel plates of finite aspect ratio, clamped on their side edges and free at

the leading and trailing edges. They however focused only on one particular type

of modes (the out-of-phase mode, where the motions of two consecutive plates

are always opposite), using the resulting symmetries to significantly reduce the

complexity of the system.

The purpose of the present study is to propose a linear stability analysis

of Q coupled flexible plates of infinite span, clamped at their leading edge in a

uniform imposed flow. We investigate the existence and nature of coupled modes,

that were previously observed experimentally and numerically (Zhang et al., 2000;

Zhu and Peskin, 2003; Jia et al., 2007), as well as the influence of the plates’

separation on the stability of the trivial state of rest and the structure of the

linearly dominant flapping modes. In section 5.2, the double-wake method used in
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Figure 5.1: (Top) Sketch of the in-phase and out-of-phase modes observed ex-
perimentally for two flexible plates (Zhang et al., 2000; Jia et al., 2007). (Bottom)
Sketch of the in-phase, out-of-phase and symmetric modes observed experimentally
for three flexible plates (Schouveiler and Eloy, 2009).

Guo and Päıdoussis (2000b) and Eloy et al. (2007) for a single plate is extended

to the case of an arbitrary number of equidistant parallel plates. In sections 5.3

and 5.4, results on the linear stability of respectively two and three plates and

the structure of the most unstable modes are discussed. Section 5.5 proposes an

overview of expected results at larger Q as well as a discussion of the influence of

Q on the critical stability curve for a fixed distance between the plates, and the

nature of the corresponding dominant modes. Finally, conclusions are drawn in

section 5.6.

5.2 Aerodynamic coupling of Q flexible plates

5.2.1 Description of the problem

We are interested here in the linear stability of Q horizontal identical flex-

ible and inextensible plates, placed in a parallel imposed flow along the horizontal
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direction. The plates’ span is assumed to be infinite so that the flow and plates’

displacements can be considered two-dimensional. The plates are clamped at their

leading edge and are equally spaced along the vertical axis at a distance D from

each other: the leading edge of plate j (1 ≤ j ≤ Q) is located at (0, (j− 1)D). All

plates have length L in the streamwise direction, mass per unit area ρs and flexural

rigidity B = Eh3/[12(1 − ν2)] (per unit length in the third dimension). Here, E

and ν are respectively the Young modulus and Poisson ratio of the plates, and h

is the plate’s thickness (h � L). The velocity and density of the imposed flow

are ρ and U∞. The problem is characterized by three non-dimensional parameters

(M∗, U∗, d) defined as:

M∗ =
ρL

ρs
, U∗ = U∞L

√
ρs
B
, d =

D

L
. (5.1)

In the following, all quantities are non-dimensionalized using ρ, U∞ and L as refer-

ence values: positions are non-dimensionalized by L, time is non-dimensionalized

by L/U∞, velocity by U∞ and pressure by ρU2
∞. We are interested in the linear

stability of the state of rest for which all the plates are horizontal and parallel to

the incoming flow.

Assuming that the displacement of each plate from its state of rest is

small, the geometry of plate j is described by the vertical displacement y(j)(x, t)

of the point located at a distance x along plate j in the state of rest. We are

interested in the stability of infinitesimal perturbations, therefore |y(j)| � 1. We

assume that the plate is inextensible: any plate element must conserve its length at

all time. Therefore, if ξ(j)(x, t) is the horizontal displacement of the point located

at a distance x along plate j in the state of rest, the inextensibility of the plate

can be expressed as (
1 +

∂ξ(j)

∂x

)2

+

(
∂y(j)

∂x

)2

= 1. (5.2)

This relation implies that if y(j) is of order ε (with ε � 1), then the horizontal

displacement ξ(j)(x, t) is of order ε2, and we neglect this horizontal displacement

here. Assuming that the dynamics is governed by the Euler–Bernoulli equation
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Figure 5.2: Horizontal flow over Q parallel plates. The plate index (j) is indi-
cated as well as the Q + 1 domains into which the fluid is partitioned. On each
plate, continuity of normal velocity is enforced. Continuity of pressure is enforced
upstream and downstream of each plate.

with clamped-free boundary conditions, and keeping only the dominant terms, the

equation of motion of plate j is obtained as:

∂2y(j)

∂t2
= − 1

U∗2
∂4y(j)

∂x4
−M∗ [p](j)(x), (5.3)

y(j)(0, t) = y(j)
x (0, t) = y(j)

xx (1, t) = y(j)
xxx(1, t) = 0,

where [p](j) is the pressure difference between the upper and lower sides of plate j.

5.2.2 Potential flow and wake representation

The fluid domain is divided into Q+ 1 domains (see Figure 5.2):

− Domain 0: y < 0,

− Domain j (1 ≤ j ≤ Q− 1): (j − 1)d < y < jd,
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− Domain Q: y > Qd.

We assume that the flow is potential in all domains, and the flow potential is

continuously differentiable in each domain. In (5.3), we have [p](j)(x) = p(j)(x, (j−
1)d+)− p(j−1)(x, (j − 1)d−).

From Bernoulli equation, the pressure in domain j is given by

p(j)(x, y) = −∂Φ(j)

∂t
− 1

2
|∇Φ(j)|2, (5.4)

where Φ(j) is the total flow potential, which can be decomposed as

Φ(j)(x, y) = x+ φ(j)(x, y), (5.5)

with φ(j) the perturbation of the potential due to the motion of the plates away

from their state of rest (|∇φ(j)| � 1). Keeping only the linear terms, the pressure

forcing on each plate becomes:

[p](j)(x) = −
(
∂

∂t
+

∂

∂x

)
(φ(j) − φ(j−1)) (5.6)

evaluated at y = (j − 1)d.

The major difficulty in such situations is the representation of the wake.

In the case of one single flapping plate, several models have been proposed. Using

Theodorsen’s theory (Theodorsen, 1935; Bisplinghoff et al., 1955), Kornecki et al.

(1976) represented the wake of a single flexible plate as a distribution of vorticity

along the horizontal axis advected at leading order by the imposed flow. The

intensity of the vorticity shed at each time was such that the regularity condition

is enforced at the trailing edge. In the following, we refer to this method as the

Vortex Sheet (VS) method. Computations with better accuracy using the same

method and assumptions were reported recently (Eloy et al., 2008). A summary

of the method is presented in Appendix A. This elegant method is, however,

difficult to generalize to two plates or one plate close to a wall, as it is based

on the possibility of isolating the contribution of the frequency to the circulatory

pressure with the so-called Theodorsen’s function (Bisplinghoff et al., 1955). An
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Figure 5.3: (a) Critical stability curve of a single cantilevered flexible plate of
infinite span using the double wake (DW) representation (solid) and using the
vortex sheet (VS) wake model (dashed). (b) Stability curves of (a) superimposed
on the maximum growth rate observed with the double wake representation.

alternative approach has been proposed, representing the presence of the wake by

the continuity of the pressure across the horizontal axis downstream from the plate

([p](j)(x) = 0 for x > 1): Guo and Päıdoussis (2000b) and Eloy et al. (2007) used

this method to study respectively the two-dimensional stability of a plate with

infinite span in an inviscid channel flow and the three-dimensional stability of a

finite-span plate in an unbounded flow. In this method, the pressure distribution

is solved in Fourier space and the absence of singularities at both edges is assumed,

thereby introducing an “upstream wake” to deal with the leading edge singularity.

In the following, we shall therefore refer to this method as the Double Wake (DW)

approach.

Although this double-wake assumption is not based on any physical argu-

ment, it was observed that in the case of a single plate, it leads to a good prediction

of the critical velocity for fluttering instability (Eloy et al., 2007; Watanabe et al.,

2002b), particularly for lighter plates (M∗ ≥ 1) as can be seen on Figure 5.3. Both

methods (VS and DW) predict the existence of different branches in the stability

curve, each branch corresponding to different mode structures being most unsta-

ble. The first branch corresponds to a mode 2 (one-neck mode), the second branch
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to a mode 3 (two-neck mode), and so on. Figure 5.3(b) shows the superposition

of the stability curves obtained with each method, and the maximum growth rate

observed using the DW representation. This provides some insight on the behav-

ior at small M∗. The VS model predicts a stable flat state while the DW predicts

unstable behavior. However, the associated growth rates (obtained with the DW

method) are very small in the region of disagreement between the two theories.

The difference between the two approaches resides solely on the treatment

of the wake. At high values of M∗, the dominant modes have shorter wavelengths

and it is therefore expected that their dynamics are less influenced by the wake

and more by the local displacement of the plate. Conversely, the first branch has

a characteristic spatial scale of the order of the length of the plate, and is strongly

influenced by the description of the wake.

5.2.3 Computation of the pressure forcing

We follow the DW method to compute the pressure forcing on each plate

(Guo and Päıdoussis, 2000b; Eloy et al., 2007). Each plate’s displacement is de-

composed into normal modes y(j)(x, t) = Re
[
ζ(j)(x)eiωt

]
with ω a priori complex.

Re(ω) and −Im(ω) are respectively the mode’s frequency and growth rate. Un-

stable modes correspond to positive growth rate (Im(ω) < 0) and stable modes

to negative growth rate (Im(ω) > 0). All quantities (pressure, potential) are also

proportional to eiωt, and in the following the time-dependence eiωt will be implicit.

The flow potential must satisfy the following system:

∇2φ(j) =
∂2φ(j)

∂x2
+
∂2φ(j)

∂y2
= 0, 0 ≤ j ≤ Q (5.7)

∇φ(0)|y→−∞ = ∇φ(Q)|y→∞ = 0 (5.8)

∂φ(j−1)

∂y
(x, y = (j − 1)d) =

∂φ(j)

∂y
(x, y = (j − 1)d) = iωζ(j) +

dζ(j)

dx
, for 0 ≤ x ≤ 1

(5.9)

[p](j)(x) = 0, for x ≤ 0 and x ≥ 1 (5.10)
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with the pressure jump obtained from Bernoulli’s equation (5.6) as

[p](j)(x) = −
(

iω +
d

dx

)[
φ(j) (x, (j − 1)d)− φ(j−1) (x, (j − 1)d)

]
. (5.11)

Equation (5.8) prescribes the correct decay of the flow perturbation: far from

the plates in domain (0) and (Q), the velocity is dominated by the imposed unit

parallel flow and the perturbation velocity becomes negligible. (5.9) enforces the

slip boundary condition on each plate: on each side of the plate, the normal

velocity of the flow must be equal to the plate’s normal velocity. (5.10) is the

regularity condition introduced by the wake downstream of the plates and the

fictitious upstream wake: from (5.11), we see that it is equivalent to the advection

by the mean flow of a discontinuity in the flow potential, or equivalently of a

vorticity distribution on the horizontal axis (Eloy et al., 2007).

Using the Fourier transform in x, we look for solutions of the form

φ(j)(x, y) =

∫ ∞
−∞

φ̃(j)(k, y)eikxdk, (5.12)

and the function φ̃(j)(k, y) must satisfy from (5.7)

∂2φ̃(j)

∂y2
− k2φ̃(j) = 0, (5.13)

whose general solution can be written

φ̃(j)(k, y) = A(j)(k)e−|k|y +B(j)(k)e|k|y. (5.14)

From (5.9), we obtain:

B(j)(k)− A(j)(k)e−2|k|(j−1)d = B(j−1)(k)− A(j−1)(k)e−2|k|(j−1)d, for 1 ≤ j ≤ Q.

(5.15)

The pressure difference at y = (j− 1)d is then computed from (5.11) and (5.15) as

[p](j)(x) = −2i

∫ ∞
−∞

(ω + k)
[
A(j)(k)− A(j−1)(k)

]
e−|k|(j−1)deikxdk (5.16)

= −2i

∫ ∞
−∞

(ω + k)
[
B(j)(k)−B(j−1)(k)

]
e|k|(j−1)deikxdk. (5.17)
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Differentiating (5.16)–(5.17) with respect to x and using the inverse Fourier trans-

form and (5.10), we obtain

A(j)(k)− A(j−1)(k) =
e|k|(j−1)d

4πk(ω + k)

∫ 1

0

[p]
′(j)(ξ)e−ikξdξ (5.18)

B(j)(k)−B(j−1)(k) =
e−|k|(j−1)d

4πk(ω + k)

∫ 1

0

[p]
′(j)(ξ)e−ikξdξ, (5.19)

where prime quantities denote a derivative with respect to x ([p]
′(j) is therefore the

horizontal gradient of the pressure jump on plate j). Using (5.8), A(0) = B(Q) = 0

and therefore

A(j)(k) =
1

4πk(ω + k)

j∑
l=1

e|k|(l−1)d

∫ 1

0

[p]
′(l)(ξ)e−ikξdξ (5.20)

B(j)(k) =
1

4πk(ω + k)

Q∑
l=j+1

e−|k|(l−1)d

∫ 1

0

[p]
′(l)(ξ)e−ikξdξ. (5.21)

Finally, applying the operator (iω + d/dx) to (5.9), and using (5.14) and (5.20)–

(5.21),(
iω +

d

dx

)2

ζ(j)(x) = i

∫ ∞
−∞
|k|(ω + k)

(
B(j)e|k|(j−1)d − A(j)e−|k|(j−1)d

)
eikxdk

= − i

4π

∫ ∞
−∞

sgn(k)

Q∑
l=1

e−|k(j−l)|d
∫ 1

0

[p]
′(l)(ξ)eik(x−ξ)dξdk.

=
1

2π

Q∑
l=1

∫ 1

0

Kj,l(x− ξ)[p]
′(l)(ξ)dξ (5.22)

with

Kj,l(u) = − i

2

∫ ∞
−∞

sgn(k)e−|k(j−l)|deikudk. (5.23)

Using the following pair of Fourier transforms

− i

2
sgn(k)←→ 1

u
, e−|k|α ←→ 2α

α2 + u2
, (5.24)

we obtain

Kj,l(u) =
u

u2 + (j − l)2d2
for 1 ≤ {j, l} ≤ Q. (5.25)
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We therefore have to solve the following system of integral equations for

the pressure gradients along each plate [p]
′(j):

−ω2ζ(j) + 2iω
dζ(j)

dx
+

d2ζ(j)

dx2
=

1

2π

∫ 1

0

[p]
′(j)(ξ)dξ

x− ξ (5.26)

+
1

2π

∑
l 6=j

∫ 1

0

x− ξ
(x− ξ)2 + (j − l)2d2

[p]
′(l)(ξ)dξ,

for 1 ≤ j ≤ Q, with the additional constraints that [p](j) = 0 at x = {0, 1} so

that
∫ 1

0
[p]

′(j)dx = 0. In (5.26), we have purposedly isolated the term j = l which

gives a Cauchy-type singular kernel. The first integral is understood as the Cauchy

principal value. The linearity and form of (5.26) suggests to look for a solution of

this system of integral equations in the following form (see for example Eloy et al.,

2007):

[p](j)(x) = [p(K)](j)(x) + 2iω[p(G)](j)(x)− ω2[p(M)](j)(x), (5.27)

with 0 ≤ x ≤ 1 and 1 ≤ j ≤ Q. The pressure forcings [p(K)](j), [p(G)](j) and [p(M)](j)

are solutions of:

1

2π

∫ 1

0

[p(K)]
′(j)(ξ)dξ

x− ξ +
1

2π

∑
l 6=j

∫ 1

0

x− ξ
(x− ξ)2 + (j − l)2d2

[p(K)]
′(l)(ξ)dξ =

d2ζ(j)

dx2

with

∫ 1

0

[p(K)]
′(j)dx = 0, (5.28)

1

2π

∫ 1

0

[p(G)]
′(j)(ξ)dξ

x− ξ +
1

2π

∑
l 6=j

∫ 1

0

x− ξ
(x− ξ)2 + (j − l)2d2

[p(G)]
′(l)(ξ)dξ =

dζ(j)

dx

with

∫ 1

0

[p(G)]
′(j)dx = 0, (5.29)

1

2π

∫ 1

0

[p(M)]
′(j)(ξ)dξ

x− ξ +
1

2π

∑
l 6=j

∫ 1

0

x− ξ
(x− ξ)2 + (j − l)2d2

[p(M)]
′(l)(ξ)dξ = ζ(j)

with

∫ 1

0

[p(M)]
′(j)dx = 0. (5.30)

In (5.27)–(5.30), the pressure contributions with superscripts K, G and

M correspond respectively to added rigidity, gyroscopic and added inertia effects

(Paidoussis, 2004).
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5.2.4 Galerkin decomposition

The stability problem is then investigated using the Galerkin method.

The displacement of each plate is decomposed onto the S first normal modes of

the clamped-free beam in vacuum

ζ(j)(x) =
S∑
n=1

α(j)
n ψn(x), (5.31)

ψn(x) = cosh(λnx)− cos(λnx) +
sin(λn)− sinh(λn)

cos(λn) + cosh(λn)
[sinh(λnx)− sin(λnx)] ,

and λn are the successive positive roots of

1 + cosλn coshλn = 0. (5.32)

These modes are solutions of the following problem:

d4ψn
dx4

= λ4
nψn, ψn(0) = ψ′n(0) = ψ′′n(1) = ψ′′′n (1) = 0. (5.33)

From this basis for one plate, we can easily build the basis for the Q-plate problem

by considering the modes Ψm (1 ≤ m ≤ Q×S) defined as follow: mode (i−1)S+q

(with 1 ≤ q ≤ S and 1 ≤ i ≤ Q) corresponds to a displacement equal to ψq for

plate i, all the other plates being held fixed. (In other words, if ψ is the matrix

of the value of the modes (5.31) at a set of points x, the basis Ψ for the Q-plate

problem is block-diagonal with Q diagonal blocks equal to ψ).

From (5.27), for each mode Ψm, we obtain the pressure gradient P ′m as

the following superposition:

P ′m = P
′(K)
m + 2iωP

′(G)
m − ω2P

′(M)
m , (5.34)

with P
(K)
m =

[
[p(K)]

(1)
m , [p(K)]

(2)
m , ..., [p(K)]

(Q)
m

]T
and from (5.28)–(5.30),

1

2π

∫ 1

0

[p(K)]
′(j)
m (ξ)dξ

x− ξ +
1

2π

∑
l 6=j

∫ 1

0

x− ξ
(x− ξ)2 + (j − l)2d2

[p(K)]
′(l)
m (ξ)dξ =

d2Ψ
(j)
m

dx2
,

∫ 1

0

[p(K)]
′(j)
m (x)dx = 0, (5.35)



118

with Ψ
(j)
(i−1)S+q(x) = δijψq(x). P

′(G)
m and P

′(M)
m are obtained in the same way from

(5.28)–(5.30), and the different pressure fields are then recovered by integration

from the leading edge.

Equation (5.3) becomes for the Q plates (noting that most of the coeffi-

cients of each Ψm are equal to zero):

Q×S∑
m=1

αm

[
−ω2Ψm +

1

U∗2
d4Ψm

dx4
+M∗ (−ω2P (M)

m + 2iωP (G)
m + P (K)

m

)]
= 0. (5.36)

We define the scalar product 〈.〉 of two functions F =
[
f (1)(x), .., f (Q)(x)

]T
and

G =
[
g(1)(x), ..., g(Q)(x)

]T
as

〈F,G〉 =

Q∑
j=1

∫ 1

0

f (j)(x)g(j)(x)dx. (5.37)

Taking the scalar product of (5.36) with Ψn, we obtain a non-linear eigenvalue

problem for (α, ω):[
−ω2(M +M∗F(M)) + 2iωM∗F(G) +

1

U∗2
K +M∗F(K)

]
·α = 0 (5.38)

where

Mmn = 〈Ψm,Ψn〉 , Kmn =

〈
d4Ψm

dx4
,Ψn

〉
(5.39)

F (M)
mn = 〈P (M)

m ,Ψn〉, F (G)
mn = 〈P (G)

m ,Ψn〉, F (K)
mn = 〈P (K)

m ,Ψn〉.

Because Ψ
(j)
(i−1)S+q = δijψp(x), and the natural modes of the clamped-free beam are

orthogonal and satisfy (5.33), M is the identity matrix and K is diagonal with

K(i−1)S+q = λ4
q for 1 ≤ i ≤ Q and 1 ≤ q ≤ S, (5.40)

and λq defined in (5.32).

5.2.5 Numerical solution

The main task consists in determining the matrices F(M), F(G) and F(K).

The results presented thereafter were obtained using S = 24 modes for each
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plate. A large enough number of Galerkin modes must be used to properly re-

solve the structure, growth rate and frequency of the physical modes (see for ex-

ample Lemaitre et al., 2005), and tests with S = 48 and S = 96 were performed

to ensure a proper convergence. Equation (5.38) has Ntot = 2Q × S eigenmodes

and the modes with largest frequency arise from the Galerkin decomposition and

are not physical. We therefore chose to retain only the Ntot/4 modes with small-

est frequency in the remainder of the paper (12Q modes for S = 24) to ensure

we are studying only physical modes. This choice might lead us to discard some

physical modes, but such discarded modes would have a very high frequency and

short wavelength. Therefore, we expect these modes to have a negligible effect

in the analysis of the real problem, as flow viscosity and material damping (both

neglected in the present potential flow approach) would lead to a rapid dissipation

of the energy in those modes.

Each function ψn(x) is evaluated on Np = 200 Gauss-Chebyshev points,

and expanded using the firstNp Chebyshev polynomials of the first kind. Using this

discretization is particularly well-suited for the solution of the coupled singular in-

tegral equations (5.28)–(5.30). The procedure for solving (5.28)–(5.30) is detailed

in Appendix B. Once the different [p(K)](j), [p(G)](j) and [p(M)](j) have been ob-

tained, the matrix coefficients are computed using (5.37) and a Gauss–Chebyshev

quadrature (Pozrikidis, 1998).

Once the matrices F(M), F(G) and F(K) have been obtained for a given

value of d, the non-linear eigenvalue problem (5.38) is solved for given values of

M∗ and U∗.

We first note that, in (5.38), ω always appears as powers of iω and all

matrices are real. Therefore, if ω is a solution, −ω̄ is as well, with the same

mode structure characteristics (the eigenfunctions are conjugate pairs). This re-

sult is a direct consequence of the choice made for the modal decomposition:

y(j)(x, t) = Re
[
ζ(j)(x)eiωt

]
. The eigenvalues are therefore of two kinds: purely

imaginary and pairs of eigenvalues with same imaginary parts but opposite real
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parts. Because of this structure, in the following, we will only discuss the eigen-

value with positive real part, keeping in mind that when this real part is strictly

positive, an associated eigenvalue also exists with opposite real part.

In the following, we study successively the stability properties of Q = 2,

Q = 3 and Q � 1 parallel elastic plates. In several places, we will consider the

most unstable mode to determine for example the dominant mode’s nature. We

must point out here that this mode is dominant in the linear regime. Although

several numerical and experimental studies on flexible flags have reported a good

agreement between the structure of the observed dominant mode and the prediction

of linear stability analysis (e.g. Eloy et al., 2008; Michelin et al., 2008), in the fully-

developped regime, non-linear phenomena such as mode competition could modify

the nature or properties of the dominant mode (e.g. frequency).

5.3 Stability of two coupled plates

In this section, we focus on the case of two identical flexible plates placed

at a relative distance d from each other. The method outlined in the previous

section is used setting Q = 2.

5.3.1 Influence of d on the stability of the flat state of rest

One question of interest when approaching two flexible plates to each

other is whether and how the presence of the other plate will influence the stability

threshold of the state of rest (flat and parallel to the imposed flow). The critical

stability curve is plotted on Figure 5.4 for various values of the relative distance

between the plates’ leading edges. Below the critical curve, the state of rest is a

stable equilibrium; above it, this state of rest is unstable and flapping can develop.

As a general result, we observe that the hydrodynamic coupling between

the plates tends to destabilize the state of rest, as the stable range of parameter
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Figure 5.4: Critical stability curve of the state of rest of two plates in the
(M∗, U∗)-plane for d = 0.1 (circle), d = 0.2 (thin solid), d = 0.5 (dashed), d = 1
(dotted) and d = 3 (dash-dotted). The thick solid line is the stability curve for one
flag only using the same approach (Eloy et al., 2007) and is equivalent to d =∞.

values (M∗, U∗) shrinks with decreasing d. We observe that this reduction of

the stability threshold Uc(M
∗, d) with d (or the minimum U∗ above which the

state of rest becomes unstable) is not uniform with respect to M∗. Heavy flags

(M∗ ≤ 1) are destabilized for distances between the plates as large as three times

their lengths, while the stability of light plates (M∗ ≥ 5) is not affected until

d < 0.5.

This is confirmed by looking at the growth rate of the most unstable

mode, plotted on Figure 5.5(a) for several values of the relative distance between

the plates. Two effects are evident from this picture. As expected for a particular

distance d, the growth rate increases above the critical stability curve for increasing

U∗: increasing U∗ corresponds to an increasing forcing flow or a relatively smaller

rigidity of the plates. More kinetic energy is then transferred from the outside flow

to the plates’ motion.

For small d, the dominant mode’s stability properties are modified the

most for small M∗: in that case, a significant increase of the dominant mode’s

growth rate is observed for decreasing d. The comparison of the different pictures
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in Figure 5.5(a) also shows the evolution with d of the location of branches with

reduced instability (light colors) in the (M∗, U∗)-plane, information that is not

available when only the critical stability curve is considered. These regions are the

most susceptible to become stable if a small amount of dissipation is added to the

system.

This difference of behavior between small M∗ and large M∗ is illustrated

on Figure 5.6 where the dominant mode characteristics are studied in the (U∗, d)-

plane. For M∗ = 2, the dominant mode stability, nature, growth rate and fre-

quency depend strongly on d, while for M∗ = 4, d has a much weaker influence

and the frequency and growth rate variations are due to changes in the dominant

mode rather than a modification of a particular mode’s properties with d.

One interpretation of the preferential destabilization of flags with low

M∗ lies in the mode structure associated with each branch on the stability curves

in Figures 5.3 and 5.4. The most unstable branch at low M∗ corresponds to

modes with longer wavelengths than the subsequent branches. Modes with shorter

wavelengths are expected to be less influenced by the presence of the second plate

as the relevant aspect ratio is λ/D rather than L/D for this particular mode, with

λ the wavelength of the mode.

5.3.2 In-phase and out-of-phase modes

For two coupled plates, eigenmodes can be of two natures: in-phase (the

two plates having the same motion) and out-of-phase (the two plates having sym-

metric motions with respect to the horizontal axis) as illustrated on Figures 5.1 and

5.7. The nature of the mode is determined by computing the correlation between

the spatial structure of the mode component along each plate. For a particular

mode ω, each plate’s displacement can be defined as y(j)(x, t) = Re[ζ(j)(x)eiωt] with

the same complex frequency ω. The correlation coefficient for the motion of plates

m and n is defined as the average value in x of the time correlation of these plates’
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Figure 5.5: (a) Growth rate and (b) nature of the most unstable mode plotted
in the (M∗, U∗)-plane for (from top to bottom) d = 0.2, d = 0.5, d = 1 and d = 3.
On the right column, the stability region of the state of rest is shown in black,
while grey (resp. white) regions correspond to an out-of-phase (resp. in-phase)
dominant mode.
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Figure 5.7: Dominant mode for M∗ = 4 and U∗ = 13 for (left) d = 0.1 and
(right) d = 0.2. The position of each plate is plotted at t = t0 (solid), t = t0 +T/4
(dashed), t = t0 + T/2 (dash-dotted) and t = t0 + 3T/4 (dotted), with T the
pseudo-period of the mode (2π/Re(ω)). The same arbitrary amplitude of vertical
motion was chosen for both cases.

displacement at x:

rmn =

∫ 1

0

Re
[
ζ(m)(x)ζ(n)(x)

]
|ζ(m)(x)ζ(n)(x)| dx (5.41)

where the integrand is just the relative phase between ζ(m)(x) and ζ(n)(x). This

definition remains valid for the case of multiple plates. Here there are only two

plates and only one correlation r = r12. In practice, within each mode of the

two-plate system, the motion of the plates were found either equal or opposite and

a symmetry argument for this is given in section 5.5. Therefore, the correlation

coefficient r is equal to ±1. A mode with r = 1 (resp. r = −1) is called thereafter

an in-phase (resp. out-of-phase) mode. Figure 5.5(b) shows for given values of d,

the nature of the most unstable mode in the (M∗, U∗)-plane. Alternatively, Figure

5.6 shows the evolution of the nature of the dominant mode in the (d, U∗)-plane

for given M∗, thereby giving some insight on the influence of d.

In the following, modes will be referenced by their nature (I for in-phase

modes and O for out-of-phase modes) and numbered by increasing frequencies at

large d, to correspond for convenience to the numbering of the one-plate case (it

is therefore possible for a mode 2 to have a higher frequency than a mode 3 at

shorter distances).
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These maps show that for increasing d, the domain of stability of the flat

state of rest increases as observed in the previous section. From Figures 5.5 and

5.6, we also observe that for given values of M∗ and U∗, it is possible to observe

an in-phase mode at small distances d and a transition to an out-of-phase regime

for increasing plate separation (see for example the case M∗ = 4 and U∗ = 13 on

Figure 5.6 and in more details on Figure 5.8). This transition from in-phase to

out-of-phase modes with increasing separation was observed experimentally (Zhang

et al., 2000; Jia et al., 2007).

While it is clear from Figure 5.5(b) that the in-phase flapping modes are

more often dominant at small distances than at larger distances, this transition

is not always observed: in-phase flapping can be observed for large d (up to five

times the plate’s length for M∗ = 4 and U∗ = 12.5 as seen on Figure 5.6) and out-

of-phase flapping can be observed for all values of d (for small inertia ratio M∗,

the dominant mode is always out-of-phase). This is consistent with the soap-film

experiments reported in Jia et al. (2007), which observed an out-of-phase mode at

small and large distances for the shortest filament length (corresponding to smaller

M∗ and U∗, if all other properties are kept constant). It is also consistent with the

results of Tang and Päıdoussis (2009), who observed that the velocity threshold of

the fluttering instability was always lower for out-of-phase modes than for in-phase

modes in their study of plates with M∗ = 0.2.

5.3.3 Influence of d on the mode properties

Figures 5.8 and 5.9 show the evolution with d of the frequency Re(ω)

and growthrate Im(−ω) of the lowest frequency in-phase and out-of-phase modes

for two different sets of values of (M∗, U∗). The branches on each of these plots

correspond to continuous variations of the eigenvalue ω. Note also that the nature

of the mode (in-phase/out-of-phase) remains unchanged on a particular branch for

all d-values (the correlation coefficient for each branch remains very close to either

1 or −1).
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Figure 5.9: Same as figure 5.8 for M∗ = 2 and U∗ = 10.
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The structure of the mode (e.g. number of necks) can however vary with

d, although we note that the most unstable modes preserve their general structure

throughout the d-domain (Figure 5.10). Other more damped modes can however

experience a strong modification of their structure as can be seen for mode O1b

for example on Figure 5.10. The existence of a zero in the envelope corresponds

to a standing wave mode (Re(ω) = 0).

At large distances, we observe the pairing of in-phase and out-of-phase

branches. Within each pair, the mode frequencies, growth rates and mode struc-

tures become identical and approach asymptotically the mode characteristics ob-

tained in the case of a single plate (Figures 5.8 and 5.10). Within each pair, the

two modes differ however by the values of the correlation coefficient r (or the phase

difference between the plates’ motion) which are opposite.

We showed that the variations of the modes’ growth rate with d, M∗ and

U∗ can induce a sudden change of the dominant mode nature as one parameter

is varied (corresponding to the different domain boundaries on Figures 5.5(b) and

5.6). If the most linearly unstable mode determines the properties of the observed

flapping in experiments and numerical simulations, then by varying one of the pa-

rameters (by either changing the separation D or the flow velocity U∞ for example),

one will experience a sudden change in the observed properties (for example, the

flapping mode shape or its frequency). For M∗ = 4 and U∗ = 13, the dominant

mode is an in-phase flapping at short distances (d < 0.15) and an out-of-phase

flapping at larger distances (Figure 5.8). At the transition, the structure of the

dominant mode (and therefore its characteristic wavelength) is also modified from

a 2-neck mode (I3) to a 3-neck mode (O4) (see Figure 5.7), and a frequency jump

is observed from ω = 2.68 (mode I3) to ω = 4.96 (mode I4). This frequency switch

was also reported in previous experimental and numerical studies (Zhang et al.,

2000; Farnell et al., 2004; Jia et al., 2007).

The frequency jump can be observed even when a transition occurs be-

tween two modes of the same nature. Figure 5.9 illustrates this with a case where
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an out-of-phase mode is always dominant for M∗ = 2 and U∗ = 10. Mode O4 is

dominant for small distances d, while mode O3 is dominant at larger distances.

The mode switch at d ∼ 0.13 leads to a negative dominant frequency switch from

ω = 8.1 to ω = 3.7.

This frequency jump and its variability with the parameter values are

clearly visible on Figure 5.6. The frequency plots show some large variations of

the dominant frequency with M∗ and U∗ for given d. Large frequency values can

be achieved at low U∗ (for large value of the plates’ rigidity). We must point out

that these frequencies occur mostly in the stability region where all modes have

negative growth rates. In some situations, large dominant frequencies can also

occur for unstable configurations but at very small separation distance (typically

less than 5% of the plates’ length as seen for M∗ = 2 on Figure 5.6). In the

presence of a small amount of material damping or flow viscosity (neglected here),

we expect these high-frequency modes to be the most affected.

5.4 Stability of three coupled plates

In the case of three evenly-spaced identical plates, three different types of

modes are obtained that correspond to those observed experimentally (see Figure

5.1):

• an in-phase mode (I) where all three plates flap in phase. The correlation

coefficients as defined in (5.41) satisfy r12 = r13 = r23 = 1 and the outer

plates have the same motion,

• an out-of phase mode (O) where the outer plates flap in phase with the same

amplitude and the middle plate flaps with a phase equal to π with respect

to the other plates (r12 = r23 = −1 and r13 = 1),

• a symmetric mode (S) where the outer plates have opposite vertical displace-

ments and the middle plate remains still: r13 = −1 and ζ(2)(x) = 0.
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Figure 5.10: Evolution with d of the envelope of the least stable in-phase and out-
of-phase modes for M∗ = 4 and U∗ = 13. The indexing of the modes correspond to
figure 5.8. The envelope is computed as the maximum vertical deflection achieved
for 0 ≤ x ≤ 1, for one of the two flags after normalizing the mode amplitude so
that the amplitude at the trailing edge is always unity.
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A symmetry argument for the existence of mode S will be given in section

5.5. The same symmetry argument will also prove that plates 1 and 3 always have

equal or opposite motions, therefore their relative motion amplitude is equal to 1.

However, in modes I and O, the motion of the center plate is in general not of the

same amplitude as the two others’ (although it was observed that it had the same

x dependence leading to a correlation coefficient of ±1).

For a given value of M∗, Figure 5.11 shows the evolution of the mode

properties in the (d, U∗)-plane. We observe that at short distances and for light

plates (large M∗), the dominant mode structure is highly-sensitive to the problem

parameters, with the presence of finger-shape regions of dominance of the O and

S modes. At large distances the out-of-phase mode O prevails as for two plates.

However for large d, the modes group in triplets. Within each triplet, one finds a

mode of each kind (I, O and S) with frequency, growth rate and envelope asymp-

totically equal to the values for one plate only (Figure 5.12). For the particular

choice M∗ = 3 and U∗ = 13, we observe that for increasing d, the dominant mode

takes alternatively each of the three possible natures (Figure 5.12). As for two

plates, a switch in the dominant mode can lead to a sudden change of all the

following: mode nature (I,O,S), mode structure and frequency.

5.5 Results for larger Q

5.5.1 Symmetry argument

In the previous sections, we have observed that all the modes are always

symmetric or anti-symmetric in structure with respect to the axis of symmetry

(between the two plates for Q = 2 or on the middle plate for Q = 3). We attempt

here to provide a physical argument for this observation. A mathematical proof

involving the structure of the matrices in (5.38) is presented in Appendix C.

The orientation of the horizontal axis is physically determined by the

forcing flow. The orientation of the vertical axis is however purely arbitrary. For
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Figure 5.11: Evolution of the dominant mode properties for three plates with
M∗ = 3 (left) and M∗ = 10 (right). (Top) The nature of the dominant mode is
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to a zero growth rate for clarity. (Bottom) Contours of the dominant mode’s
frequency in the (d, U∗)-plane.
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a particular mode, define ζ(j)(x) the displacement of the plate clamped at y =

(j − 1)d. Defining a new y-coordinate y′ as y′ = (Q− 1)d− y and a new indexing

of the plates j′ = Q + 1 − j will leave the problem absolutely unchanged. In this

new situation, the displacement of the plate sitting at y′ = (j− 1)d in a particular

mode will be −ζ(Q+1−j)(x). However, the physical problem is unchanged and the

mode itself cannot have been modified, therefore there must exist a constant λ

such that

ζ(j)(x) = −λζ(Q+1−j)(x) for all 1 ≤ j ≤ Q. (5.42)

Considering the previous equality for any pair j = i and j = Q+1− i (1 ≤ i ≤ Q),

we see that λ = ±1. In a particular mode, the displacements of plates j and

Q+ 1− j must therefore be equal or opposite.

The correlation coefficient of the two plates as defined in (5.41) must be

equal to ±1. Therefore, the motion of the Q plates must be symmetric or anti-

symmetric with respect to the plane located between plates Q/2 and Q/2 + 1 (resp.

on plate (Q+ 1)/2) for even Q (resp. odd Q).

One consequence of this results is that for odd values of Q, symmetric

modes correspond to a center plate at rest, as was observed for the case of three
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plates in section 5.4.

5.5.2 The limit Q→∞

We now consider the limit case of a large number of plates Q. This

geometry is particularly relevant in the study of plate assemblies as found in cooling

systems or in some nuclear reactors (Miller, 1960; Kim and Davis, 1995; Guo and

Päıdoussis, 2000a). Since the problem is invariant by a translation of d along the

vertical axis, we look for solutions of (5.7)–(5.10) in which the displacement ζ(n)

and pressure perturbation [p](n) of plate n (−∞ < n <∞) are of the form

ζ(n)(x) = ζ(0)(x)einϕ, [p](n)(x) = [p](0)(x)einϕ (5.43)

with the phase ϕ being arbitrary between 0 and 2π. From (5.26), we obtain [p](0)

from ζ(0) as:

1

2π

∫ 1

0

K∞(x− ξ, ϕ)[p]
′(0)(ξ)dξ = −ω2ζ(0) + 2iω

dζ(0)

dx
+

d2ζ(0)

dx2
,

∫ 1

0

[p]
′(0)(ξ)dξ = 0

(5.44)

with the modified kernel K∞ given by

K∞(u, ϕ) =
1

u
+ 2

∞∑
n=1

u cosnϕ

u2 + n2d2
. (5.45)

We note here that K∞ is an even function of ϕ (as expected since the

problem is invariant by reversing the labeling order of the plates). In the follow-

ing, we therefore restrict our study to 0 ≤ ϕ ≤ π. Using Fourier series, we can

determine K∞ explicitely as

K∞(u, ϕ) =
π

d

cosh
[
u
d

(π − ϕ)
]

sinh
(
πu
d

) , for 0 ≤ ϕ ≤ π. (5.46)

The case ϕ = 0 will correspond to a purely in-phase mode (all the plates will

have the same motion) and the case ϕ = π corresponds to the purely out-of-phase

mode (any two consecutive plates have opposite vertical displacements). Guo and

Päıdoussis (2000a) studied the latter mode exclusively by assuming the symmetry
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property to simplify the potential flow problem. They also used a different geom-

etry with free boundary conditions applied at the leading and trailing edges, the

side edges of the plate being clamped to a rigid wall. Here, we do not assume a

priori a particular phase difference ϕ but instead consider all possible values of ϕ

to determine the most unstable mode and its nature.

Stability threshold at large Q

For a given ϕ, we can use the same approach as in section 5.2 and decom-

pose ζ(0) over the first S fundamental modes of the clamped-free beam. For each

mode ζ
(0)
m , we then obtain from (5.44) and (5.27) the pressure gradients [p(M)]

′(0)
m ,

[p(G)]
′(0)
m an [p(K)]

′(0)
m . For each value of ϕ, we compute the critical stability curve

in the (M∗, U∗) plane of the modes with a phase difference ϕ between successive

plates, and obtain the absolute stability curve by taking the intersection of the

stability domains. The results are shown on Figure 5.13 for two values of the

relative distance of the plates d = 0.2 and d = 0.5, and compared to the results

obtained using the method of section 5.2 with an increasing number of plates. We

observe that the results obtained for increasing values of Q converge well to this

limit boundary as Q → ∞. We also observe that the stability curve converges

rather fast toward this limit for both values of d. Most of the limit stability curve

is obtained with a very good approximation for Q ≥ 5.

Properties of the dominant mode in the Q→∞ limit

Using the same method, we can compute the frequency and growth rate

of the modes with a phase difference equal to ϕ. For a given value of M∗, U∗ and d,

we search over all the possible values of ϕ for the most unstable mode. Figure 5.14

shows the phase difference between two plates corresponding to the most unstable

mode, as well as this mode’s frequency and growth rate. While the out-of-phase

mode (ϕ = π) tends to dominate for lower values of M∗ and larger values of d, it is

not necessarily the case. In particular, for large values of M∗ or small values of d,
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the in-phase mode can be dominant. We also note that the transition from ϕ = 0

to ϕ = π in the dominant mode is not necessarily discontinuous but that dominant

modes with any value of ϕ can be found for a particular value of M∗, U∗ or d. This

seems to contradict the assumption of Guo and Päıdoussis (2000a) that the out-

of-phase mode is dominant in the linear regime. We must however point out that

Guo and Päıdoussis (2000a) considered free-free boundary conditions, while the

present work considers clamped-free plates. The change in boundary conditions is

expected to have a significant impact on the position of the critical stability curve

in the (M∗, U∗)-plane (Guo and Päıdoussis, 2000b).

We noted previously that the convergence of the stability curve with

increasing Q is a rather fast but inhomogeneous process,: some parts of the curve

are obtained with a very good approximation for Q as low as 4 or 5, while others

require a larger number of plates (Figure 5.13). From the top panel of Figure

5.14, we observe that the zones of fast convergence correspond to regions of the

parameter space where the purely out-of-phase mode is dominant (ϕ = π), while

the slowest converging regions correspond to smaller values of ϕ. Physically, a

mode with a phase difference ϕ between two successive plates can be seen as a

wave traveling along the vertical axis with a wave-length equal to 2πd/ϕ and the
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Figure 5.14: Evolution in the (M∗, U∗)-plane of the dominant mode properties
for an infinite number of equally-spaced plates positioned at a distance d = 0.2
(left) and d = 0.5 (right) from each other. (Top) Relative phase ϕ between two
consecutive plates (normalized by π). ϕ/π = 1 correspond to the purely out-of-
phase mode where one plate’s motion is opposite to its two neighbors’. ϕ/π = 0
corresponds to the in-phase mode where all plates flap in phase. For reference, the
stability curve of Figure 5.13 is also plotted (thick black line). (Center) Growth
rate of the dominant mode. (Bottom) Frequency of the dominant mode.
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number of plates necessary to describe that mode is of the order of 2π/ϕ. For

ϕ ∼ π, the instability is well described by the motion of a plate coupled to its

two nearest neighbors, while for small ϕ, a large number of plates is necessary to

describe the structure of the mode accurately. The stability and properties of local

modes (those described by a small number of plates) are less influenced by the

total number of plates in the system.

5.6 Conclusions

Using the double-wake approach, we have performed the linear stability

analysis of an array of Q parallel and identical flexible plates clamped at their lead-

ing edge in a horizontal flow. The behavior of two and three plates was discussed

in more details, as well as the limit of an infinite number of plates.

This method allows one to reproduce important properties of the coupled

motion of two plates observed in numerical and experimental studies. For a finite

relative distance d between the plates, two types of modes are observed, corre-

sponding to in-phase or out-of-phase motions of the plates. The linear stability

framework allows one to obtain a map of the dominant modes in the (M∗, U∗, d)-

space, and we observed that, while it is possible to observe a transition from in-

phase to out-of-phase for increasing d and a particular choice of (M∗, U∗), in some

situations, the in-phase or the out-of-phase modes are dominant for all d, consis-

tent with some recent experiments (Jia et al., 2007). In general, the presence of a

second plate was shown to destabilize the straight rest position. The destabilizing

effect was observed to be most significant for heavy or short flags (small M∗). This

preferential destabilization for small M∗ was also observed in Guo and Päıdoussis

(2000b) for the stability of a single plate in a channel, linking this destabilization

to confinement effects. Our analysis also shows that the dominant mode proper-

ties are strongly influenced by the fluid-solid inertia ratio M∗: the out-of-phase

mode is linearly dominant for all values of d for heavy plates (small M∗) as ob-
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served numerically by Tang and Päıdoussis (2009), while the in-phase mode can

be dominant for larger values of M∗.

In the case of Q = 3 plates, three types of modes (symmetric, in-phase

and out-of-phase) were observed, consistently with recent wind-tunnel experiments

by Schouveiler and Eloy (2009). The case of an infinite number of plates was

then discussed. The stability curve was obtained as well as the properties of

the most unstable mode. The out-of-phase mode (with two consecutive plates

having opposite displacements) was shown to be the most unstable for low M∗

and larger values of d. However, modes with any value of the phase difference

ϕ ∈ [0, π] were shown to exist for some parameter values. The phase difference

of the most unstable mode (or equivalently the number of plates necessary to

describe this mode) was observed to condition the convergence of the stability

curve for increasing Q.

The advantage of the present approach over the one-dimensional approach

developed in Jia et al. (2007) and Shelley et al. (2005) lies in its ability to take

into account the finite length of the plate and the presence of a wake enforcing a

trailing edge regularity condition. However, additional modelling work is needed

to include a more accurate representation of the vortical wake. From the compari-

son between the present double-wake approach and the vortex sheet representation

for one plate, we expect the former to behave relatively well for larger values of

M∗. For shorter or heavier flags, the influence of the wake is expected to be more

important and we anticipate some discrepancies.

This Chapter, in part, has been accepted for publication in the Journal of

Fluids and Structures, “Linear stability analysis of coupled parallel flexible plates

in an axial flow” by S. Michelin and S. G. Llewellyn Smith (Elsevier Science),

doi: 10.1016/j.jfluidstructs.2009.06.002. The dissertation author was the primary

investigator and author of this material.
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Propulsive efficiency of a heaving
flexible wing

6.1 Introduction

Unlike terrestrial animals that can use solid friction and a fixed support,

insects and fishes must generate from the surrounding fluid the lift and thrust forces

necessary to their motion in their environment (Lighthill, 1960, 1969; Childress,

1981; Triantafyllou et al., 2000; Wang, 2005). Beyond the fundamental interest of

understanding the mechanism of insect flight and fish swimming, recent research on

propulsion in fluids has also been motivated by the development of micro-aviation

vehicles (MAV) and of more efficient propulsion techniques based on biomimetics

or biomorphism (Jones et al., 2004).

Insects use thin flapping wings to generate an unsteady flow around them

to produce these forces. The flow is characterized by a relatively large Reynolds

number Re = UL/ν with U the typical wing velocity, L its characteristic chord

and ν the kinematic viscosity of the surrounding fluid: Typically, Re ∼ 100–

5000 (Wang, 2005); in that range, the forces on the wings are dominated by the

pressure contribution and viscous effects are concentrated in thin boundary layers

near the solid’s boundary. These boundary layers separate during the unsteady

wing motion and roll up into strong coherent vortices (Thomas et al., 2004) that

carry momentum away from the insect, thereby generating the propulsive forces.

140
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The flow around the insect is highly unsteady, and an ongoing research challenge

resides in the ability to describe the forces on the flapping structure without solving

explicitly for the details of the flow (Ellington, 1984; Dickinson et al., 1999; Wang

et al., 2004; Pesavento and Wang, 2004; Berman and Wang, 2007).

An important physical insight into the generation of propulsive forces

by flapping or deforming solids has been provided by the study of active mo-

tion and deformation. In such experimental (Anderson et al., 1998; Godoy-Diana

et al., 2008), theoretical (Wu, 1961; Lighthill, 1960) and numerical studies (Wang,

2000a,b; Miao and Ho, 2006; Shukla and Eldredge, 2007), the position of the solid is

prescribed and the influence of the swimming stroke on the propulsive performance

is analyzed.

The recent development of experimental imaging techniques has however

shown that most insect wings are not purely rigid and that their deformation is

not entirely controlled by the animal: the wing can experience large passive defor-

mations during the stroke period (Wooton, 1992) under the action of the outside

flow and its internal bending rigidity, whose spanwise and chordwise distribution

results from the venation pattern of the wing (Combes and Daniel, 2003a,b). The

wing motion is generally generated by a forcing applied by the insect through a

main axis whose rigidity is significantly higher than the rest of the wing structure

(e.g. the leading edge of the wing). An important challenge now is to understand

the impact of such passive deformation on the propulsive performance of a flapping

structure. In particular, one may be interested in potential reductions of energy

usage induced by the flexibility or in examining whether the values of the rigidity

for these structures lie within an ”optimal” range for which the flapping efficiency

is the highest. The definition of optimality in this work in terms only of propulsive

efficiency and performances is purposely restrictive: from a biological point of view

many other factors must be taken into account to define the optimal structure of an

insect wing, including but not limited to material resistance and maneuverability.

The purpose of the present study is to investigate numerically the effect
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of flexibility on the propulsive characteristics of a flapping appendage. In the

following, we will refer to this structure as a wing with the understanding that the

model could also be applied to a fish fin if it is allowed to deform passively under

the effect of the flow and of its bending rigidity. Solving for the coupled motion of

a flexible solid and a fluid is computationally challenging and expensive, primarily

because of the coupling occurring on a moving boundary whose position is a priori

unknown and must be solved for as well. Popular techniques to overcome this

difficulty are the use of coupled fluid and solid solvers using fitted grids (Connell

and Yue, 2007) and immersed boundary methods (Zhu and Peskin, 2002, 2003).

The use of low-order models for the flexible wing also simplifies the computation

while still retaining important physical results on the reaction of the body to the

fluid flow (Bergou et al., 2007; Toomey and Eldredge, 2008).

The model used here focuses on a simplified two-dimensional propulsion

problem using a flexible wing of infinite span, actuated at its leading edge in a

purely heaving motion and reacting passively to the flow forces and its internal

elasticity. The present model does not aim to represent a particular flying or

swimming pattern, but rather considers a one-degree-of-freedom forcing to focus

on the influence of flexibility on the performance of the apparatus. In the limit of

high Re, viscous forces are neglected and viscosity’s influence on the flow is retained

in our potential flow formulation by the irreversible shedding of vorticity from the

trailing edge of the flapping structure. This takes the form of point vortices whose

unsteady intensity is determined so as to satisfy the regularity condition at the

solid’s trailing edge (Michelin and Llewellyn Smith, 2009c; Michelin et al., 2008).

We thereby generalize in this Chapter the fluid-solid model presented in Chapter

4 for the motion of a passively flapping flag.

A similar approach was recently proposed by Alben (2008c) for a pitch-

ing flexible elastic sheet using a vortex sheet representation of the wake. Optimal

values of the solid’s rigidity were discussed in the limit of negligible solid inertia

(particularly relevant in the case of fish swimming) and of infinitesimally small dis-
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placements of the solid. The present work builds on these results and considers the

general case of non-linear deformations of the sheet with non-negligible inertia (as

is the case for a flapping insect wing). The use of the unsteady point vortex model

rather than the full vortex sheet description also allows for a simpler treatment.

Similar resonance patterns are observed and we provide a theoretical argument

for their origin and position. The relation between thrust or drag production and

vortex wake structure is also investigated.

In section 6.2, the fluid-solid model is presented and the propulsive perfor-

mance quantities of interest are defined. Section 6.3 discusses briefly the numerical

methods used as well as the existence of a periodic regime. Section 6.4 then inves-

tigates the influence of the solid’s rigidity on the propulsion forces and efficiency

and relates them to the structure of the solid’s wake. Peaks of thrust are observed

for particular values of the rigidity and in section 6.5, we show that the occurrence

of such peaks correspond to a resonance between the forcing frequency and the

natural frequencies of the fluid-solid system. Finally, section 6.6 presents some

general conclusions and discusses the limitations of the model.

6.2 Description of the model

6.2.1 Solid model

We consider the following two-dimensional model for the flapping struc-

ture (see Figure 6.1). The wing is represented by an elastic sheet of chord L

and infinite span, clamped at its leading edge on an attachment pole of negligible

thickness, that is actuated by the operator (e.g. the main body of the insect). The

operator applies a purely vertical motion to the sheet’s leading edge, whose orien-

tation is constrained to be strictly horizontal. The position and orientation of the

wing at the leading edge are then:

ζ0(t) = ih(t) = ih0(1− cosωt) and θ0(t) = 0, (6.1)
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zn(t),Γn

zN (t),ΓN (t)

ζ(s, t)
θ(s, t)ζ0(t)

ζe(t)

L

A

Figure 6.1: Heaving flexible wing in a steady axial flow. The heaving motion of
amplitude A is imposed at the leading edge and vortices are shed from the trailing
edge.

so that A = 2h0 and f = ω/2π are respectively the amplitude and frequency of

the flapping motion. To avoid confusion, ω or its non-dimensional form will be

referred to as the angular frequency in the following. The flapping wing has a

chordwise flexural rigidity per unit length B and a mass per unit area ρs. Its

thickness is negligible compared to L. The wing is placed in a uniform horizontal

flow U∞ of density ρ. The motion of the wing’s leading edge is entirely prescribed

by (6.1) but the rest of the wing has a purely passive motion in response to its

internal elasticity, the leading-edge forcing and the pressure forces applied by the

surrounding flow.

In the following, L, U∞ and ρ are used as reference quantities to non-

dimensionalize the problem. The properties of the sheet are characterized by the

mass ratio µ and non-dimensional rigidity η defined as

µ =
ρs
ρL
, η =

B

ρU2
∞L

3
, (6.2)

and the leading-edge forcing is characterized by the non-dimensional forcing am-

plitude ε and frequency f̄

ε =
h0

L
=

A

2L
, f̄ =

fL

U∞
· (6.3)
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The forcing Strouhal number is defined in accordance with previous experimental

studies (Anderson et al., 1998) as

St =
fA

U∞
= 2εf̄ . (6.4)

The motion of the wing is described using an inextensible Euler–Bernoulli beam

representation (Michelin et al., 2008, and Chapter 4 of the present dissertation).

We are interested in large displacements and deformation of the wing so all non-

linear geometric terms must be included. The linear Euler–Bernoulli assumption

remains valid if the curvature radius of the sheet is much larger than its thickness,

which we assume here. The position and orientation of the wing are written re-

spectively as ζ(s, t) and θ(s, t) with 0 ≤ s ≤ 1 the curvilinear coordinate along

the wing. The conservation of momentum for each element of the wing and the

inextensibility condition can be written as

µζ̈ =
[
(T − iηθss) eiθ

]
s
− i[p]±eiθ, ζs = eiθ, (6.5)

where [p]± is the pressure difference between the top and bottom sides of the wing

and T is the tension inside the wing that must be solved for at each time-step to

enforce the inextensibility condition. The clamped-free boundary conditions are

ζ(0, t) = ζ0(t) = iε
[
1− cos(2πf̄t)

]
, θ(0, t) = 0, (6.6)

θs(1, t) = θss(1, t) = T (1, t) = 0. (6.7)

Equations (6.5)–(6.7) can be rewritten as a system for θ and T only (see Chapter

4 and Michelin et al., 2008):

Tss − θ2
sT = −[p]±θs − 2ηθsθsss − ηθ2

ss − µθ̇2, (6.8)

µθ̈ = −[p]±s − ηθssss + (T + ηθ2
s)θss + 2Tsθs, (6.9)

θ(0, t) = θs(1, t) = θss(1, t) = T (1, t) = 0, (6.10)

µζ̈0 + µ

∫ 1

0

∫ s

0

eiθ
(

iθ̈ − θ̇2
)

ds′ds = −T (0) + iηθss(0)− i

∫ 1

0

[p]±eiθds. (6.11)
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6.2.2 Representation of the flow around the wing

The model of Chapter 4 for the flow over a deformable flag shedding

vortices from its trailing edge is generalized here to the case of a flapping wing with

imposed leading edge motion. The flow around the wing is taken to be potential.

Point vortices are shed from the trailing edge ζe = ζ(1, t) with an unsteady intensity

determined by the regularity condition on the flow field at ζe (see section 2.4.1 and

Michelin and Llewellyn Smith, 2009c). The shedding criterion of section 2.4.2 is

used for the shedding of a new vortex. The equation of motion for these vortices

is the Brown–Michael equation (see section 2.4.3):

żn + (zn − ζe)
Γ̇n
Γn

= w̃n, (6.12)

where zn and Γn respectively refer to the position and intensity of the point vortex.

w̃n is the desingularized velocity at the vortex position and the overbar denotes the

complex conjugate. Equation (6.12) enforces the conservation of fluid momentum

around the vortex and associated branch cut in an integral sense (see section 2.4.4

and Michelin and Llewellyn Smith, 2009c).

We neglect here the shedding of vorticity from the leading edge, as we

focus mostly on situations where the angle of attack remains small at the leading

edge (Alben, 2008c). Alternatively, our representation can also be seen as the

limit case of a smoothed leading edge of very small curvature radius (as in an

airfoil profile for example). Only one unsteady vortex is shed at a time (from the

trailing edge). Noting N the number of vortices at a particular time, all vortex

intensities Γn are therefore independent of time except for the last one ΓN(t).

The influence of the wing on the flow is represented using a bound vor-

ticity distribution κ attached to the wing and the potential flow is obtained by

superposition of the flow at infinity and the contribution of the bound and wake

vorticity (see section 4.2.3). The normal flow continuity on the wing, the conserva-

tion of total circulation and the regularity condition lead to the following system
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of equations for κ and ΓN :

1

2π

∫ 1

0

Re

[
eiθ(s)

ζ(s0)− ζ(s)

]
κ(s)ds = Im

[
eiθ

(
1 +

1

2πi

N∑
n=1

Γn
ζ − zn

− ˙̄ζ

)]
, (6.13)

∫ 1

0

κ(s)ds+
N∑
n=1

Γn = 0, (6.14)

κ(1, t) = 0. (6.15)

From κ, the pressure jump [p]± across the wing can be computed by integration of

Bernoulli’s theorem along the wing (see section 4.2.3 and equation (4.13)):

[p]±(s0) =

∫ s0

0

κ̇(s)ds+ κ(s0)wp(s0), (6.16)

with wp the principal value of the relative tangential velocity on the wing

wp(s0) =Re

[
eiθ(s0)

(
1

2πi

∫ 1

0

κ(s)ds

ζ(s0)− ζ(s)
+ U∞ −

N∑
j=1

iΓj
2π(ζ(s0)− zj)

− ζ̇(s0)

)]
.

(6.17)

6.2.3 Energy conservation

From (6.5), conservation of energy can be written for the wing

d

dt
(Ek + Ep) = Wp + Pin, (6.18)

where

Ek =
1

2
µ

∫ 1

0

|ζ̇|2ds, (6.19)

Ep =
1

2
η

∫ 1

0

θ2
sds, (6.20)

Wp = −
∫ 1

0

[p]±Im
(
ζ̇e−iθ

)
ds, (6.21)

Pin = −Re
[(
ζ̇(0)e−iθ(0)

)
(T (0) + iηθss(0))

]
− ηθ̇(0)θs(0). (6.22)

are respectively the kinetic and elastic potential energy of the wing, the rate of

work of the pressure forces on the wing and the rate of work of the force and torque
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applied by the attachment pole on the rest of the wing. In the particular case of a

purely heaving motion considered here, θ(0) = 0 and ζ̇(0) = iḣ is purely imaginary,

so

Pin = ηθss(0)ḣ. (6.23)

6.2.4 Propulsive performance

We are interested in the thrust generated by the flapping wing. The forces

applied on the leading-edge attachment are:

− the elastic forces applied by the sheet on its attachment

[T (0)− iηθss(0)] eiθ(0), (6.24)

− the force applied by the operator (or animal) to prescribe the leading-edge

motion Fop = F x
op + iF y

op,

− the suction force created at the leading edge by the inverse-square root be-

havior of the pressure. This suction force is the limit of the suction force

obtained on a smoothed contour when the curvature radius of the airfoil’s

leading edge tends to zero. This suction force is equal to (Saffman, 1992;

Alben, 2008c; Gorelov, 2008)

Fs = −πeiθ(0)

4

(
lim
s→0

[√
s(1− s)κ(s)

])2

. (6.25)

Neglecting the inertia of the attachment and defining the thrust (taken positive

to the left) as T = −F x
op, the force balance along the horizontal direction together

with (6.6)-(6.7) leads to

T =
π

4

(
lim
s→0

[√
s(1− s)κ(s)

])2

− T (0). (6.26)

The power input by the operator P is

P = Re
(
Fop

˙̄ζ0

)
= F y

opḣ(t) = ηθss(0, t)ḣ(t) = Pin, (6.27)
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and is equal to the rate of work Pin of the attachment pole on the wing. Note that

this equality would not hold if the motion of the leading edge were a combination

of both heaving and pitching, as the suction force Fs would have a non-zero rate

of work in the vertical direction.

The useful power output is simply the rate of work T U∞ of the thrust

force in the horizontal motion. In non-dimensional units, the flapping efficiency

is then defined as the ratio of the average developed thrust to the average input

power

r =
〈T 〉
〈P+〉 , (6.28)

where 〈.〉 is the averaging operator

〈g〉 =
1

τ

∫ τ

0

g(t)dt, (6.29)

with τ = 1/f̄ the non-dimensional period of the flapping motion and P+ the posi-

tive part of P . We assume here that the animal cannot store the energy extracted

from the fluid during the possible fraction of the periodic motion where the input

power is negative.

Finally, we define for convenience the following (non-dimensionalized)

quantities:

− the trailing-edge peak-to-peak flapping amplitude D,

− the intensity of the wake Γw, defined as the mean value of the amplitude of

the successive vortices (in absolute value),

− the induced velocity of the wake vortices V defined as the horizontal velocity

of the wake vortices relative to the imposed unit flow. V is positive if the

wake vortices move faster than the background flow, and negative otherwise.
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6.3 Simulation of the initial value problem and

convergence to a periodic state

Equations (6.8)–(6.12) and (6.13)–(6.16) are solved numerically expand-

ing θ(s, t) into a finite series of Chebyshev polynomials of the first kind and using

a semi-implicit second-order time-stepping scheme. Taking advantage of the linear

relation between [p]± and κ̇, added inertia terms can be isolated from the part of

the pressure that can be explicitly computed at each time step, thereby avoiding

the use of an iterative solver and greatly enhancing the computational efficiency

(Michelin et al., 2008).

The system is started from rest. At t = 0, the horizontal flow is ramped

up to its long time unit value and the motion of the leading edge (6.1) is imposed.

After a transient regime of a few heaving periods, a permanent periodic regime is

achieved for large enough values of the rigidity η (Figure 6.2a).

However, the harmonic heaving forcing can lead to highly unsteady be-

haviors if η becomes too small: below a certain critical value of the solid’s rigidity

ηm(µ), the purely passive elastic sheet (as in the flag problem) becomes unstable

to fluttering modes and flapping can occur even in the absence of leading-edge

forcing (Alben and Shelley, 2008; Michelin et al., 2008; Alben, 2008a) (ηm(µ) was

found to be equal to ηm = 2 10−3 for µ = 0.2 and ηm = 4.8 10−2 for µ = 2, using

the same point vortex model (Michelin et al., 2008)). In such cases, the spectrum

of the trailing-edge motion can display several peaks, corresponding to the forcing

frequency and to the frequency of the unstable modes (Figure 6.2b). The motion

is of large enough amplitude for the regime to be non-linear and mode coupling

is also expected. As η is reduced further, the periodicity is lost and the power

spectrum is full; in such a case, determining averaged quantities is not possible

anymore.

This explains the difficulty to observe a steady permanent regime when

η is decreased below the critical value ηm. This difficulty was not present in the
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(a) µ = 2 and η = 0.2
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(b) µ = 2 and η = 0.04

Figure 6.2: (Top) Frequency spectrum and (Bottom) time evolution of the
trailing-edge absolute vertical displacement for µ = 2, ε = 0.05 and f̄ = 5/2π.
(Left) η = 0.2 > ηm(µ = 2) lies in the stability region for the purely passive elastic
sheet. The power spectrum displays only one peak (thick arrow) at an angular
frequency of ωf = 2πf̄ = 5. (Right) The rigidity η is below its critical value
ηm(µ = 2) = 0.048 and the elastic sheet is unstable to fluttering. The power
spectrum displays two main peaks: one corresponding to the forcing frequency
(ωf = 5, thick arrow) and one corresponding to the unstable fluttering mode
(ωr ∼ 2.3, thin arrow) that matches the flapping frequency observed in the purely
passive case ε = 0. In both cases, small peaks can be seen for ω ∼ 3ωf = 15,
corresponding to the third harmonic of the forced flapping. The fact that only odd
harmonics appear in the tail motion was already previously observed in the case
of a passive flag (Michelin et al., 2008).
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linear study by Alben (2008c) as the inertia of the solid was neglected (µ → 0).

The inertia of the solid is essential to the development of fluttering instability and

in the limit µ → 0, all the modes are linearly stable (Alben and Shelley, 2008;

Alben, 2008a; Michelin et al., 2008). In the following, unless indicated otherwise,

we consider range of parameter values for which a periodic state is achieved.

6.4 Wing flexibility and propulsive performance

We are interested in this section in the behavior of the propulsive perfor-

mance (mean thrust, mean power input and efficiency) when the rigidity η of the

wing is varied. Several values of the forcing frequency f̄ , forcing amplitude ε and

mass ratio µ were investigated.

6.4.1 Optimal flexibility for thrust generation and propul-
sion efficiency

For given mass ratio, forcing amplitude and frequency, the mean thrust,

mean power input and propulsive efficiency were computed for each value of the

rigidity η. As a general result, we observe that, starting from the case of a rigid

wing (η → ∞), the mean thrust 〈T 〉 and power input 〈P+〉 both increase when

flexibility is introduced in the problem; however, the former increases faster and

the resulting efficiency is an increasing function of flexibility (decreasing function of

η) for large values of η (Figure 6.3). When the solid’s flexibility is further reduced,

〈T 〉 and 〈P+〉 display successive peaks for the same values of η. The propulsive

efficiency r displays in general one large peak (in general at a different value of

the rigidity η than the thrust peaks) before dropping sharply to zero as the mean

thrust vanishes (drag-thrust transition). The increase in the flapping efficiency

and developed mean thrust for a flexible wing is significant compared to the case

of a rigid wing: for f̄ = 5/2π, the peak value of the mean thrust can be greater

than twice its value in the rigid case and the efficiency can increase from 27% to

almost 60% (Figure 6.3b). Similar behavior is observed for f̄ = 1/π (Figure 6.3a).
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Figure 6.3: Evolution of the mean thrust 〈T 〉 (top), power input (center) and
propulsive efficiency (bottom) with the wing’s rigidity η, for a flapping wing of
mass ratio µ = 0.2, flapping frequency (a) f̄ = 1/π and (b) f̄ = 5/2π and forcing
amplitude ε = 0.1 (solid-circle), ε = 0.2 (dashed-star) and ε = 0.5 (dotted-square).
For comparison purposes, the mean power input and thrust have been normalized
using the rigid-case value as η →∞.

Flexibility has therefore a significant impact on the performance of the propulsive

apparatus considered here.

In Figure 6.3, we show the evolution of the propulsive properties for

the values of η leading to a permanent periodic regime. In the higher frequency

case (f̄ = 5/2π), the drag-thrust transition was clearly observed while at lower

frequency (f̄ = 1/π), this transition is less well defined as unsteady phenomena

start developing around the same value of the rigidity. Several factors lead to

unsteadiness of the problem, including transitions in the wake behind the flapping
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wing and development of the fluttering instability for low values of the rigidity (see

section 6.3).

The behavior of 〈T 〉, 〈P+〉 and r collapse rather well for leading-edge

flapping amplitudes up to 50% of the wing’s length and lower frequencies (Figure

6.3a). However, for higher frequencies, the influence of the forcing amplitude can

be seen for values of ε as low as 0.1 (Figure 6.3b). As a general result, we observe

that the propulsive efficiency and the normalized mean thrust and power input,

decrease with ε when all other parameters are held fixed. The optimal values of η

for maximal thrust or maximal efficiency are also observed to increase with ε.

We must emphasize here that the decrease of the achievable thrust and

power input with the forcing amplitude ε are only relative to the rigid case: for

higher forcing amplitudes, the absolute mean thrust and power input are larger in

magnitude and, in the rigid limit, are observed to scale like ε5/2.

6.4.2 Wake structure and thrust production

Evolution of the wake structure with increasing flexibility

For given mass ratio, frequency and forcing amplitude ε, the variation of

the flexibility of the wing induces important changes in the developed thrust and

energy usage. As η is decreased from the rigid case (η → ∞), the wake behind

the flapping wing also undergoes important modifications. Figure 6.4 shows the

evolution of the flow pattern around the heaving wing for varying η. In the high-

rigidity case (Figure 6.4a), the trailing-edge deflection is small. The wake vortices

are arranged in a reverse Von Kármán vortex street, in which vortices with positive

(resp. negative) intensity are positioned above (resp. below) the horizontal axis.

This arrangement induces an acceleration of the fluid on the horizontal axis to the

right and the vortices have a higher velocity than the imposed background flow

(positive V). This jet carries momentum to the right which is consistent with the

formation of a mean thrust on the wing. The formation of a reversed Von Kármán

vortex street in thrust-producing propulsion schemes is well known and has been
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(c) Thrust/Drag transition - η = 8 10−3

Figure 6.4: Streamlines of the flow over the flapping wing for µ = 0.2, ε = 0.1
and f̄ = 5/2π and decreasing rigidity η. The positive (resp. negative) vortices are
represented with upward- (resp. downward-) pointing triangles with sizes scaled
to the intensity of the vortices. The streamlines are plotted for t = 20 when the
leading edge crosses the horizontal axis, and the leading-edge forcing for 0 ≤ t ≤ 20
was the same in all three cases.
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observed in several experimental studies (Anderson et al., 1998; Godoy-Diana et al.,

2008).

When η is decreased, the solid is more flexible and the trailing-edge flap-

ping amplitude D increases. As a result, the intensity of the wake vortices increases

with decreasing rigidity and so does the thrust generated by the flapping motion.

Figure 6.4(b) shows the streamlines and arrangement of the wake vortices for

η = 3.2, which corresponds to the first peak in thrust production on Figure 6.3(b).

The phase between the leading and trailing-edge displacements has also been mod-

ified compared to the rigid case. The increase in the vortex advection velocity can

be seen as the distance between two successive vortices is slightly increased (the

vortex shedding frequency is unchanged and equal to the forcing frequency).

For comparison, Figure 6.4(c) shows the flow pattern for the value of η

corresponding to the thrust-drag transition. One observes immediately that the

intensity of the wake vortices has decreased significantly and the width of the vortex

street has almost vanished. In intermediate Re experiments, the formation of a

classical Von-Kármán street is associated with drag on the generating solid body.

It appears here that, even at the transition between thrust and drag production,

the reversed Von Kármán pattern persists, although largely weakened. This result

is consistent with the observation in recent experiments (Godoy-Diana et al., 2008)

that the thrust-drag transition does not necessarily occur at the same time as the

transition in the wake structure. A theoretical argument for this difference is also

presented below. Furthermore, in purely inviscid simulations, the Von Kármán

street in the drag-producing case is generally much weaker and instead the vortices

tend to align along the axis (Alben and Shelley, 2008; Michelin et al., 2008).

Classical and reversed Von Kármán streets and thrust/drag production

Here, we use theoretical results on vortex streets to understand the rela-

tionship between drag/thrust production and vortex wake structures. We focus on

highly periodic cases where the structure of the reversed Von-Kármán or classical
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Figure 6.5: Characteristics of the reversed Von-Kármán street behind the flap-
ping wing. Γw is the amplitude of the wake vortices, a the wavelength and b the
width of the vortex street.

Von Kármán streets is easily identified.

For a given vortex wake intensity and vortex arrangement, the advection

velocity of the vortices is the superposition of the incoming flow velocity (equal

to 1 in non-dimensional units) and of the induced velocity V of the vortex street,

which is itself a direct function of the width of the vortex street (vertical distance

between the two rows of opposite sign vortices), its intensity and its wavelength

(horizontal distance between two successive vortices of identical sign). If the vortex

street were infinite, its induced velocity V would be (Lamb, 1932)

V =
Γw
2a

tanh

(
πb

a

)
, (6.30)

where Γw is the magnitude of the vortices, b the width of the vortex street and

a its horizontal wavelength (see Figure 6.5). In (6.30), we chose the convention

that b > 0 (resp. b < 0) for a reversed (resp. classical) Von-Kármán street in

which positive vortices are located above (resp. below) the horizontal axis. If the

shedding frequency (equal to the flapping frequency f̄) is fixed, then a = (1+V)/f̄ .

Measuring the width of the vortex street b and its intensity Γw, (6.30) leads to a

non-linear equation for VL, the predicted value of the induced velocity, that can
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Figure 6.6: (Square) Induced wake vortices velocity V behind the flapping wing
for varying η and µ = 0.2, ε = 0.1 and f̄ = 5/2π. The predicted value obtained
for an infinite reversed Von-Kármán vortex street (Lamb, 1932) is plotted for
comparison (solid line).

be solved numerically given b and Γw

VL =
Γwf̄

2(1 + VL)
tanh

(
πbf̄

(1 + VL)

)
. (6.31)

Figure 6.6 shows very good agreement between the measured value V and the

expected value VL for varying η (the other parameters taking the same values as

in Figure 6.4), particularly above the thrust-drag transition at η = 8 10−3 (Figure

6.6). This agreement shows that the induced velocity is mostly determined by the

neighboring vortices, and the semi-infinite or infinite nature of the vortex street

does not influence the induced velocity significantly.

The drag on a solid body placed in a uniform parallel flow and shedding

vortices in the pattern of a staggered vortex street (regular or reversed Von-Kármán

street) was computed by Von Kármán using the conservation of momentum around

the solid body and part of its wake (Kochin et al., 1964; Saffman, 1992). The

only important elements in the derivation are again the intensity Γw, wavelength

a and width b of the vortex street. In particular, the motion (other than the

main translation) and deformation of the body are irrelevant in Von Kármán’s

derivation. These results can easily be generalized to the case of a reversed Von-
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Kármán street and in our notation, the predicted thrust TS is obtained as

TS = − Γ2
w

2πa
+

Γw b

a
(1 + 2V) , with a = (1 + V)/f̄ . (6.32)

This theoretical prediction compares very well to the results obtained for the thrust

in our simulations (Figure 6.7). In particular, the transition between thrust and

drag production is well reproduced. The agreement is lost at low values of η: For

such low values of the rigidity, the highly regular structure of the wake is also lost

as some natural modes of the passive elastic sheet become unstable to fluttering

and the motion of the wing loses its strong periodicity, making the definition of a,

Γw and b difficult.

In (6.32), the thrust consists of two terms. The second term is positive

in the case of a reversed Von Kármán street (b > 0) and negative in the classical

Von Kármán street (with b < 0 and V < 0, as long as V > −1/2, which always

occur in the weak Von Kármán streets observed here). The presence of the first

term (which is always negative and therefore always leads to drag production) is

responsible for the difference between the thrust/drag transition and the transition

in the wake structure, observed in experimental or numerical studies (Godoy-Diana

et al., 2008). As in the passive flapping flag case (Alben and Shelley, 2008; Michelin

et al., 2008), it is possible to have net drag produced by a weak reversed Von

Kármán street as the first term in (6.32) dominates the second one.

6.4.3 Resonance and optimal flexibility for thrust produc-
tion

In Figure 6.3(b), we can observe successive peaks in the mean thrust

created by the heaving wing, but also a peak in the mean drag (or negative thrust)

below the drag-thrust transition that occurs around η ∼ 8 . 10−3. Figure 6.8 shows

the evolution of the mean thrust, flapping amplitude D, wake intensity Γw and

wake induced velocity V for the same values of the parameters µ, ε and f̄ as in

Figure 6.3.
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Figure 6.7: (Square) Mean thrust 〈T 〉 produced by the flapping wing for varying
η and µ = 0.2, ε = 0.1 and f̄ = 5/2π. The predicted value TS (6.32) based
on impulse conservation (Kochin et al., 1964; Saffman, 1992) is also plotted for
comparison (solid line). TS was computed from (6.32) using the values of the
vortex street intensity, width and induced velocity obtained with our model.

We observe a very clear correlation between the occurence of the maxima

(in magnitude) for the mean thrust (or drag) and for the other quantities, which

confirms the argument presented in the previous section: the mean thrust and drag

peaks are created by an increase in the flapping motion at the trailing edge, where

the vortex wake is formed. An increase in D (with a constant flapping frequency)

induces a higher relative velocity at the trailing edge, and therefore stronger shed

vortices. While this increase in Γw with D is physical, it is however not possible to

find a simple scaling of Γw with D, as other factors that depend on η must be taken

into account (e.g. the orientation of the trailing edge relative to its velocity). The

induced velocity on the vortex street V is therefore also increased and the wake

carries a larger fluid momentum downstream, thereby creating a greater thrust on

the profile.

It is also interesting to notice that the maximum drag observed for η ∼
5. 10−3 is also associated with a maximum in D and Γw. In that case, the large

amplitude of motion at the trailing edge opposes the imposed flow and creates a

net drag on the body.
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Figure 6.8: Evolution of the mean thrust 〈T 〉 (solid), trailing-edge flapping
amplitude D (dashed-circle), vortex wake intensity Γw (dotted-square) and induced
vortex velocity V (dotted-triangle) with the wing’s rigidity η for µ = 0.2, ε = 0.1
and f̄ = 5/2π. All quantities have been normalized by their rigid-case value
(η →∞).

6.5 Influence of flexibility on the flapping am-

plitude and mode shape

6.5.1 Resonances between the forcing frequency and the
natural frequencies of the system

In this section, we are interested in the origin of the maxima in the

trailing-edge flapping amplitude D. The successive peaks in D as η is varied

suggest a resonance phenomena. By varying the rigidity of the solid η, we also

modify the natural frequencies of the system. For an elastic sheet in vacuum, these

frequencies scale like
√
B/ρs. Looking for solutions of (6.8)–(6.11) in the linear

limit with no fluid forcing, the fundamental angular frequencies ω0n = 2πfn of a
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clamped-free elastic sheet in vacuum are obtained in non-dimensional form as

ω0n = λ2
n

√
η

µ
, with 1 + coshλn cosλn = 0. (6.33)

The ratio
√
µ/η can be thought of as the non-dimensional time-scale associated

with the frequency of the sheet’s natural oscillations in vacuum, or alternatively

as the outside flow velocity non-dimensionalized by the characteristic velocity as-

sociated with the sheet’s properties.

Influence of µ and ε on the position of the resonance peaks in D

However, the resonance peaks observed in Figure 6.8 do not correspond

to a resonance with the natural frequency of the sheet in vacuum. If this were the

case, then the resonances would be achieved for all values of the mass ratio µ at

the same values of
√
η/µ. We observe on Figure 6.9 that such a coincidence does

not occur: the position of the successive resonances is actually strongly influenced

by the fluid-solid inertia ratio µ. This difference makes sense physically, as the

eigenfrequencies of the system are modified by the presence of the forcing horizontal

flow, and such effects as added inertia are expected to be important. Instead,

the natural frequencies of the system {wing + outside uniform flow} should be

considered. A comparison with linear analysis predictions is proposed below.

Before comparing our results to the linear analysis, we study the influence

of the forcing amplitude ε on the position of the resonances. We have noticed in

section 6.4.1 that the normalized thrust and power input follow similar patterns for

values of ε up to 0.2 to 0.5 depending on the value of µ. In an attempt to determine

the exact value of η leading to a resonance, we study how the resonance peaks in

D are modified as ε is varied between 0.01 and 0.5. Starting from small ε, one

observes that the increase in ε induces a shift of the resonance peaks toward larger

values of η and a smoothing of the resonance peaks (Figure 6.10). We also observe

that the convergence toward the limit case of small ε is faster for the second and

third resonance peaks than for the first one (labeling the peaks from the right as η



163

10−1 100 1010

2

4

6

8

(!/µ)1/2

Fl
ap

pi
ng

 a
m

pl
itu

de

Figure 6.9: Evolution of the normalized trailing-edge flapping amplitude D with√
η/µ for ε = 0.05, f̄ = 5/2π and for µ = 0.2 (solid-squares) and µ = 2 (dashed-

circle). The flapping amplitude was normalized using the asymptotic rigid case
limit (η →∞).

is decreased from the rigid case limit). This will be of importance when discussing

the modification of the resonance position by non-linear effects.

Absolute and relative trailing-edge flapping amplitude

We have previously defined D as the peak-to-peak amplitude of the

trailing-edge flapping motion in the laboratory frame (thereafter referred to as

absolute flapping amplitude). In the following, we are also interested in the mo-

tion of the wing in the frame moving with the leading edge. In this frame, the

peak-to-peak trailing-edge flapping amplitude is D∗ (thereafter referred to as rela-

tive flapping amplitude). D and D∗ are not necessarily equal because of the phase

difference between the motion of the leading and trailing edges (Figure 6.11). This

delay is, in general, a decreasing function of the solid’s rigidity. In the limit of a

rigid wing η →∞, the trailing edge flaps in phase with the leading edge and with

the same amplitude (D∗ = 0 and D = 2ε). As η is decreased, a delay appears

between the motion of the leading and trailing edges: the elasticity of the wing

takes more time to carry along its length the signal imposed at the leading edge.

As a result, the relative amplitude D∗ increases.
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Figure 6.10: Influence of the forcing amplitude ε on the position of the resonances
in the trailing-edge flapping amplitude for µ = 0.2 and f̄ = 5/2π. The results are
plotted for ε = 0.01 (solid-circles), ε = 0.05 (dashed), ε = 0.1 (dash-dotted),
ε = 0.2 (dotted) and ε = 0.5 (solid). The trailing-edge flapping amplitude was
normalized by its rigid-case value (η →∞).

One of the main consequences of the apparition of such a delay is the

non-coincidence of the first resonance peak (with largest η) in the flapping ampli-

tude, whether D or D∗ is considered. The position of the subsequent peaks is not

significantly affected (Figure 6.11a)

Comparison with the natural frequencies of the system

In this section, we test the conjecture that the trailing-edge flapping am-

plitude peaks are due to a resonance with the natural frequencies of the {wing +

imposed flow} system, by comparing the value of the rigidity η leading to a peak

value for D to the value of η for which the forcing frequency matches a natural

frequency of the system. The position of the peaks in D is measured in the limit of

small forcing amplitude (typically ε = 0.01). The natural frequencies of a purely

passive wing clamped at its leading edge in a uniform flow are determined using

the linear stability analysis method developed by Kornecki et al. (1976). A brief

summary of this method is given in Appendix A. For given µ and η, the eigenfre-

quencies of the system are computed. The lowest frequencies are also associated
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Figure 6.11: (a) Comparison between the absolute flapping amplitude D and
relative flapping amplitudeD∗ at the trailing edge, for µ = 0.2. (b) Phase difference
between the leading-edge and trailing-edge motions.
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with the modes of lowest order (those with the longest wavelength). Here, we are

interested in the following equivalent problem: for a given µ and f̄ , we want to

find the values η for which a mode of the passive flexible wing in axial flow has the

particular frequency f̄ , regardless of its growth rate.

Figure 6.12 shows the position in the (η, f̄)-plane of the first resonances

observed in the trailing-edge flapping amplitude D for small heaving amplitude

ε, starting from the rigid case η → ∞. Although ε is small, D can be significant

(greather than 20ε at the resonance in the case of the heavier wing (µ = 2), thereby

representing more than 20% of the wing’s length). These results are compared to

the natural frequencies of the system {wing + parallel flow} as predicted by the

linear analysis. We observe very good agreement between the numerical results

and the theoretical predictions. The position of the resonances in D∗ are also

indicated. Resonances in D∗ and D coincide except for the first resonance peak in

the case of the smaller mass ratio µ.

The linear analysis seems to underpredict slightly the values of η corre-

sponding to the resonance for a given frequency ω. This difference is consistent

with the amplitude of discrepancy between the point vortex model and the linear

stability analysis observed in the study of a purely passive elastic sheet or flag

(Michelin et al., 2008). Two other factors can also explain the small discrepancy

in the results:

− As we pointed out, the motion of the wing is not infinitesimally small here,

even for ε = 0.01; it is therefore possible that non-linear effects modify the

exact position of the resonances. In the previous section, the effect of increas-

ing ε was shown to shift the resonance peaks toward larger η, particularly for

the first peak, and this could account for a significant part of the observed

discrepancy.

− We are interested here in the amplitude of flapping in the laboratory frame.

However, even for small ε, this amplitude differs from the relative flapping
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Figure 6.12: Position of the resonances for the trailing-edge flapping amplitude
in the (η, f̄)-plane obtained using the present model (symbols) with ε = 0.01 and
(a) µ = 0.2 and (b) µ = 2. The different symbols correspond to the nature of the
mode: modes 1 have no neck in the flapping envelope (circles); modes 2 (squares),
modes 3 (upward-pointing triangle) and modes 4 (downward-pointing triangles)
have respectively 1, 2 and 3 necks in their motion envelope. The black symbols
correspond to resonances in the absolute flapping amplitude D. Open symbols
correspond to resonances in the relative flapping amplitude D∗ when they differ
from the resonances in D. The position of the resonances is compared to the
prediction of the linear analysis (dashed) for the natural frequency of the purely
passive elastic sheet (or flag) in axial flow (see Appendix A).



168

amplitude defined in the frame moving with the leading edge (see Figure

6.11), because of the existence of a non-zero phase between the motion of

the leading and trailing edges. We observed in Figure 6.11 that the resonance

in relative amplitude occurs for smaller values of η, particularly for the first

resonance (largest η). In the linear analysis, both amplitudes (relative and

absolute) are identical since the leading edge is held fixed. We see on Figure

6.12, that for µ = 0.2, the agreement is improved for the position of the first

resonance if D∗ is considered instead of D.

Figure 6.12 also indicates the nature of the observed mode, in particular

the number of necks in the envelope of the wing’s motion. One observes that

resonances located on a same branch of the linear analysis prediction share the

same general structure, and the number of necks is consistent with that predicted

by the linear analysis: for given µ and η, the lowest frequency mode has the longest

wavelength and no neck in its envelope. The next lowest frequency corresponds to

a mode with one neck, and so on for the successive frequencies. The evolution of

the mode shape for varying η is studied in more detail in section 6.5.2.

6.5.2 Evolution of the flapping mode shape with the flex-
ibility of the profile

To confirm that the maxima of flapping amplitude actually correspond to

resonances between the forcing frequency and the natural frequency of the passive

elastic sheet in a parallel flow, we consider the evolution of the mode shape with

η. For comparison with the case of a purely passive elastic sheet, we define as

the mode shape the envelope of the motion of the wing in the frame moving with

the leading edge. Figure 6.13 shows the mode shape in permanent regime at the

values of η leading to peak values of the absolute trailing-edge flapping amplitude

and to the minima between two successive peaks. Note that on Figure 6.13, case

B seems to correspond to a wider envelope than case A, although the absolute

flapping amplitude is smaller for B than for A. This is the result of the change of



169

10−2 100 1020

0.2

0.4

0.6

0.8

1

!

Fl
ap

pi
ng

 a
m

pl
itu

de

(A)(B)(C)(D)(E)(F)

−0.5

0

0.5
(A) (B) (C)

0 0.5 1
−0.5

0

0.5
(D)

0 0.5 1

(E)

0 0.5 1

(F)

Figure 6.13: Evolution of the mode shape with η for µ = 0.2, ε = 0.1 and
f̄ = 5/2π. (Top) Trailing-edge flapping amplitude in the stationary frame D
(solid) and in the frame attached to the leading edge D∗ (dotted). Note that the
value of η leading to a resonance in D does not necessarily correspond to the value
of η leading to a resonance in D∗. (Bottom) Mode shape plotted for the value of
η indicated on the top panel. The position of the wing in the frame moving with
the leadinge edge is plotted every ∆t = 0.06.
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frame: if one considers the flapping amplitude in the moving frame, the position

of the maxima differs from that of the peaks in absolute flapping amplitude (see

Figure 6.11). Cases A, C and E correspond to the resonances while B, D and F

correspond to local minima of the absolute flapping amplitude.

Comparing the mode shapes C and E with the envelope of the first two

flapping modes observed for a passive flexible flag (Michelin et al., 2008), we observe

that they are structurally similar, which is consistent with C and E corresponding

to resonances between the flapping frequency and flapping modes 2 and 3 (one- and

two-neck modes respectively). A corresponds to mode 1 of the passively flapping

elastic sheet, which was not observed in the study of flapping flags (Michelin et al.,

2008) as it is always stable (Eloy et al., 2007) and therefore does not lead to

large-scale flapping.

6.6 Conclusions

Using a reduced-order model for the flow past a two-dimensional heaving

flexible wing, we have investigated the influence of the wing’s passive flexibility

on its propulsive performance (mean thrust, flapping efficiency). Starting from

the purely rigid case, we observed that flexibility allowed for a larger trailing-edge

flapping amplitude, thereby generating a stronger wake and an increased mean

thrust. The energy usage also increases with the introduction of flexibility, but

more slowly than the mean thrust, resulting in a net increase in the flapping

efficiency with reduced rigidity. This efficiency gain can be significant (up to

twice the efficiency of the rigid case). While the mean thrust and power input

display several peaks when the rigidity η is decreased from the purely rigid case,

the flapping efficiency displays one wide peak before falling sharply as η nears the

value leading to the thrust-drag transition. Below this threshold, the wing is too

flexible to communicate momentum to the flow and instead starts creating a net

drag on the leading-edge attachment.
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The relationship between thrust production and wake structure was then

investigated, taking advantage of the discrete representation of the wake. Analyt-

ical predictions for the induced vortex street velocity and mean thrust in terms of

the vortex street strength and spatial arrangement were successfully compared to

our simulation results.

The peaks in mean thrust were found to correspond to maximum val-

ues in the trailing-edge amplitude, and shown to be the result of the resonance

between the forcing frequency of the heaving motion and the natural frequencies

of the system. A quantitative comparison showed very good agreement between

the optimal values of the solid’s rigidity and the linear analysis predictions for

the resonances position. The existence of these resonance phenomena was further

confirmed by comparing the flapping mode shape to the mode shape observed for

a freely flapping elastic sheet (e.g. the flag problem (Michelin et al., 2008)).

The natural frequencies of the system are strongly dependent on both the

solid’s flexibility and the ratio of fluid and solid inertia, and so are the optimal

values of the solid’s rigidity. For a slender neutrally buoyant fish fin, the inertia

ratio µ can generally be neglected (Alben, 2008c). However, in the case of an

insect wing, the small thickness-to-chord ratio is balanced by the large difference

in density for the fluid and solid, and our analysis shows that the mass ratio µ

plays an important role in defining the optimal value of the flexibility.

The model presented here used a potential flow representation and the

shedding of point vortices to describe the highly-unsteady flow around the insect

wing. Vortices were shed only from the trailing edge. This approximation is

reasonable for small angle of attack (proportional to the Strouhal number St in

the case of a purely heaving motion). Then, the vorticity shed at the leading

edge is negligible or merges with the vorticity shed by separation of the boundary

layers at the trailing edge (Anderson et al., 1998), leading to the shedding of two

individual vortices every flapping period and so-called 2S wakes (Williamson and

Roshko, 1988). However, when the flapping amplitude and frequency are increased,
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more complex wakes are expected as vorticity is shed from both the trailing and

leading edges, inducing for example the formation of the so-called 2P wake, where

two vortex pairs are shed during each period. The representation of the leading-

edge vortex falls however beyond the scope of inviscid methods such as the present

point vortex model or a vortex sheet approach as the effect of viscosity cannot

be neglected (Michelin and Llewellyn Smith, 2009a,c): the leading-edge vortex

is expected to remain close to the body for a sufficiently long time to interact

with the boundary layers. The use of point vortices also restricts this method to

two-dimensional problems and therefore does not allow the study of such effects as

wing-tip vortices that are expected to influence significantly the flight performance.

The present study however does not aim at reproducing the exact flow around an

insect wing but to present a test case where the effect of flexibility can be isolated

from other factors such as leading-edge and wing-tip vortices.

Despite these limitations, the present method offers the advantage of a

considerable reduction in computational cost for two-dimensional fluid-solid simu-

lations. This is particularly attractive for situations where the cost of full numerical

simulation is prohibitive and a large number of simulations are required (typically

in the case of optimization problems).

The present work was purposely limited to a one-degree of freedom flap-

ping pattern (pure heaving) in order to limit the number of free parameters and

focus on the fundamental effect of solid flexibility on the flapping performance. In

future work, more realistic flapping schemes should be considered to follow more

closely the flapping pattern of an insect wing. In particular, a combination of heav-

ing and pitching should be considered to determine the influence of the relative

phase between heaving and pitching motions on the results presented in this work.

The interaction between two flapping elastic sheets should also be investigated to

understand the lift and thrust generation by insects with multiple pairs of flexible

wings [e.g. dragonfly (Wang and Russell, 2007)] or the efficiency of fish schooling,

and to complement recent experimental studies on multiple passive flexible fila-
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ments (Zhang et al., 2000; Jia et al., 2007; Jia and Yin, 2008; Ristroph and Zhang,

2008).

Chapter 6, in part, has been published in Physics of Fluids, “Resonance

and propulsive efficiency of a heaving flexible membrane” by S. Michelin and S.

G. Llewellyn Smith, 2009, 21 (7), 071902, (American Institute of Physics), doi:

10.1063/1.3177356. The dissertation author was the primary investigator and au-

thor of this material.
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Conclusions

7.1 Using a point vortex model to study fluid-

solid interactions

The present dissertation focuses on the development and application of

a reduced-order model for two-dimensional high-Re fluid-solid interactions, based

on a representation of the flow around a flexible or rigid body using potential flow

theory and the shedding of point vortices with unsteady intensity to represent the

vortex wake shed from the solid’s sharp corners. The purpose of such a simplified

model is not to replace entirely the full numerical simulation of the interaction,

but rather to provide an accurate physical insight in some class of problems at a

low computational cost. This inviscid model is only valid for flows for which Re is

sufficiently high for viscous forces to be small compared to the pressure forces but

low enough for the flow to remain laminar in the vicinity of the solid.

Beyond the computational advantage, representing the flow using a dis-

crete set of point vortices allows for an easier physical analysis of the wake of an

object, particularly in terms of momentum transferred by the solid to the flow. In

Chapter 3, the forces and torques applied on a general solid body were for example

interpreted as the superposition of two contributions: an added inertia (present

in any potential flow representation) and a transfer of momentum to the vortex

wake. Taking advantage of this representation, we also proposed an argument for

174
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the destabilization of a falling thin card by studying small perturbations of the

broadside-on fall and its consequences in terms of horizontal momentum.

In Chapters 4 and 6, the arrangement of the vortex wake determined

the net horizontal force on the flapping membrane. For example, the classical

Von-Kármán street is associated with a net drag on the solid, while the reversed

Von-Kármán street is generally associated with thrust production (although we

pointed out in section 6.4.2 that the transitions between drag and thrust produc-

tion and between the classical and reversed Von-Kármán vortex streets do not

exactly coincide).

The point vortex model however introduces some strong limitations on

the regimes considered. In particular, the flow must be two-dimensional and the

generalization to three-dimensions in terms of vortex rings is very challenging.

The model presented here relies heavily on the results and tools of potential flow

theory, and is thereby fundamentally inviscid. Any adhoc correction such as a

decay and spread of the vortices in time to account for viscous diffusion will cause

a significant modification of the approach used. These two limitations are however

not prohibitive provided (i) that the aspect ratio of the solid is large so that the

flow can be considered locally as two-dimensional with a reasonable accuracy and

(ii) that the vortices are advected away from the body fast enough that their

viscous spreading is irrelevant in the forces applied on the solid (at leading order,

their effect on the flow next to the solid will still be dominated by their point

vortex equivalent). The time-scale associated with the residence time around the

solid is L/U with U the velocity of the outside flow. The typical viscous length

scale over such a time-scale is (νL/U)1/2 should be much smaller than the other

characteristic length-scales of the problem (e.g. the size L of the solid).

The inviscid nature of the model however introduces another limitation

that was discussed in detail in section 3.3.3: if a new vortex is started from the

leading edge of the solid body under small angle-of-attack conditions, the equations
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of the problem are not well-posed, representing the tendency of the outside flow to

push the new vortex back onto the shedding solid. In the real physical problem,

the leading-edge vortex will remain attached to the solid or at least sufficiently

close to interact significantly with the boundary layers. This situation cannot be

represented with an inviscid model. Higher-order representations of the flow can

be considered within the inviscid potential framework, for example by considering

the shedding of multiple vortices to account for the secondary shedding resulting

from the interaction of the main vortex with the boundary layers, or the shedding

of higher-order singularities such as dipoles along the body surface to represent

the attached vorticity. Any such method however introduces some arbitrary pa-

rameter (time or location of shedding for example), in contrast with the point

vortex approach, while still not addressing the issue of the viscous nature of the

phenomenon.

We therefore did not attempt to modify the point vortex model in such a

way, instead restricting carefully its applications to situations where the angle-of-

attack is large enough for this problem not to appear (Chapter 3) or to situations

where the angle-of-attack at the leading edge is small enough for the shedding from

the leading edge to be neglected (Chapters 4 and 6). In the real physical problem,

vorticity will be formed within the boundary layers close to the leading edge but

will be advected along the solid down to the trailing edge where it will be merged

with the vorticity shed by the flapping motion of the trailing edge.

Within these limitations, the point vortex representation of the solid’s

wake appears to be a powerful tool for analyzing fluid-solid interactions and phys-

ical effects such as flexibility in the solid or stability of a coupled fluid-solid prob-

lem. It introduces significant computational advantages in comparison with a full

numerical simulation or even a vortex sheet description of the wake. The compu-

tational cost is reduced by several orders of magnitude compared to the former,

and the point vortex approach is numerically simpler than the latter, in particular
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because no smoothing kernel is necessary. This makes it attractive for problems

where a large number of computations is necessary such as optimization for which

full numerical simulation is prohibitively expensive and reduced-order models are

preferred.

7.2 High-Re fluid-solid interactions

Using the point vortex representation and linear stability analysis, this

dissertation investigated several examples of strongly-coupled fluid-solid interac-

tions: the fall of a paper card, the flapping of flags in the wind, the coupling

of multiple parallel flapping elastic plates and the propulsive forces created by a

flexible insect wing. The reduced-order model of the wake in terms of point vor-

tices was used to study both the influence of the wake on the stability of the solid

(particularly in the case of the broadside-on fall of a paper card) and the relation

between propulsive forces and wake structure.

Through these examples, we pointed out the importance of vortex shed-

ding in this particular regime of fluid-solid interactions. Although viscosity is small

and its effect on fluid forces can be neglected in general compared to the pres-

sure forces, vortex shedding resulting from the presence of even an infinitesimal

amount of viscosity is an essential element to the understanding of such problems

and should be included in a reduced-order model. Empirical models based only on

optimized drag coefficients are not well-suited for such situations. This illustrates

the fundamental difference between a purely inviscid representation and the point

vortex (or the vortex sheet) representation. In the former, the flow is purely po-

tential and the influence of viscosity is totally neglected. The latter neglects the

influence of viscosity on the fluid forces but acknowledges the fundamental role

of viscosity in the shedding of vorticity. When the geometry and motion of the

solid are such that boundary layer separation and vortex shedding will occur, even

for very small viscosity ν, then the purely potential representation is not a good
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model for the limit of a real flow when Re goes to infinity. Instead, inviscid vortex

shedding models are more appropriate.

The interaction of the internal dynamics of a passively or actively flap-

ping flexible membrane with an outside imposed flow was also investigated. This

interaction is at the origin of the fluttering instability of a flag that is somewhat

similar to the instability of a fluid-conveying pipe (Paidoussis, 1998) with clamped-

free boundary conditions. Other boundary conditions, such as the case of a flexible

plate clamped at both edges, are relevant in other applications like cooling systems

(see for example Miller, 1960; Kim and Davis, 1995). Under such configurations,

the plate or plate assembly can lose stability to flutter through a Hopf bifurcation

(leading to two unstable modes with same frequency and traveling waves modes as

in the case of the flapping flag) or by divergence through a pitchfork bifurcation

(leading to two purely imaginary modes, one of them being unstable). The latter

was not possible with clamped-free boundary conditions.

Several linear analysis methods have been presented in the literature and

we emphasized in this dissertation some of their main differences, particularly

in the treatment of the wake. The treatment as a vortex sheet as suggested by

Kornecki et al. (1976) is the most physical but its application is limited. We were

unable to generalize it to more complex geometries (e.g multiple plates or a single

plate in a bounded domain) and other models must be considered.

Linear stability analysis provides an interesting insight into the stability

of the system and the structure of the different modes. However, the exponential

growth of unstable modes quickly leads to regimes where the flapping amplitude

is not negligible compared to the plate’s length and the use of a reduced-order

model to solve the initial value problem is valuable to compare the linear stability

analysis predictions to the non-linear observed regimes (particularly in terms of

dominant mode structures).

In Chapter 6, we further investigated the effect of flexibility by looking

at a simple model for propulsion using a passive flapping wing forced at its leading
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edge. Compared to purely rigid profiles, we found on this simple case that the

use of flexible structures can lead to significant improvements in both the pro-

duced forces and the flapping efficiency. Higher thrust or drag were identified as

resonances between the forcing frequency and the fundamental frequencies of the

system. This is particularly important for the understanding of biological locomo-

tion techniques used by fishes and insects, whose fins and wings are fundamentally

flexible, and for the design of more efficient propulsion systems. This study shows

for a very simple case that optimal propulsion can be achieved by a proper tuning

of the material properties to the flapping characteristics (e.g. frequency).

Several approximations were made in the study of a flapping wing includ-

ing the two-dimensional nature of the flow and the absence of viscous dissipation

or material damping. The latter can easily be introduced in the present model to

investigate the effect of this energy dissipation on the coupled system: only the

solid dynamics is modified and the point vortex approach for the fluid is still valid.

The propulsion performance analysis of Chapter 6 is extended in Appendix D as

an example to the case of a solid with material damping. Beyond the importance

of considering material damping because of its presence in any biological system,

the understanding of the influence of material damping on phenomena such as

the spontaneous flapping of flexible plates is important in the design of energy

harvesting systems. With the increasing need to design new systems to produce

energy from renewable sources, harvesting energy from permanently available geo-

physical flows such as wind and currents is becoming more and more attractive.

Preliminary designs of apparatus using passively oscillating or flapping structures

have been recently proposed (see for example the energy harvesting eel described

in Allen and Smits, 2001).

In such systems, the energy harvesting through the conversion of solid

mechanical energy into electrical power, for example, introduces a damping in the

motion of the structure, whose effect on the solid motion must be taken into ac-
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count. The energy dissipated by material damping is also a measure of the energy

available for conversion into electricity for example (a conversion efficiency should

then also be introduced). If the amount of material damping introduced in the

fluid-solid problem is very small, the motion of the solid body might not be sig-

nificantly influenced (in particular the solid motion amplitude, and therefore its

energy, might not be significantly reduced) compared to the non-dissipative case.

However, in such a situation, only a small amount of mechanical energy is available

for conversion. If material damping is very large, then the solid’s motion might

be too damped for the solid to actually extract a significant amount of energy

from the fluid and once again the energy available for conversion will be small. A

trade-off between these two effects is expected to define an optimal value for the

solid material damping that maximizes the energy dissipation (or conversion).



Appendix A

Linear stability analysis of a
cantilevered plate in axial flow

In Chapter 4, we presented the results obtained with the point vortex

method on the stability of the flat state of rest of a clamped-free flexible flag in a

parallel flow, and compared them with linear stability analysis. Chapter 6 used the

same fluid-solid model to study resonance phenomena in the flapping amplitude

and thrust production of a heaving flexible wing and compared the resonances’

position with the linear stability analysis for the modes of a clamped-free flexible

plate in axial flow.

The stability analysis framework used in both cases was first presented

by Kornecki et al. (1976) and more recently used by Eloy et al. (2008). We only

present here a brief description of this method for reference, which was mentioned

as the vortex sheet (VS) method in Chapter 5. More details can be found in

Kornecki et al. (1976) and Bisplinghoff et al. (1955).

The VS method differs from the double wake (DW) approach (used to

study the linear stability analysis of Q flexible plates in Chapter 5) in its treatment

of the vortical wake shed from the solid’s trailing edge. In both frameworks,

infinitesimal perturbations to the state of rest (where the plate is purely horizontal)

are considered. In the DW method of Chapter 5, the presence of a vortex wake

was taken into account by the continuity of the pressure across the horizontal axis

181



182

downstream from the plate: a free vortex sheet can not sustain any pressure jump.

To be able to solve explicitely for the flow potential around the flexible plate,

this method also requires a similar constraint upstream from the plate, thereby

introducing a fictitious upstream wake.

The VS method presented here considers an explicit description of the

wake in terms of a continous vortex sheet advected, at leading order, by the im-

posed flow along the horizontal axis. In that regard, the VS method is more physi-

cal. However, it is more complicated than the DW method and is not generalizable

as is to more complex geometries (e.g. multiple plates).

In the case of one plate only, VS and DW methods lead to qualitatively

similar results regarding the stability domain of the flag state of rest, but they

differ in the velocity threshold for instability in the limit of very heavy flags, for

which dominant modes have the longest wavelength (see figure 5.3). In that case,

the treatment of the wake has a significant impact on the result. For lighter plates

(and shorter dominant wave lengths), the impact of the wake treatment method is

reduced.

We are interested here in the linear stability of an infinitesimally thin

flag (or plate) with flexural rigidity, initially straight in a uniform flow. All the

physical quantities are non-dimensionalized using the length of the plate L, the

flow velocity U∞ and the fluid density ρ. The equation of motion for the flexible

solid is obtained from (5.3)

ÿ = − 1

U∗2
y
′′′′ −M∗ [p]± (A.1)

with M∗ and U∗ defined in (4.5). [p]± = p+−p− is the pressure difference between

the top and bottom side of the flag. y(x, t) is the vertical position of the point on the

flag located at (x, 0) in the rest position. As in Chapter 5, |y| � 1 and we neglect

the horizontal displacement of the plate, which is of higher order. A dotted variable

denotes differentiation in time, and a primed variable denotes differentiation in x.
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The clamped-free boundary conditions on the plate’s displacement are

y(0) = y′(0) = 0, y′′(1) = y′′′(1) = 0. (A.2)

To compute the pressure jump, potential flow theory is used. The presence of the

plate is represented by a distribution of bound vorticity κ(x, t) with 0 ≤ x ≤ 1

as in Chapter 4. The wake is represented as a continuous vortex sheet γ(x, t) for

x ≥ 1. The flow velocity is obtained by superposition of the outside flow U∞ = 1

and the effect of the attached and free vortex sheets:

w(z) = 1 +
1

2πi

[∫ 1

0

κds

z − s +

∫ ∞
1

γdξ

z − ξ

]
. (A.3)

The continuity of normal flow at the solid’s boundary prescribes Im[w] = −v =

−ẏ − y′, and κ(x, t) is the solution of the singular integral equation

1

2π

∫ 1

0

κ(s)ds

s0 − s
= v(s0)− 1

2π

∫ ∞
1

γ(ξ)dξ

s0 − ξ
,

∫ 1

0

κ(s)ds+

∫ ∞
1

γ(ξ)dξ = 0 (A.4)

with no net circulation at infinity. This can be solved exactly (see for example

Tuck, 1980):

κ(x) =
1

π
√
x(1− x)

∫ ∞
1

√
ξ(ξ − 1)γ(ξ)dξ

x− ξ − 2

π
√
x(1− x)

∫ 1

0

√
s(1− s)v(s)ds

x− s .

(A.5)

The regularity condition imposes that κ(1) = 0, therefore:∫ ∞
1

√
ξ

ξ − 1
γ(ξ)dξ + 2

∫ 1

0

√
s

1− sv(s)ds = 0. (A.6)

At leading order, the pressure jump is obtained from (4.13) as:

[p]± =

∫ x

0

κ̇dx′ + κ(x). (A.7)
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The free vortex sheet is advected by the mean flow, therefore γ̇ = −γ′. Then,

[p]±(x) = − 2

π

∫ 1

0

v̇(s0)
√
s0(1− s0)

(∫ x

0

ds√
s(1− s)(s− s0)

)
ds0

− 1

π

∫ ∞
1

γ′(ξ)
√
ξ(ξ − 1)

(∫ x

0

ds

(s− ξ)
√
s(1− s)

)
dξ (A.8)

+
1

π
√
x(1− x)

∫ ∞
1

√
ξ(ξ − 1)γ(ξ)dξ

x− ξ

− 2

π
√
x(1− x)

∫ 1

0

√
s(1− s)v(s)ds

x− s ,

which can be simplified into

[p]±(x) =
2

π

∫ 1

0

v̇(s0) log

∣∣∣∣∣∣
√

x
1−x +

√
s0

1−s0√
x

1−x −
√

s0
1−s0

∣∣∣∣∣∣ ds0

+
2

π

∫ ∞
1

γ′(ξ) tan−1

(√
x(ξ − 1)

ξ(1− x)

)
dξ (A.9)

+
1

π
√
x(1− x)

∫ ∞
1

√
ξ(ξ − 1)γ(ξ)dξ

x− ξ

− 2

π
√
x(1− x)

∫ 1

0

√
s(1− s)v(s)ds

x− s ·

Integrating by part and rearranging, we obtain

[p]±(x) =
2

π

∫ 1

0

v̇(s0) log

∣∣∣∣∣∣
√

x
1−x +

√
s0

1−s0√
x

1−x −
√

s0
1−s0

∣∣∣∣∣∣ ds0

− 2

π
√
x(1− x)

∫ 1

0

√
s(1− s)v(s)ds

x− s (A.10)

−
(

1

π

∫ ∞
1

γ(ξ)

√
ξ

ξ − 1
dξ

)
2x− 1√
x(1− x)

+

√
1− x
x

∫∞
1

γ(2ξ−1)dξ√
ξ(ξ−1)∫∞

1
γ
√

ξ
ξ−1

dξ︸ ︷︷ ︸
C

 ·

We consider solutions of the problem of the form y(x, t) = h(x)eiωt; then γ(ξ, t) =

γ0eiω(t−ξ) and the function C in (A.10) depends only on ω and can be expressed in
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terms of Hankel’s function of the second kind (Abramowitz and Stegun, 1964)

C(ω) =

∫∞
0

coshu e−iω( 1+coshu
2 )du∫∞

0

(
1+coshu

2

)
e−iω( 1+coshu

2 )du
=

2H
(2)
1

(
ω
2

)
H

(2)
1

(
ω
2

)
+ iH

(2)
0

(
ω
2

) · (A.11)

C is also known as the Theodorsen function (Theodorsen, 1935) and satisfies the

following properties:

lim
ω→0

C(ω) = 2, lim
ω→∞

C(ω) = 1. (A.12)

Finally using (A.6),

−ω2h+
1

U∗2
h′′′′ = −2iωM∗

π

∫ 1

0

log

∣∣∣∣∣∣
√

x
1−x +

√
ξ

1−ξ√
x

1−x −
√

ξ
1−ξ

∣∣∣∣∣∣ (iωh+ h′) dξ

+
2M∗

π
√
x(1− x)

∫ 1

0

√
ξ(1− ξ)
x− ξ (iωh+ h′) dξ (A.13)

− 2M∗

π

∫ 1

0

√
ξ

1− ξ (iωh+ h′) dξ

[
2x− 1√
x(1− x)

+

√
1− x
x

C(ω)

]
.

Kornecki et al. (1976) uses a slightly different method inspired by Theodorsen

theory to derive the same result (see for example Bisplinghoff et al., 1955).

As in Chapter 5, the eigenvalue problem (A.13) in ω is solved using the

Galerkin method and the natural modes ψn of the clamped-free beam in vacuum

satisfying

ψ′′′′n = λ4
nψn with 1 + cosλn coshλn = 0, (A.14)

and the boundary conditions (A.2). This set of orthogonal functions is defined as

ψn = coshλnx− cosλnx+
sinλn − sinhλn
cosλn + coshλn

(sinhλnx− sinλnx) . (A.15)

The function h(x) in (A.13) is expanded on a finite number S of these

modes

h(x) =
S∑
n=1

αnψn(x) (A.16)
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and the resulting equation is then projected on these same modes. The eigenvalue

problem (A.13) is then of the form

A.α = 0, with (A.17)

A = −ω2I +
1

U∗2
K +M∗ [M(0) + iωM(1) − ω2M(2) + C(ω)

(
MC1 + iωMC2

)]
with the coefficient of the different matrices defined as:

Kij = λ4
jδij, M

(K)
ij = F1(ψ(i), ψ(j)

x ) + F2(ψ(i), ψ(j)
x ),

M
(G)
ij = F1(ψ(i), ψ(j)) + F2(ψ(i), ψ(j)) + F3(ψ(i), ψ(j)

x ),

M
(M)
ij = F3(ψ(i), ψ(j)), MC1

ij = F4(ψ(i), ψ(j)
x ), MC2

ij = F4(ψ(i), ψ(j)),

with the functionals Fk (1 ≤ k ≤ 4) defined as

F1(f, g) = − 2

π

∫ 1

0

f(x)√
x(1− x)

[∫ 1

0

√
ξ(1− ξ)
x− ξ g(ξ)dξ

]
dx

F2(f, g) =
2

π

[∫ 1

0

(2x− 1)f(x)√
x(1− x)

dx

][∫ 1

0

√
x

1− xg(x)dx

]
,

F3(f, g) =
2

π

∫ 1

0

f(x)

∫ 1

0

g(ξ) log

∣∣∣∣∣∣
√

x
1−x +

√
ξ

1−ξ√
x

1−x −
√

ξ
1−ξ

∣∣∣∣∣∣ dξ
 dx,

F4(f, g) =
2

π

[∫ 1

0

f(x)

√
1− x
x

dx

] [∫ 1

0

√
x

1− xg(x)dx

]
.

This non-linear eigenvalue problem must be solved for numerically. For

a given number of normal modes, the different matrices involved in (A.17) can

be computed numerically. Four of these integrals require a particular treatment

because of their singular logarithmic or Cauchy-type kernel. More precisely, given

two functions f and g continuously differentiable on [0, 1], we are interested in the

two following integrals:

I1(f, g) =

∫ 1

0

f(x)

∫ 1

0

g(ξ) log

∣∣∣∣∣∣
√

x
1−x +

√
ξ

1−ξ√
x

1−x −
√

ξ
1−ξ

∣∣∣∣∣∣ dξdx, (A.18)

I2(f, g) =

∫ 1

0

f(x)√
x(1− x)

[∫ 1

0

√
ξ(1− ξ)
x− ξ g(ξ)dξ

]
dx. (A.19)
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Isolating the logarithmic singularity at x = ξ in (A.18), I1 becomes

I1(f, g) =

∫ 1

0

f(x)g(x)

∫ 1

0

log

∣∣∣∣∣∣
√

x
1−x +

√
ξ

1−ξ√
x

1−x −
√

ξ
1−ξ

∣∣∣∣∣∣ dξdx (A.20)

+

∫ 1

0

f(x)

∫ 1

0

(g(ξ)− g(x)) log

∣∣∣∣∣∣
√

x
1−x +

√
ξ

1−ξ√
x

1−x −
√

ξ
1−ξ

∣∣∣∣∣∣ dξdx.
Integrating by part the ξ-integral in the first term, I1 simplifies into

I1(f, g) =

∫ 1

0

∫ 1

0

f(x) [g(ξ)− g(x)] log

∣∣∣∣∣∣
√

x
1−x +

√
ξ

1−ξ√
x

1−x −
√

ξ
1−ξ

∣∣∣∣∣∣ dξdx
+ π

∫ 1

0

f(x)g(x)
√
x(1− x)dx. (A.21)

The second integral is now regular at x = ξ (the integrand vanishes there).

In the same way for I2(f, g),

I2(f, g) =

∫ 1

0

f(x)g(x) log

[
x

1− x

]
dx (A.22)

+

∫ 1

0

f(x)√
x(1− x)

[∫ 1

0

√
ξ(1− ξ)g(ξ)−

√
x(1− x)g(x)

x− ξ dξ

]
dx.

Using the changes of variable x = (1−cos θ)/2 and ξ = (1−cosψ)/2 in the second

integral, and noting for simplicity f(θ) = f(x(θ)) and g(ψ) = g(ξ(ψ)), we obtain

I2(f, g) =

∫ 1

0

[f(x)g(x)− f(0)g(0) + f(1)g(1)− f(1− x)g(1− x)] log xdx

+ f(1)g(1)− f(0)g(0) +
1

2

∫ π

0

f(θ)

[∫ π

0

sin2 ψg(ψ)− sinψ sin θg(θ)

cosψ − cos θ
dψ

]
dθ

(A.23)

The integrand in both terms are now regular. In particular, for the second term,

at x ∼ ξ,

sin2 ψ g(ψ)− sinψ sin θ g(θ)

cosψ − cos θ
∼ − cos θg(x(θ))− sin2 θ

2
g′(x(θ)). (A.24)

The integrals involved in (A.21) and (A.23) all have regular integrands

and can be computed numerically using any standard routine (such as Matlab’s

quad and dblquad).
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Once all the matrices involved in (A.17) have been precomputed, for

given values of M∗ and U∗, the eigenvalue problem (A.17) can be solved itera-

tively. An inital guess is obtained by replacing C(ω) by its value at infinity and

using the polyeig Matlab routine to solve for the generalized eigenvalue problem.

The eigenvalue problem is then solved iteratively using a Newton–Kantorovitch

method (Boyd, 2001). Given a guess ω(j) and α(j) for eigenvalue and correspond-

ing eigenvector, and assuming that ω(j+1) and α(j+1) are solutions of (A.17), we

obtain by linearization

0 = A(ω(j+1)) ·α(j+1)

= A(ω(j)) ·α(j) +
∂A

∂ω
(ω(j)) ·α(j)

(
ω(j+1) − ω(j)

)
+ A(ω(j+1)) ·

(
α(j+1) −α(j)

)
(A.25)

which can be reformulated as[
∂A
∂ω

(ω(j)) ·α(j) A(ω(j+1))
]
·

ω(j+1) − ω(j)

α(j+1) −α(j)

 = −A(ω(j)) ·α(j). (A.26)

The previous problem is overdetermined since for any λ, λα is an eigen-

vector if α is an eigenvector. This is overcome for example either by considering

that ∆α must be orthogonal to α or that α
(j)
q = α

(j+1)
q for a given q, introducing

an additional constraints to make the system invertible. To avoid numerical prob-

lems introduced by |α| being too small, at the end of each iteration α is rescaled

to be of unit norm.

Using the previously outlined method, one can compute for given M∗

and U∗, the 2S eigenvalues of (A.17). Not all of the eigenvalues are physical, in

particular the eigenvalues with the largest frequencies are purely numerical. In

the flag problem, we are most interested in the lowest frequencies modes (that are

also associated with the least stable modes). The critical curve for the stability of

one flag (figure A.1) is obtained by finding the particular values of M∗ and U∗ for

which one of the physical modes becomes unstable. The different branches on the
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Figure A.1: Critical stability curve obtained with the VS linear stability analysis
method for a single flexible plate clamped at its leading edge and placed in a
uniform axial flow.

critical curve correspond to different modes becoming unstable: at low M∗, the

first unstable mode is a mode 2 (one neck). The second branch correspond to a

mode 3 (two necks), and so on (Eloy et al., 2008). Mode 1 is always stable for the

clamped-free boundary conditions.

Looking back at the derivation of (A.13) and (A.17), we observe that the

key element leading to the result is the possibility to factor out the influence of the

mode frequency in the circulatory pressure into the Theodorsen function C(ω).

Such a factorization is possible because we are able to solve explicitely for κ in

(A.4). In the case of two plates or more, this integral equation must be solved for

numerically (see for example appendix B) ruling out the possibility to obtain an

equivalent of the Theodorsen function.



Appendix B

Numerical solution of
Cauchy-type singular integral
equations

In Chapters 4 and 5 of this dissertation, we have been confronted to the

problem of solving a system of integral equations of the form∫ 1

0

[
δpq

2π(x− x′) +Kpq(x, x
′)

]
κq(x

′)dx′ = fp(x),

∫ 1

0

κp(x
′)dx′ = γp (B.1)

with 1 ≤ p, q ≤ Q, where all Kpq(x, x
′) and fp(x) are regular for 0 ≤ x, x′ ≤ 1,

γp are given constants and Kpq = Kqp. We present here the method used to solve

(B.1) numerically using Chebyshev expansions. For clarity, we only present the

case Q = 2, the method being easily generalized to Q ≥ 2.

We are interested here in the numerical solution of a system of integral

equations for κ1(x) and κ2(x) of the form∫ 1

0

Ks(x, x
′)κ1(x′)dx′ +

1

2π

∫ 1

0

κ1(x′)dx′

x− x′ +

∫ 1

0

Ka(x, x
′)κ2(x′)dx′ = f1(x) (B.2)∫ 1

0

Ka(x, x
′)κ1(x′)dx′ +

1

2π

∫ 1

0

κ2(x′)dx′

x− x′ +

∫ 1

0

Ks(x, x
′)κ2(x′)dx′ = f2(x) (B.3)∫ 1

0

κ1(x′)dx′ = γ1,

∫ 1

0

κ2(x′)dx′ = γ2. (B.4)

where the kernels Ks(x, x
′) and Ka(x, x

′) are regular for 0 ≤ x, x′ ≤ 1. Equations

(B.4) are necessary for the system to be well-posed because of the Cauchy nature

190



191

of the kernels involved in the integral equation (Tuck, 1980).

Following Tuck (1980), both integral equations are then integrated in x∫ 1

0

Ls(x, x
′)κ1(x′)dx′ +

1

2π

∫ 1

0

κ1(x′) log |x− x′|dx′ +
∫ 1

0

La(x, x
′)κ2(x′)dx′

= g1(x) + β1 (B.5)∫ 1

0

La(x, x
′)κ1(x′)dx′ +

1

2π

∫ 1

0

κ2(x′) log |x− x′|dx′ +
∫ 1

0

Ls(x, x
′)κ2(x′)dx′

= g2(x) + β2 (B.6)

where Ks(x, x
′) = ∂Ls/∂x, Ka(x, x

′) = ∂La/∂x and fj(x) = g′j(x), and βj are

unknown constants. Because of the logarithmic kernel, we expect κj to have inverse

square-root singularities at both ends of the interval of integration. We therefore

define the regularized functions κ̃j(x) = κj(x)
√
x(1− x).

Take Np Gauss-Chebyshev points defined as

xp =
1− cos θp

2
, θp = cos

((
p− 1

2

)
π

Np

)
, 1 ≤ p ≤ Np. (B.7)

We note κ̃j the vector of the values of κ̃j(xp). Using the change of variables

x′ = (1− cos θ′)/2 in (B.5)–(B.6) leads to∫ π

0

Ls(x, θ
′)κ̃1(θ′)dθ′ +

1

2π

∫ π

0

κ̃1(θ′) log |2x− (1− cos θ′)| dθ′

+

∫ π

0

La(x, θ
′)κ̃2(θ′)dθ′ = g1(x) + β̃1 (B.8)∫ π

0

La(x, θ
′)κ̃1(θ′)dθ′ +

1

2π

∫ π

0

κ̃2(θ′) log |2x− (1− cos θ′)| dθ′

+

∫ π

0

Ls(x, θ
′)κ̃2(θ′)dθ′ = g2(x) + β̃2 (B.9)

where for convenience of notation we understand κ̃(θ′) to mean κ̃(x(θ′)). β̃j are

modified constants. The previous system is then evaluated at x = xp and the

different integrals in θ′ are divided in Np intervals of equal length centered on θp.
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For example, for the regular kernel Ls,∫ π

0

Ls(xp, θ
′)κ̃j(θ

′)dθ′ =

Np∑
n=1

∫ θcn+1

θcn

Ls(xp, θ
′)κ̃j(θ

′)dθ′

∼
Np∑
n=1

κ̃j(θn)

∫ θcn+1

θcn

Ls(xp, θ
′)dθ′

with θcn = (n − 1)π/Np for 1 ≤ n ≤ Np + 1, and therefore θp = (θcp + θcp+1)/2.

The evaluation of the integral involving the logarithmic kernel is more subtle. The

integral can still be split over the Np equal intervals, and evaluated as previously

for n 6= p. We evaluate separately the case n = p. Using the definition of xp in

terms of θp:∫ θcp+1

θcp

κ̃j(θ
′) log |2xp − (1− cos θ′)| dθ′ =

∫ θcp+1

θcp

κ̃j(θ
′) log |cos θ′ − cos θp| dθ′.

(B.10)

On this interval, |θ′−θp| ≤ ∆θ/2 with ∆θ = π/Np. Assuming this interval is small,

we can expand κ̃(θ′) and cos θ′−cos θp about θp. Keeping only the dominant terms

in ∆θ, we obtain∫ θcp+1

θcp

κ̃j(θ
′) log |2xp − (1− cos θ′)| dθ′ ∼ κ̃j(θp)∆θ

(
log

∣∣∣∣sin θp ∆θ

2

∣∣∣∣− 1

)
. (B.11)

Using these results, (B.5)–(B.6) is approximated as

C.

 κ̃1

κ̃2

 =

 C(1) C(2)

C(2) C(1)

 ·
 κ̃1

κ̃2

 =

 g1

g2

+ β̃1

 1

0

+ β̃2

 0

1


(B.12)

with 1 and 0 the column vectors of Np elements all equal respectively to 1 and 0.

The influence coefficients matrices C(1) and C(2) have coefficients

C(1)
mn =

1

2π

∫ θcn+1

θcn

log |2xm − 1 + cos θ′|dx′ +
∫ θcn+1

θcn

Ls(xm, θ
′)dθ′, (B.13)

C(2)
mn =

∫ θcn+1

θcn

La(xm, θ
′)dθ′. (B.14)

All the contributions to C(1) and C(2) of the regular kernels and the non-diagonal

contributions to C(1) of the logarithmic kernel are computed using the trapezoidal
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rule. Diagonal terms of the contribution to C(1) of the logarithmic kernel are

obtained using (B.11). The integration in x to obtain Ls, La and gj is performed

using Gauss–Chebyshev quadragure (Pozrikidis, 1998).

The matrix C is non-singular and can be inverted: κ̃1

κ̃2

 = C−1.

 g1

g2

+ β̃1

 1

0

+ β̃2

 0

1

 (B.15)

and the constants β̃1 and β̃2 are obtained by enforcing
∫ π

0
κ̃j(θ

′)dθ′ = γj. The

approach is easily transposed to the case of Q functions κj as in (5.26).



Appendix C

Symmetry of the coupled modes
of Q flexible plates

We provide here a more rigorous mathematical argument for the symme-

try or anti-symmetry of all the linear flapping modes of Q parallel flexible plates

with respect to the middle plane, understood as the plane y = (Q − 1)d/2 (see

Chapter 5). For Q flexible plates, the problem is doubly symmetric in the following

sense: the effect of an arbitrary displacement, velocity or acceleration of plate i on

the pressure jump on plate j is exactly equal to the effect of the same arbitrary

displacement, velocity or acceleration of plate j on the pressure jump on plate i,

and is also equal to the effect of the same displacement, velocity or acceleration of

plate Q + 1 − i on the pressure forcing on plate Q + 1 − j. Mathematically, this

is expressed by the symmetry and structure of the operator acting on the vector

([p](1), [p](2), ..., [p](Q)) in equation (5.26). If we rewrite equation (5.26) as

P .


[p](1)

...

[p](Q)

 = . . . with Pij(f)(x) =
1

2π

∫ 1

0

(x− ξ)f(ξ)dξ

(x− ξ)2 + (i− j)2d2
(C.1)

then the operator matrix P is such that Pij only depends on |i− j|. Then one can

prove easily that its inverse R satisfies

Rij = RQ−i,Q−j. (C.2)

194



195

A close look at the definition of the five different matrices defined in (5.38) will show

that they satisfy the same symmetry by block, and we explain here what we mean

by that. Let B be the matrix in bracket in (5.38), and define the block matrices

B̃(ij) with 1 ≤ {i, j} ≤ Q such that B(i−1)S+q,(j−1)S+s = B̃
(ij)
qs for 1 ≤ {q, s} ≤ S

then

B̃(ij) = B̃(Q+1−j,Q+1−i). (C.3)

Decomposing in the same way the eigenvector α in blocks α̃: α(r−1)Q+s = α̃
(r)
s ,

(5.38) becomes
Q∑
j=1

S∑
s=1

B̃(ij)
qs α̃

(j)
s = 0, (C.4)

for 1 ≤ i ≤ Q and 1 ≤ q ≤ S. But, through (C.3) we also have:

Q∑
j=1

S∑
s=1

B̃(ij)
qs α̃

(Q+1−j)
s =

Q∑
r′=1

S∑
s=1

B̃(i,Q+1−j′)
qs α̃(j′)

s =

Q∑
j′=1

S∑
s=1

B̃(Q+1−i,j′)
qs α̃(j′)

s = 0,

(C.5)

for 1 ≤ i ≤ Q and 1 ≤ q ≤ S. The vector β defined as β(j−1)S+s = α̃
(Q+1−j)
s is also

an eigenvector of B. It is therefore proportional to α and

α̃(j)
s = λα̃(Q+1−j)

s , for 1 ≤ j ≤ Q and 1 ≤ s ≤ S. (C.6)

Applying this relationship twice, we find immediately that λ2 = 1 and λ = ±1. α

gives the decomposition of the eigenmode along the basis built from the free modes.

This symmetry property therefore immediately transfers to the displacement of the

plates in a particular mode ζ
(j)
m (x) with 1 ≤ j ≤ Q and 1 ≤ m ≤ Q× S:

ζ(j)
m (x) = ±ζ(Q+1−j)

m (x). (C.7)



Appendix D

Effect of material damping on the
performance of a flexible flapping
wing

The study of Chapter 6 on the propulsive efficiency of a flexible heaving

wing considered a non-dissipative solid model for the wing. Although very little

data are available on the visco-elastic damping coefficients of typical fish fins or

insect wings (Cheng et al., 1998), it is expected that all such structures present

some amount of material damping that opposes the deformation of the solid. We

briefly address the issue of its effect on the flapping properties here.

D.1 Modification of the solid’s equations

The flow representation remains unchanged compared to Chapters 4 and

6. The beam model of section 4.2.1 is modified to include an additional dissipative

torque in the form of a Kelvin–Voigt model (Snowdon, 1968). With 0 ≤ s0 ≤ 1,

the visco-elastic torque applied by the right section of the wing s0 ≤ s ≤ 1 on the

left section 0 ≤ s ≤ s0 is now given by

M(s0) = η
(
θs + σθ̇s

)
, (D.1)

where σ = DU∞/BL is a new non-dimensional parameter: B is the flexural rigidity

of the wing and D is the visco-elastic damping coefficient. As in section 4.2.1, the
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equation of motion for the beam can be derived:

µζ̈ =
[
eiθ
(
T − iη(θss + σθ̇ss

)]
s
− ieiθ[p]±, ζs = eiθ. (D.2)

The energy equation (6.18) becomes

d

dt
(Ek + Ep) = Wp + P∗in −Wloss, (D.3)

with Wloss the loss of mechanical energy due to material damping

Wloss = ησ

∫ 1

0

θ̇2
sds > 0. (D.4)

Ek, Ep and Wp are defined in section 6.2.3 and P∗in is the modified power input:

P∗in = −Re
[(
ζ̇(0)e−iθ(0)

)(
T (0) + iηθss(0) + iησθ̇ss(0)

)]
− ηθ̇(0)

(
θs(0) + σθ̇s(0)

)
= ηḣ

(
θss(0) + σθ̇ss(0)

)
. (D.5)

D.2 Propulsive performance of a heaving visco-

elastic wing

Using this model, we study the influence of material damping on the

flapping properties and performance of the heaving wing. Two main effects are

observed: the resonances still exist in the presence of material damping but the

resonance peaks are in general less sharp (see Figures D.1a and c), and the overall

efficiency of the propulsive system is reduced (see Figure D.1b). For a large enough

value of σ, the peaks in the thrust production and flapping amplitude are smoothed

out and the flapping efficiency gain associated with the use of a flexible profile

disappears. We also note a slight delay in the thrust/drag transition due to the

presence of material damping.

To analyze the qualitative effect of the damping ratio σ on the position

of the resonances, we consider the linear limit of a clamped-free beam in vacuum.

In the linear limit, the natural frequencies of the system are modified from (6.33)

into

ω̃0,n(σ) = λ2
n

√
η

µ

(
1− σ2ηλ4

n

4µ

)1/2

+
iηλ4

nσ

2µ
. (D.6)
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(c) Normalized flapping amplitude

Figure D.1: Evolution of the (a) mean thrust, (b) flapping efficiency and (c)
trailing edge absolute flapping amplitude with wing rigidity for µ = 0.2 and ε = 0.1,
and increasing values of the material damping coefficient: σ = 0 (solid), σ = 0.05
(dashed), σ = 0.1 (dotted) and σ = 0.2 (dash-dotted). As in previous figures,
the mean thrust and flapping amplitude have been normalized by their rigid-case
value.
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For small η, these modes are damped with a damping rate that is a linear function

of σ. The modification in the natural frequencies is however quadratic in σ at

leading order and tends to reduce the natural frequency of the system. Although

we expect the presence of the fluid to modify the quantitative analysis, these results

are consistent with the observations on Figures D.1(a) and (c) that the position of

resonance peaks is only weakly influenced by σ. When σ gets larger than a critical

value σc = (4µ/ηλ4
n)1/2, the natural frequencies are purely imaginary (with positive

imaginary part), and the natural modes are purely damped standing waves, that

cannot resonate with the forcing frequency. Although (D.6) does not include any

effect from the fluid, this qualitative behavior is consistent with the disappearance

of the resonance peaks for overly large values of σ.
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