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ABSTRACT 
We present a study of acoustic oscillations induced by an 

internal airflow over a shallow and a deep cavity. The Kelvin-
Helmholtz instability is interacting with an acoustic mode of the 
duct, leading to a resonance which produces a very high sound 
level. The influence of upstream boundary layer thickness and 
neck thickness is studied. Some results obtained by modifying 
the upstream lip shape, by crenel addition, are also given. It is 
also shown that the numerical simulations using a lattice-gas 
method give relatively good results by comparison with the 
experiments. Especially the resonance with the duct acoustics 
was qualitatively reproduced. 

 
INTRODUCTION 

The problem deals with the internal flows encountered in 
many industrial processes where a fluid has to be transported in 
a piping system. All the valves or other elements may create a 
flush mounted cavity as presented in Figure 1. The shear layer 
usually exhibits a periodic vortex organization that can interact 
with some eigenmodes of the system, particularly the volume of 
the cavity, creating a so-called Helmholtz resonator, or an 
acoustic mode of the duct. This paper deals mainly with the 
interactions of the duct with a deep and a shallow cavity. The 
Helmholtz resonator, similar to the phenomenon occurring in 
car vehicles with an opend roof, is detailed in part 2 of the 
paper, Hémon et al. (2002), where a semi-active sound 
reduction system is proposed. 

The problem of shear layer instability has been widely 
studied in various situations, Ho & Huerre (1984). Particularly, 
the impinging shear layers are known to be responsible for 
coherent oscillations when the wave length associated to the 
vortices is close to the neck length L (see Figure 1), Ziada & 
Rockwell (1982), Rockwell (1983). 
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Figure 1. Configuration of the study 

 
However, in order to be self-sustained, the shear layer 

oscillation has to interact with another system within a 
resonance effect. Flush-mounted cavities have been also well 
studied in the past, Naudascher & Rockwell (1994), Luca et al. 
(1995), Massenzio (1997) and Noger (1999) for examples. The 
case of rectangular cavities, and their tone frequencies has been 
reviewed and studied by Tam & Block (1978). Recently, the 
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resonance in piping systems has been investigated by Ziada & 
Shine (1999). 

However, the resonance problem between an impinging 
shear layer and an acoustic mode of a pipe is not well 
documented. Moreover, the influence for instance of the 
incoming boundary layer thickness has only been reported by 
Sarohia (1977) in a non resonant configuration and requires 
more experiments and analysis. 

The paper is organized as follows: first a deep cavity is 
studied, for which the resonance occurs not only with the duct 
but also with its volume. A shallow cavity, more common in 
piping systems, is studied with various variable parameters, 
especially the incoming boundary layer thickness and the neck 
thickness. Numerical simulations, by means of the commercial 
code Power Flow, are presented for the shallow cavity case. 

NOMENCLATURE 
Ac section area of the neck 
co sound velocity 
δ boundary layer thickness 
δ1 displacement thickness 
δ2 momentum thickness 
fr reduced frequency (= f L / Uo) 
fsl frequency in the shear layer 
ft mode frequency of the test section 
fv cavity natural frequency 
f sound frequency 
Hg cavity neck depth 
Hv cavity total depth 
L cavity neck width 
M Mach number (= Uo / co) 
Psl acoustic pressure in the shear layer 
Pe acoustic pressure outside cavity 
Pv acoustic pressure inside cavity 
St Strouhal number (= fsl L / Uo) 
Uo freestream velocity 
V volume of the cavity 

EXPERIMENTAL SETUP 
The models of the cavities have been mounted in a small 

acoustic wind tunnel of the Institut Aérotechnique which 
generates a very low noise airflow. Details on the facility and 
the measurement system are available in (Hémon 2000). An 
original feature is that it allows to measure the outside acoustic 
pressure Pe for a given range of frequencies even when the wind 
is blowing: this kind of measurement is performed by 
intensimetry and is better detailed in part 2 of the paper. 

The acquisition system is the PAK system provided by 
Müller-BBM for which measurement hardware is based on the 
VXI standard. The acquisition card is a 16 bits A/D converter 
equiped with direct signal processors for Fast Fourier 
Transform measurements. The frequency resolution was chosen 
to be 0.18 Hz for the deep cavity and 0.5 Hz for the shallow 
one. The acoustic pressure accuracy is typically of 1dB. The 
 

reference freestream velocity Uo is measured with an accuracy 
of around 1%. 

The pressure measurements are completed by velocity 
measurements using hot wire anemometry. Boundary layer 
probes (Type P15 provided by Dantec) were used. The constant 
temperature anemometer was calibrated using a non linear 
fitting curve and the resulting accuracy is of 5%. Acquisition 
and numerical processing were made using the PAK system. 
The probes are mounted on a small vertical displacement trail 
which has a position resolution of 0.1 mm. 

THE DEEP CAVITY 

Description of the model and incoming flow 
The model of the cavity has been flush-mounted in a 

rectangular closed test section 260 mm high and 300 mm wide. 
Dimensions of the model are Hg=5mm, L=20mm and 
V=0.0039m3. The neck section Ac is 0.004m2 and the spanwise 
dimension is 200 mm. The cavity is very deep, its height being 
Hv=10 L. All these dimensions have been chosen in order to 
obtain a resonance frequency inside the intensimetry 
measurement range of the setup, between 80 and 660 Hz for a 
wind velocity around 10 to 25 m/s. 

The pressure Pv in the cavity is measured by a microphone. 
The resonance frequency of this deep cavity was measured 
without wind by using an acoustic source providing a white 
noise in the test section. The response of the cavity gave a 
natural frequency of 263 Hz (± 0.5) which is in relatively good 
agreement with the expected value using the classical theory of 
the Helmholtz resonator. 

The first acoustic modes of the test section, which is 
rectangular, are listed in Table 1 and given by the formula 

acf ot 2=  ,  (1) 
where a is the length of the relevant dimension, vertical or 
lateral. We can see that a priori the cavity resonance is far from 
these values and should not interact with the test section. 
Furthermore, from experiments, we found a little difference 
with formula (1) which is probably due to the finite length of 
the test section. Indeed it creates non ideal boundary conditions 
although it is assumed for the theoretical values. 

 
Direction Vertical Lateral 
Deep cavity 660 Hz 572 Hz 
Shallow cavity 1252 Hz 1072 Hz 

Table 1. Frequencies of the first acoustic modes 
of the test sections 

 
The incoming boundary layer profile was measured in 

detail and given in Figure 2 in dimensionless variables. The 
mean velocity and its root-mean-square (RMS) are given 
reduced by the mean flow rate velocity. The mean velocity 
profile outside the viscous sub-layer can be well fitted by a 
logarithmic profile, which is a typical characteristic of a fully 
developed, equilibrium, turbulent boundary layer, with zero 
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pressure gradient. The resulting integral thicknesses are δ1=4.5 
mm and δ2=3.6 mm. It is known that the parameter δ1/L is very 
important for the shear layer instability in the neck: its value 
here is 0.22 which is small enough to a priori allow an 
excitation by the first mode of the attached shear layer, Sarohia 
(1977). 
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Figure 2. Boundary layer profile at X=-2 L for the deep 
cavity 

Frequency and pressure level results 
Figure 3 presents first the measured acoustic pressure level 

Pv inside the cavity, and secondly its corresponding frequency, 
versus the freestream velocity. The two sets of symbol 
correspond to the same test which was made twice. The 
physical unit for the pressure level is from a power spectral 
density and does not depend on the acquisition parameters. For 
a better approach of the physics, note that a pressure level of 25 

HzPa /  is equivalent to 115 dB with our frequency 
resolution, which is a very high level for the human ear. 

The horizontal dashed lines on the frequency curve are the 
frequencies which correspond to the natural frequency of the 
cavity, for the first one, and to one acoustic mode frequency of 
the test section for the second one. Each resonance case leads to 
a high pressure level in the cavity, and we focus the present 
paper on the second peak, which is the interaction with an 
acoustic mode of the test section. 

Indeed, by observing the first series of measurements, we 
can see that the frequency is increasing quasi linearly with the 
wind velocity: then at a certain velocity, there is an emergence 
of a second tone in the spectrum which creates at 290 Hz a very 
high pressure level. In fact, the resonance is not really induced 
by this frequency but rather by its first harmonic which interacts 
with the lateral acoustic mode of the test section. 

In order to verify that the lateral dimension of the test 
section was really the cause of the pressure peak, this dimension 
 

was modified by adding a layer of wood on the lateral wall. 
Then, according to formula (1), the frequency was increased so 
that the resonance could not occur due to the limited range of 
the wind velocity. This was experimentally verified. 

The second peak in the cavity response to the flow is a 
complex mechanism which is due to a coupling between the 
shear layer excitation, the volume of the cavity and an acoustic 
mode of the duct. 
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Figure 3. Cavity pressure level and corresponding 

frequency versus Uo for the deep cavity 

Transfer function 
In order to better understand the phenomenon, we measure 

using intensimetry the external pressure Pe, around the two 
resonance velocities. This is performed simultaneously with 
measurements of the internal pressure Pv. Then we plot the 
transfer function Pv/Pe in amplitude (modulus) and phase angle 
φ in Figure 4. The main point of these data is the phase angle 
which is found to be 97° (± 2°) at the resonance with the cavity 
for Uo=16 m/s. At the second point of resonance (Uo=20 m/s), 
the phase angle is very different (135°) and these differences 
should be physically interpreted. 
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Figure 4. Transfer function Pv/Pe versus Uo for the 

deep cavity 
 
From the classical theory of the Helmholtz resonator, 

assuming that the air is a perfect gas and the cavity is adiabatic, 
we may write 

slevv
co

g PPPP
Ac

HV
ε+=+&&

2 .  (2) 

The coefficient ε  is a dimensionless unknown amplitude of 
the excitation term Psl produced in the neck by the shear layer 
instability. The external pressure Pe appears as a forcing term 
for the cavity pressure. Since the response is harmonic at 
resonance points, it may be written as 

vve PPP &βα += .   (3) 
This expression assumes linearity as a first approximation. 

Nevertheless, it must be recalled that the excitation is physically 
the instability of the shear layer, which is modelled by ε Psl and 
can be estimated from the measurements of the other parameters 
of system (2). Indeed, this system has to be in equilibrium, i.e. 
at a zero balance of energy over one period. Then at resonance, 
the shear layer instability is tuned at the frequency of the cavity 
and the excitation term may be rewritten as 

vsl PP &µε = .   (4) 
By replacing (3) and (4) in (2) we can identify µ as 

φ
π

βµ sinP
P

f v
e

2
1=−= ,  (5) 

and 
φα cosPP ve= ,   (6) 
 

where all the terms are measured and reported in Table 2. We 
see that the system is not only a simple resonator which is 
excited by a shear layer tuned in frequency. Indeed, the 
confinement of the flow above the cavity produces a damping 
which contributes to limit the pressure level in the cavity.  

This damping is given by β and we can see that it is much 
smaller for the second peak: this is physically logical, the 
confinement being itself the cause of this resonance. 

 
 First peak 

At fv=263 Hz 
Second peak 
At f=290 Hz 

e

v

P
P

 
 

6.6 
 

6.6 

φ 97° 135° 
α -1.85  10-2 -0.107 

β = −µ -9.1  10-5 -5.9  10-5 
Table 2. Measured parameters of the system 

 
Moreover, the coefficient of added stiffness α is much 

larger for the resonance involving the test section, which is 
again logical from a physical point of view. It explains also why 
the frequency of the second peak is higher than the natural 
cavity resonance, since the total stiffness is increased by 10.7%. 
This leads to a square root increase in frequency, which agrees 
with the measured frequency of the second peak (within an 
uncertainty range). 

THE SHALLOW CAVITY 

Description of the model and incoming flow 
The shallow cavity is mounted in the same way as the deep 

one, behind a test section 160 mm wide and 137 mm high. The 
purpose of this smaller section is to be able to increase the 
velocity according to the capabilities of the setup in terms of 
flow rate. Expected Mach numbers are in the range [0.10 � 
0.25]. 

The cavity dimensions in mm are L=50, Hv=20, and 150 
spanwise. The neck thickness Hg is variable, between 2 to 8 
mm. The neck section is Ac=0.0075 m2 and the volume is 
V=0.00013 m3. From experience, it is not expected here to 
obtain an excitation of the cavity volume by the shear layer, as 
in a Helmholtz resonator. 

However, a resonance between the shear layer frequency 
and the vertical acoustic mode of the test section, given in Table 
1, is expected. The dimensionless frequencies of the oscillations 
of the shear layer are well approximated by Rossiter�s formula 
(1964) 

( )co UUM
nSt +

−= γ ,   (7) 

where n is the order of the mode and γ a parameter linked to the 
shape of the lips and usually equal to 0.25 for sharp edges and 
rectangular cavities (see Tam & Block (1978) for a review). The 
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ratio of the convection velocity Uc to the freestream velocity Uo 
is almost universal and equal to 0.57.  

Nevertheless, it was shown by Sarohia (1977) that the 
incoming boundary layer thickness was an important parameter 
of such a problem, even if his study is not completely 
transposable to ours. His experiments showed that a small 
boundary layer thickness (usually reduced by the neck length) is 
able to induce the shear layer oscillations on the first mode (n=1 
in Rossiter�s formula), although a larger thickness is exciting 
the higher orders. Anyhow in the present study, the model of the 
cavity and its associated test section are designed in order to 
reach a frequency range of resonance corresponding to the 
second order mode of Rossiter (n=2). 
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Figure 5. Boundary layer profiles for the shallow 

cavity. : Smooth wall, : Roughness 1, 
 : Roughness 2 

 
 δ 1 (mm) δ2 (mm) δ 1/L 
Smooth wall 1.42 1.26 0.0284 
Roughness 1 1.65 1.26 0.0330 
Roughness 2 2.94 2.25 0.0588 

Table 3. Integral thicknesses of the boundary layers 
for the shallow cavity 

 
The measured boundary layer profiles 5 mm upstream the 

shallow cavity are given in Figure 5. The vertical origin is the 
wall of the tunnel. The smooth wall case leads to a boundary 
layer at equilibrium. Some roughnesses, consisting in glued 
sand paper sheets, are used in order to increase the thickness. 
These two cases create thicker boundary layers which are not at 
equilibrium, as can be seen on the mean velocity profiles. The 
integral thicknesses for the three cases are given in Table 3. The 
second roughness leads to a thickness doubled compared to the 
smooth wall. 
 

Mach number effect 
Figure 6 presents the acoustic pressure level inside the 

cavity and the corresponding frequency for the main observed 
peak, versus the Mach number. The two extreme cases of neck 
thickness are shown, the smallest one leading to a very high 
pressure level.  

In order to compare our results with Rossiter�s formula, we 
give in Figure 7 the dimensionless frequency corresponding to 
the results in Figure 6. The lock-in of the shear layer oscillation 
with the acoustic mode of the test section is clearly visible. The 
dot-dashed line corresponds to the original Rossiter�s formula 
and the dashed line to the acoustic vertical mode. 
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Figure 6. Cavity pressure level and corresponding 

frequency versus M for the shallow cavity 
 : Hg=2mm, : Hg=8mm 

 
These  results in frequency are relatively in good agreement 

with Rossiter�s formula. Measurements give larger Strouhal 
numbers which are in agreement with those of Tam & Block 
(1978) for the low Mach number range of the study. At lock-in, 
the velocity profiles in the shear layer are given in Figure 8 and 
9 for the longitudinal positions L/2 and 0.88 L respectively. The 
profile of the velocity Power Spectral Density (PSD) at the 
resonance frequency is also given. The velocity oscillations are 
very large even at a relatively high level above the neck, and its 
spatial amplitude is growing along the longitudinal axis. 
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Figure 7. Dimensionless frequencies versus M for 
the shallow cavity. : Hg=2mm, : Hg=8mm 
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Figure 8. Shear layer velocity profiles for the shallow 
cavity with Hg=8mm at M=0.187 and mid-length of the 

neck 
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Figure 9. Shear layer velocity profiles for the shallow 
cavity with Hg=8mm at M=0.187 and streamwise 

position 0.88 L from upstream lip 
 

Influence of the boundary layer thickness 
The influence of the boundary layer thickness is reported in 

Figure 10 where we have plotted the main peak (pressure level 
and corresponding frequency) versus the displacement 
thickness. The thicker boundary layers lead to a large decrease 
of the sound level. 

However, from a physical point of view, this parameter 
should be associated to the total thickness of the shear layer 
which is located at the upstream lip of the cavity: the neck 
thickness Hg is an important part of it. Its influence is given in 
Figure 11 for the minimum value of 2 mm up to 8 mm which is 
the standard configuration. 

Nevertheless, the effective total thickness of the shear layer 
is closer to an equivalent Hg given by Hgeq=Hg+δ1: all the 
previous results are then collected together in Figure 12. The 
isolated star symbol corresponds to a test with Hg=2 mm and 
roughness 1. There is a critical value around Hgeq = 9.5 mm 
which leads to a strong decrease, close to cancellation, of the 
resonance peak. This critical value was also detected by Sarohia 
(1977) who noticed that no cavity oscillations occur when 
L/Hgeq is below 5.25 (one has L=50 mm here), even for a cavity 
configuration which differs from ours. 

 

1 1.5 2 2.5 3 3.5
Displacement thickness (mm)

1200

1205

1210

S
ou

nd
 fr

eq
. (

H
z)

 0

 10

 20

 30

 40

 50

 60

P
re

s.
 le

v.
 (

P
a/

sq
rt

(H
z)

)

 
Figure 10. Maximum pressure levels and 

corresponding frequencies versus δδδδ1 for the shallow 
cavity with Hg=8mm 

 
A second critical value is around Hgeq = 5 mm (L/Hgeq = 10) 

below (resp. above) which the sound level is significantly 
increased, whereas it is almost constant for Hgeq between 5 to 
9.5 mm. Although it is less obvious with the additional test (star 
symbol), its level is however increased also. This second critical 
value requires further investigations to better understand the 
reason of this jump. 

It may also be noticed that there exists an increase of the 
frequency oscillation with this parameter, the slope of which 
(using a linear least square approximation) is 5 Hz/mm.  This 
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leads to an increase of the Strouhal number according to 
formula 

o
geq StL

H.St += 200 ,   (8) 

where Sto = 0.93 corresponds to the dimensionless frequency 
obtained for a zero thickness. 
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Figure 11. Maximum pressure levels and 

corresponding frequencies versus Hg for the shallow 
cavity with the small boundary layer thickness 
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Figure 12. Maximum pressure levels and 

corresponding frequencies versus Hg+δδδδ1 for the 
shallow cavity 

Sound attenuation 
We have seen above that the increase of the boundary layer 

thickness is a very good way for sound attenuation. In a piping 
system a great disadvantage of this is the increase of the 
pressure loss. Addition of a deflector just upstream would have 
 

the same effect. Other solutions have therefore been explored: 
the problem is that the modifications that can be performed are 
generally limited by the kinematics of the valve for example. 

Since the shear layer oscillation is due to a series of vortex 
rolls which are quasi two-dimensional at resonance, a spanwise 
decrease of the vortex correlation should reduce the resonant 
excitation. Figure 13 presents a design of crenels made on the 
upstream lip. Their width is 5 mm, with a distance of 20 mm 
between their axis; the resulting configuration is called �crenels 
¼� (5 mm over 20 mm). Another configuration has been 
implemented, called �crenels ½� which have crenels 10 mm 
wide. The third tested solution was the �right crenels ¼� which 
have the same size of the �crenels ¼� but with a sectional shape 
forming a backward facing step instead of a 45° bevel edge. 

The results of the tests are given in Table 4 where only the 
maximum pressure level is given. The �crenels ¼� have almost 
the same efficiency as the �crenels ½�. It is interesting to see 
that the shape of the crenels is important, since the �right 
crenels ¼� produce a significant attenuation, the pressure being 
divided by a factor larger than 3. 

 
Configuration Pressure level (Pa / Hz ) 
Standard 53.3 
Crenels ¼  23.0 
Crenels ½  23.5 
Right crenels ¼  15.9 

Table 4. Maximum pressure levels with sound 
attenuation systems, for the shallow cavity with 

Hg=8mm and small boundary layer 

Numerical simulations 
Numerical simulations of the shallow cavity have been 

carried out, using Exa�s Power Flow commercial code. The 
simulated configuration corresponds to the 8 mm neck thickness 
with the small boundary layer. 

Power Flow 
Power Flow uses a lattice gas method, Chen et al. (1997), 

which is a particle-based method. The basic theoretical 
difference between this method and traditional Computational 
Fluid Dynamics is that it simulates a discrete fluid, while other 
methods solve discretized partial differential equations, 
typically the Navier-Stokes equations. It tracks the motion of 
macromolecules through space and time to physically simulate 
the flow. It inherently conserves mass, momentum and energy. 
The particles exist at discrete locations in space, moving in 
discrete directions with discrete speeds at discrete intervals of 
time. The particles reside on a cubic lattice with symmetry 
properties necessary for artifact-free simulation. They move 
from the center of one element to the center of another at each 
time step. Every time step consists of two separate phases: 
move and collide. 
7 Copyright © 2002 by ASME 
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Figure 13. Upstream lip modification for sound 

attenuation, �crenels ¼� 

Characteristics of the simulation 
In this study, we used the Very Large Eddy Simulation 

prediction of turbulence proposed by Power Flow, which uses a 
k-ε RNG model and a wall law. The velocity at the inlet of the 
duct is imposed in order to adjust the desired Mach number. 

A 0.012 m diameter microphone probe is placed at the 
centre of the cavity bottom. When it is activated, it records the 
pressure for each time step (sampling frequency of about 
8.58.105 Hz). For each case, the pressure is recorded after the 
time necessary for the initialization of the mechanisms. The 
records last about 0.6 second, which corresponds to several 
hundreds periods of the interesting pressure fluctuations. 

The simulations are performed in 2D. The geometry of the 
cavity is exactly the same as in the experiments. The upstream 
length has been adjusted in order to obtain the same boundary 
layer parameters. These values are given in Table 5 and 
compared to the experimental ones. 

Results 
The evolution of vorticity is presented in Figure 14 for  a 

Mach number 0.17 (at lock-in). The time interval between each 
image is set to give 4 images per cycle with a frequency of 1200 
Hz. It is clear that there is a vortex which periodically impacts 
the downstream edge of the cavity. 

The dimensionless frequencies of the test section acoustic 
mode, the Rossiter�s formula and the numerical results, as well 
 

as the pressure level are presented in Figure 15 versus Mach 
number. The observations are close to the experimental ones: 

• the shear layer oscillation mode is generated, it 
corresponds to Rossiter�s mode 2, 

• for Mach numbers between 0.17 and 0.21, this mode is 
locked-in with the acoustic mode of the duct, giving 
rise to a distinct increase in the pressure level. 

• The pressure level associated to mode 2 increases then 
decreases with Mach number. The maximum pressure 
level corresponds to Mach number around 0.195.  

• The acoustic mode of the duct is detected, whatever 
the Mach number. 

 
Figure 16 presents a comparison of the experimental and 

numerical signals, for a Mach number corresponding to the 
maximum pressure level during lock-in (i.e. 0.183 
experimentally and 0.195 numerically). The two lock-in 
frequencies are very close. The numerical signal is sharper than 
the experimental one and the pressure level seems over-
estimated. This might be due to the ideal configuration of the 
numerical simulations: pure resonance,  no wall absorption and 
2D simulations. 

 
 δδδδ1 (mm) δδδδ2 (mm) δδδδ1/δδδδ2 
numerical 1.45 1.19 1.22 
experimental 1.42 1.26 1.13 

Table 5. Boundary layer parameters 
 

  

  
Figure 14. Vorticity field evolution in time, M = 0.17 

Conclusions on numerical simulations 
The numerical study of the shallow cavity using Power 

Flow showed that this code can reproduce correctly the 
evolution of the shear layer fluid instability at the neck of the 
cavity with Mach number. The lock-in of this instability with an 
acoustic mode of the duct was also reproduced. 

Rossiter�s mode 2, the test section acoustic mode and their 
lock-in for Mach numbers between 0.17 and 0.21 are well 
detected. The evolution of the acoustic pressure levels of the 
peaks is roughly in accordance with the experimental results. 

Only the values of pressure levels are overestimated 
compared to the experimental values, due to the ideal 
configuration in which the simulation occurs. 
8 Copyright © 2002 by ASME 
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Figure 15. Dimensionless frequency and pressure 
level versus Mach number. : acoustic mode, 
 : Rossiter�s formula, : numerical results 
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Figure 16. Comparison of experimental and numerical 

signals 

CONCLUSION 
Experiments have been presented concerning the 

interaction of the shear layer created by confined flows over 
cavities with a pipe acoustic mode. The application lies in the 
sound generated in piping systems due to singularities such as 
valves. 
 

The cases of a deep and a shallow cavity have been tested, 
the first one being close to a so-called Helmholtz resonator. It 
was shown by measurements that the added damping due to the 
confinement is smaller when the resonance occurs with the duct, 
than when the resonance occurs classically with the Helmholtz 
resonator. 

The shallow cavity was studied in a parametric way versus 
the boundary layer and neck thicknesses. Critical values have 
been detected but further investigations have to be performed 
and analyzed. A few passive sound attenuation techniques have 
also been explored. Moreover, numerical simulations using a 
lattice gas method have presented results qualitatively in 
accordance with the experiments. 
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