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ABSTRACT: Cables of cable-stayed bridges can experience rain-wind induced vibrations. This instability
involves lower frequencies and higher amplitudes than classical vortex induced vibrations. Furthermore, this is
a wind velocity restricted phenomenon unlike galloping. When flowing along the cables, the water gathers near
the separation points to form one or two rivulets. Former studies which have described the coupling between
the rivulets motion and the cable motion, assume the existence of the rivulet. In this paper, we address the
conditions for the rivulets to form. A two-dimensional model is developed within the lubrication theory. It
describes the evolution of a thin film submitted to gravity, surface tension, wind and motion of the cylinder.
Numerical simulations show the appearance of the rivulets that are reputedly responsible for the instability.

1 INTRODUCTION

On cable-stayed bridges, inclined cables connect the
pylons to the deck, Figure 1. The cables can experi-
ence vibrations which are due both to the presence of
rain and wind (rain-wind induced vibrations, RWIV).
First reported by Hikami & Shiraishi (1988), this par-
ticular type of instability happens by moderate rain
and rather low wind speed, typically 10 m/s and
vibrations stop when the rain stops. Unlike the in-
stabilities due to the sole wind, RWIV are not fully
understood. Observations in full-scale as well as ex-
periments conducted in wind tunnels show that only
cables declining in the direction of the wind are con-
cerned by RWIV. The vibrations are generally cross-
wind, Hikami & Shiraishi (1988). The involved am-
plitudes of vibrations are higher and the frequencies
lower than those of vortex-induced vibrations, Hikami
& Shiraishi (1988). This is furthermore a velocity re-
stricted phenomenon, unlike the galloping of Den
Hartog (1985), for which there is no maximum wind
speed.
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Figure 1 Cable-stayed bridge. Only cables declining in the
wind direction undergo RWIV.

In unstable cases, the water flows around the cable
and one to two rivulets form near the separation points

of the air-flow around the dry cylinder, Bosdogianni
& Olivari (1996). The two rivulets oscillate circum-
ferentially, at the same frequency as the cable motion,
Hikami & Shiraishi (1988). Some sine waves travel
along the upper rivulet whereas the bottom rivulet
stays rectilinear, Xu et al. (2002) Authors agree that
the presence of the upper rivulet is required for the
instability to take place, Matsumoto et al. (1995) and
Bosdogianni & Olivari (1996). It is unclear however
whether the motion of the upper rivulet is necessary or
not. Experiments by Verwiebe & Ruscheweyh (1998)
and Flamand (1995) tend to show that an artificial
rivulet fixed on the cylinder, exposed to a RWIV-like
wind does not provoke instability. On the contrary,
Bosdogianni & Olivari (1996) and Matsumoto et al.
(1995) observe vibrations of the cable in similar ex-
periments.

Former models such as the one of Yamaguchi
(1990), assume the existence of the upper rivulet. In
this article, the conditions for the appearance of the
rivulets are investigated. A new model is presented in
section 2 that describes the evolution of a thin water
film around a moving cable subject to wind. Numeri-
cal results from this model are discussed in section 3.

2 MODEL

This section presents a new two-dimensional model
based on lubrication theory that describes the be-
haviour of a thin water film in cylindrical configu-
ration, evolving under the effect of gravity, surface
tension, wind and motion of the support.

1 Ph.D. Cécile Lemaitre, Dr. Pascal Hémon, Ass. Prof. Emmanuel de Langre,
Department of mechanics: LadHyX, CNRS-Ecole Polytechnique, 91128 Palaiseau, France,
e-mail cecile.lemaitre@ladhyx.polytechnique.fr



g
gravity

ey

ex

t
n

vg∞, Cp, Cf

ÿ
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Figure 2 Water film around a cable subject to gravity, surface tension and swept by wind.

Reisfeld & Bankoff (1992) derived the equations
for a thin film surrounding a cylinder, subject to grav-
ity and surface tension. Following a similar approach
we modelled the actions of wind and cable motion on
the film, by considering them as an external forcing.

2.1 Geometry and notations

A thin film of thickness h(θ) is considered, surround-
ing a horizontal cylinder of radius R, Figure 2. The
film is assumed to be continuous: there is no dewet-
ting and the quantity of matter is constant (no drop
break off). It has a characteristic thickness ho. It is
subject to gravity

g = −gey (1)

and to a homogeneous surface tension, γ independent
of θ. If an inclined cylinder were considered instead
of a horizontal one, the effective gravity would be
lower. A wind blows from the left with a horizontal
upstream velocity

vg∞ = vg∞ex (2)

and produces pressure and friction coefficients Cp(θ)
and Cf (θ) at each point on the film surface. As the
rain-wind induced vibrations are mostly transverse to
the wind direction, the cable is chosen to undergo a
vertical motion. Its displacement, y = yey, has a
characteristic amplitude yo and its evolution in time,
with a characteristic time Ty, is described by a func-
tional f :

y(t) = yof(t/Ty) (3)

The acceleration of the cable produces an added grav-
ity that depends on time:

ga = −ÿey = −
yo

T 2
y

f ′′

(

t

Ty

)

ey (4)

2.2 Navier-Stokes and boundary conditions

The Navier-Stokes equations are written in the water
film:







ρ
Dv

Dt
= ρ (g + ga) −∇p + µ∆v

∇.v = 0
(5)

where v is the velocity field in the water film, ρ is the
water density, p is the pressure in the film and µ is
the dynamic viscosity of water. These equations are
written in cylindrical coordinates on the local frame
(er, eθ). In this frame, the position of a water particle
is expressed r = rer (R ≤ r ≤ R+h) and its velocity
decomposes into v = uer + veθ. At each point of the
water/air interface, the normal and tangential vectors
read:
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(6)

The subscript θ indicates differentiation in space; the
subscripts t and T that will come up later on indicate
differentiation in time.

The associated boundary conditions are:
(i) the water particles do not slip on the cable:

u = v = 0 (7)

(ii) the water/air interface is a material surface that no
water particle can cross. The normal velocity of a wa-
ter particle on the interface is thus equal to the normal
velocity of the interface, which is translated into:

u = ht +
v

r
hθ (8)



where the subscripts t (iii) the jump in the normal
shear stress is balanced by the surface tension:

{

n.(σg − σ).n = Kγ ,

t.(σg − σ).n = 0
(9)

where σg and σ are the Cauchy stress tensors of the
gas and the water respectively, K is the curvature of
the water/air interface, γ is the surface tension and n

is the normal vector at the interface. The stress tensor
in water is expressed by

σ = −pI + 2µD , (10)

where I is the identity tensor and the deformation rate
tensor D is defined by:

D =
1

2

[

∇v + (∇v)T
]

(11)

The curvature K(θ) of the free surface of the film is:

K(θ) = ∇.n

=
(R + h)2 + 2h2

θ − (R + h)h2θ

[(R + h)2 + h2

θ]
3/2

(12)

The action of the wind is introduced through the
expression of the air stress tensor:

σg = −pg(θ)I + τg , (13)

where τg is the viscous stress tensor of air.

2.3 Lubrication and dimensionless equations

The assumptions of lubrication are now made:
a) The Reynolds number based on the film thickness
close to one: Reh = hov/ν ≈ 1.
b) The film is thin compared to the cable radius:
ho � R.
c) The film thickness h evolves ’slowly’ with θ:
∂θh � R.
As a consequence, the following dimensionless vari-
ables are defined:

U =
R

ν
u V =

ho

ν
v T =

ν

Rho

t

P =
h3

o

ρν2R
p ξ =

r − R

ho

H =
h

ho

(14)

They are based on viscosity scales. A dimensionless
gas pressure is defined with the pressure coefficient
divided by its maximum value:

Cp =
pg

1

2
ρgv2

g∞

; Cp =
Cp

max(Cp)
(15)

In the same way, the reduced gas friction is formed
with the normalised friction coefficient Cf :

Cf =
t.τg.n
1

2
ρgv2

g∞

; Cf =
Cf

max(Cf )
(16)

These variables are assumed to be of order magnitude
one.

When putting the Navier-Stokes and the bound-
ary condition equations in a non dimensional form,
the small parameter ε = ho/R and the following di-
mensionless numbers appear:

G =
gh3

o

3ν2
S =

γh4

o

3ρν2R3

A =
yoh

3

o

3ν2T 2
y
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νTy
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ρgv
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ρgv

2

g∞h2
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4ρν2

(17)

The numbers G, S, A, P and F compare the actions of
gravity, surface tension, cable acceleration, air pres-
sure and air friction respectively, to the action of wa-
ter viscosity. The reduced pulsation Ωy compares the
cable motion characteristic time to the viscous time.

Only the terms of leading order in ε are kept to
yield the linearised Navier-Stokes equations:



























Pξ = 0

− 3

(

G + Af ′′

(

Ωy

2π
T

))

cos θ

− Pθ + Vξξ = 0

Uξ + Vθ = 0

(18)

and the linearised boundary condition equations:


























U |ξ=0 = V |ξ=0 = 0

U |ξ=H = HT + V |ξ=HHθ

−3P Cp + P |ξ=H = 3S(
1

ε
− H − Hθθ)

2F Cf − (Vξ) |ξ=H = 0

(19)

Equation (18)-3 is integrated between ξ = 0 and
ξ = H; the condition U |ξ=0 = 0 is then used:

U = −

∫ H

ξ=0

Vθdξ (20)

This is injected into equation (19)-2 and condensed
into:

HT +

[
∫ H

ξ=0

V dξ

]

θ

= 0 (21)



The pressure in the water film P is independent of
ξ (equation (18)-1). The expression of P given by
equation (19)-3 is thus valid in the whole film and is
injected into equation (18)-2:

Vξξ = 3 (G + Af ′′) cos θ

+

[

3S(
1

ε
− H − H2θ) + 3PCp

]

θ

(22)

This last equation is integrated twice with respect to ξ
and equations (19)-1 and (19)-4 are used to get:

V =
3

2

[

(G + Af ′′) cos θ − S(Hθ + H3θ)

+ P(Cp)θ

] (

ξ2 − 2Hξ
)

+ 2FCfξ
(23)

This expression of the azimuthal velocity is replaced
in equation (21) and we finally obtain:

HT − [G + Af ′′ (ΩyT/2π)]
{

H3 cos θ
}

θ

+ S
{

(Hθ + H3θ)H
3
}

θ

− P
{

(Cp)θH
3
}

θ
+ F

{

CfH
2
}

θ
= 0

(24)

This is an equation of conservation of the thick-
ness H , with a flux g:

HT + gθ = 0

g =
[

− (G + Af ′′) cos θ + S(Hθ + H3θ)

− P(Cp)θ

]

H3 + FCfH
2

(25)

For A = 0, P = 0 and F = 0 equation (24) is the
same as Reisfeld & Bankoff (1992), equation (4.16).
The shape of the air friction term is consistent with
equation (2.31) of Oron et al. (1997) for a thin film
on a plane.

3 RESULTS

In this section, equation (24) is solved in the parame-
ter range of the rain-wind induced vibrations. It is as-
sumed here that the wind load on the film is the same
as the wind load around the dry cable. The values of
the wind load around a dry cable are supposed to ap-
ply along the film local normal and tangent vectors of
the water film. The Reynolds number based on the
cable diameter in RWIV conditions is:

Reg =
2Rvg∞

νg

≈ 105 (26)

where νg is the air viscosity, the typical cable ra-
dius being R = 0.1 m and the typical wind speed
vg∞ = 10 m/s. Achenbach (1968) measured the
pressure and friction distribution produced by an air

flow on a smooth cylinder oriented in the cross-flow
direction. His values at the same Reynolds number
are used for the computations, Figure 3.
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Figure 3 Distribution of the wind load around a smooth dry
cylinder at Reg = 105, measured by Achenbach (1968).(a)
Pressure coefficient, (b) Friction coefficient.

The control parameters of equation (24) have been
computed for experiments from the literature, Table 1.

Table 1 Parameter values for literature experiments. [1]-
1: Hikami & Shiraishi (1988), full-scale observation; [1]-
2: Hikami & Shiraishi (1988), wind tunnel experiment;
[2]: Flamand (1995); [3]: Matsumoto et al. (1995).

Authors [1]-1 [1]-2 [2] [3]
ε 1.4 10−2 1.4 10−2 5.6 10−3 1.2 10−2

G 3.3 103 3.3 103 3.0 102 3.3 103

S 7.1 10−2 7.1 10−2 1.9 10−3 4.0 10−2

A 2.1 102 3.7 101 5.5 1.8 101

Ωy 8.8 102 4.4 102 2.3 102 3.0 102

P 3.5 102 3.5 102 2.8 101 2.4 102

F 6.4 102 6.4 102 1.3 102 5.3 102

It is remarkable that the pressure number P and
the friction number F are the same order of magni-
tude. The friction of air shall have a major effect on
the dynamics of the film.



Equation (24) is a partial differential equation of
the fourth order that is non linear with non constant
coefficients. It is thus not solvable analytically and
numerical computations are needed. The computa-
tions are carried out with a pseudo-spectral method:
a Fourier spectral method in space and an Adams-
Bashforth scheme of the fourth order in time. The fig-
ure 4 shows a resolution of equation (24) with a static
cable, A = 0 and the other parameters computed from
Flamand (1995). At the initial time, the thickness of
the film is constant in space, H(T = 0) = 1. The res-
olution in space is of Nx = 128 points and the time
step is dT = 10−6.

Two water bulges form at the top and at the bottom
of the cylinder, bidimensional traces of the rivulets.
They are located in the neighbourhood of the sep-
aration points that the air flow would present if it
were flowing around the dry cylinder. Their size in-
creases until the lubrication assumptions get violated.
Under the effect of gravity the bottom protuberance
grows faster than the upper one. As observed by Re-
isfeld & Bankoff (1992), a cusp is bound to appear at
θ = 3π/2 under gravity action, but its formation is
slower than the dynamics of formation of the rivulets.
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Figure 4 Numerical solution of equation (24) starting from
a homogeneous film, submitted to gravity, surface tension
and wind. The cable radius is R = 0.08 m. The film thick-
ness is represented one hundred times as large. (−−) Film
at t = 0 s ; (−) Film at t = 3.6× 10−3 s ; (o) Separation
points of the air flow around the dry cable

In order to study the relative effect of friction com-
pared to pressure, the two following artificial cases
are considered:
* A film of initial constant thickness is submitted
to surface tension (S = 1.9 × 10−3) and pressure
(P = 2.8 × 101), the other terms of equation (24) be-
ing set to zero (G = 0, A = 0 and F = 0).
* Another computation is done where only the terms
due to surface tension (S = 1.9 × 10−3) and friction
(F = 1.3 × 102) are retained (G = 0, A = 0 and

P = 0).
The same numerical methods as above are imple-
mented (Nx = 128, dT = 10−6) to give the results
which are presented on Figure 5.
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Figure 5 Comparison of pressure and friction actions. The
cable radius is R = 0.08 m. The films are represented one
hundred times as large at t = 6.3 × 10−3 s . (−) Film
evolving under pressure and surface tension only; (−−)

Film evolving under friction and surface tension only; (o)

Separation points of the air flow around the dry cable

Both the computations show the appearance and
growth of two rivulets in the region of the separation
points. The rivulets generated by friction grow faster
and larger than those generated by pressure. More-
over, the rivulets due to pressure are located slightly
upstream the friction generated rivulets. The action of
friction appears to dominate the rivulet generation.

4 CONCLUSION

We have presented here a model that describes for
the first time the evolution of a water film around a
cylinder under the action of wind and cylinder mo-
tion. This model recovers well the appearance of the
two water rivulets that are said to be responsible for
rain-wind induced vibration of cables of cable-stayed
bridges. In accordance with experimental observa-
tions, the rivulets form in the region of the separation
points of the air flow around the dry cable under the
combined effect of air pressure and friction. The fric-
tion is found to play a major role in the generation of
the rivulets. The existence of solutions at long times
to the problem is currently investigated.
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