
resented.
ndow or
stability
ient
eck. These
he cavity
ar stability
fication of
European Journal of Mechanics B/Fluids 23 (2004) 617–632

On the pressure oscillations inside a deep cavity excited
by a grazing airflow

P. Hémona, F. Santib, X. Amandolèsec

a Hydrodynamics laboratory, LadHyX, École polytechnique – CNRS, 91128 Palaiseau cedex, France
b CNAM, Department of Mathematics, 292, rueSaint-Martin, 75141 Paris cedex 03, France

c Institut aérotechnique/CNAM, 15, rue Marat, 78210 Saint-Cyr l’École, France

Received 4 March 2003; accepted 10 September 2003

Available online 3 December 2003

Abstract

An experimental and theoretical study of the pressure oscillations generated by the flow over a deep cavity is p
Such a configuration, which is akin to a Helmholtz resonator, arises in many applications, for instance when a wi
the sunroof of an automobile remains open. The linear resonator model is fully validated by experiments. The linear
characteristics of the free shear layer in the neck of the cavity are retrieved from neck wall pressure measurements. An effic
sound reduction scheme is proposed, which is based on the use of piezo-electric actuators placed upstream of the n
elements act as small discrete flaps which force the shear layer in the neck to oscillate at a frequency distinct from t
resonance frequency. A quasi complete attenuation of the peak pressure may then be achieved. The classical line
analysis of the free shear layer is successful in accounting for the experimental observations and it leads to the identi
the physical mechanism responsible for the efficiency of thesound reduction scheme. Moreover linear stability theory yields
limitations to the efficiency of the technique in the form of an energy criterion involving the Strouhal number.
 2003 Elsevier SAS. All rights reserved.
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List of notations

Ac Neck section (m2)
c Sound velocity (m/s)
fc Frequency of the shear layer instability (Hz)
fv Resonance frequency of the cavity (Hz)
H Effective thickness of the neck (m),H = Hc + 2H ′
Hc Thickness of the neck (m)
Hv Height of the cavity (m)
H ′ Added thickness of the neck (m)
k Wave number (complex)
L, Lv Length of the neck, of the cavity (m)
L0 Reference thickness of the shear layer (m)
M Mach number,M = U1/c
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pc, pv, pe Acoustic pressures in the neck, in the cavity and outside the cavity
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p1, p2, p3 Wall pressures around the neck: backward face, forward face and upstream
St Strouhal number,St= fL0/U1
U Velocity (m/s)
Uc Convection velocity (m/s)
U1 Upper free-stream velocity of the shear layer (m/s)
U2 Lower free-stream velocity of the shear layer (m/s)
V Volume of the cavity (m3)
Wc, Wv Spanwise width of the neck, of the cavity (m)
x, z Streamwise and wall normal coordinates
χ Relative energy of forcing
δ1, δ2 Boundary layer displacement and momentum thicknesses (m)
δω Shear layer vorticity thickness (m)δω = 2L0
γ Empirical parameter in Rossiter’s formula
ηr Reduced damping of the resonator
ρ Air density (kg/m3)
ω Angular frequency (rad/s)
ωc Angular frequency of the shear layer (rad/s),ωc = 2πfc

ωr Angular frequency of the resonator (rad/s),ωr = 2πfv

1. Introduction

1.1. Pressure oscillations in flow over cavities

Pressure oscillations generated by the flow over cavities have been widely studied in the past due to their im
in aeronautics. In the present paper, we study this problem in the context of car vehicles which exhibit low-fre
oscillations when windows or sunroofs are opened. The improvement of the airtightness, combined with the increasin
of the passenger compartment, lead to a higher sensitivity to self-sustained interior pressure oscillations. In most
phenomenon causes nausea and headache to the passengers and the driver. Automobile manufacturers must ther
technical solutions to prevent these oscillations.

In practice, the problem can be reduced to the deep cavity configuration sketched in Fig. 1. As shown by Kang et a
passenger compartment has however a more complex shape leading to a number of acoustic modes which may bec
in the response.

There exists a large number of publications concerning cavity pressure oscillations: many of them are mainly inte
the characteristic frequencies of oscillations, for instance [2–5]. The effect of the cavity geometry has also been studied:
depth of the cavity by East [6], the neck geometry by Panton [7], and recently the aspect ratio of a rectangular neck by
et al. [8]. A scaled model of a vehicle has been considered in [9]. It shows how difficult it is to suppress the oscillations witho
directly acting on the mean flow characteristics, for instance by using a spoiler.

Fig. 1. Cross-sectional view defining the geometrical parameters.
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pressure field inside the cavity by means of a loudspeaker and implementing an active control method [10]. One en
also actuators made of small pulsed jets near the trailing-edge. Another technique consists in mounting an active spo
trailing edge of the cavity neck, using loudspeakers [11] orusing piezo-electric materials as actuators [12,13].

The latter was employed also by Amandolèse et al. [14] and the present paper is an extension of these experimenta
order to more satisfactorily explain the physical behaviour of the system. The study is organized as follows. First, the
the oscillations is examined from a hydrodynamic stability point ofview. The experimental set up and conditions are describe
(Section 2) and measurements are made in order to validate a model of the Helmholtz resonator (Section 3). The excit
for this resonator, provided by the neck pressure, is approached within the context of linear stability theory (Section 4). A soun
reduction scheme is finally presented and discussed in Section 5.

1.2. From free shear layers to cavity necks

As will be seen hereafter, the mean flow field in the neck of the cavity, for instance in the Helmholtz resonator of
is similar to the mean velocity profile of a free shear layer. The unstable behaviour of this fundamental base flow constit
therefore an essential ingredient in understanding the origin of the pressure oscillations. The linear instability properties of fre
shear layers have been studied by Michalke, for the temporal [15] and spatial [16] cases by using the hyperbolic tangen
profile as an approximation.

A generalization was then proposed by Monkewitz and Huerre [17,18]. In the latter, it is demonstrated that the mixi
with a small velocity ratio, which is our case, is subjected to a convective instability, i.e. instability waves are spatially g
and advected along the streamwise direction. In the experimental study of Ho and Huang [19], it was demonstrated th
merging and the associated subharmonic instability constituted the main mechanism for the streamwise growth of mixing laye
This pairing phenomenon occurs at given locations in the streamwise direction and it coincides with an increase of
spreading rate.

However, in the case of a cavity, the streamwise direction is bounded by the edges of the neck, which leads to an additiona
perturbation generated by the periodic impingement of the vortices. This results in the generation of self-sustained s
layer oscillations, the frequency of which is related to the distance between the upstream and downstream edges
phenomenon has been found in a wide range of flow situations as reviewed by Rockwell [21]. It is roughly explain
feed-back mechanism in which the impingement of a vortex creates an acoustic pulse travelling upstream and thus
the shedding of a new synchronized vortex.

When a cavity is flush mounted, interactions between these oscillations and the acoustic modes of the cavity become poss
leading to high level tones, as described for instance by Meissner [22].

2. Experimental techniques and setup

The cavity models are mounted in a small acoustic wind tunnel of the Institut Aérotechniquewhich generates low nois
airflow. An original feature of the facility is that it allows measurements of the external acoustic pressurepe for a given range
of frequencies [80–660 Hz] even when the wind is blowing: this kind of measurement is performed by plane wave inten
which is limited to frequencies lower than 660 Hz due the size of the tunnel section. The pressurepv in the cavity is measure
by a microphone (type 4193 provided by B & K).

The wall pressures around the neck,p1, p2 andp3, as specified in Fig. 2, are measured with flush-mounted miniature p
resistive microphones (type 8507C-2 provided by Endevco) which yield the mean and the fluctuating pressures. The
region of these probes is a small circle 2 mm in diameter which is well suited to small models. The vertical location forp1 and
p2 is z = −1.15 mm and the streamwise location forp3 is x = −7 mm.

A data acquisition PAK system provided by Müller-BBM is used together with the measurement hardware base
VXI standard. The acquisition card is a 16 bits A/D converter equipped with direct signal processors for Fast Fourier Tr
measurements. The frequency resolution is chosen to be 0.18Hz. The acoustic pressure accuracy is typically 1dB, and 5%
the mean wall pressures. The reference free-stream velocity is measured with an accuracy of around 1%.

Pressure measurements are supplemented with hot wire velocity measurements. Boundary layer probes (type P15 prov
by Dantec) are used. The constant temperature anemometer is calibrated using a standard calibration nozzle and
fitting curve with a resulting accuracy less than 5% maximum forthe very low velocities. Acquisition and numerical process
were also made using the PAK system. The probes are mountedon a small vertical displacement trail which has a position
resolution of 0.1 mm.

Two models of the cavity have been flush-mounted in a rectangular closed test section 260 mm high and 300 mm w
first two transverse acoustic modes of the tunnel are then 670 and 580 Hz respectively. No interactions were expecte
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Fig. 2. Detail of the neck cross-sectional view. Fig. 3. Boundary layer profile 0.25L upstream of the neck.

Table 1
Cavity dimensions

Cavity A Cavity B

Lv (m) 0.100 0.0072
Hv (m) 0.195 0.195
Wv (m) 0.200 0.200
V (m3) 0.0039 0.0028

Table 2
Neck dimensions and characteristics

L (m) 0.020
Hc (m) 0.005
Wc (m) 0.200
H ′ (m) 0.0203
Ac (m2) 0.0040

with the cavity oscillations which have much lower frequencies. However, one can notice that a resonance may be
(cavity A peak 2 in Fig. 4). Two anechoic terminations are also mounted at the extremities of the test section. This ensure
there is no significant reflexive longitudinal wave that could propagate along the tunnel, which was verified by intensim

The dimensions of the cavity models are given in Tables 1 and 2. The neck is identical for both deep cavities with
Hv = 10L. All these dimensions have been chosen a priori in order to obtain a resonance frequency within the inte
measurement range of the setup for a wind velocity between 10 and 25 m/s.

The incoming boundary layer profile is measured in detail: the mean and the root-mean-square (RMS) velocities are gi
Fig. 3 in nondimensional variables scaled with respect to the upper velocity of the shear layerU1 and the reference heightL0.
This height is characteristic of the velocity vertical gradient inside the neck, which is essential in the excitation mechan
will be detailed later on. The mean velocity profile outside the viscous sub-layer can be fitted by a logarithmic profile
is a typical characteristic of a fully developed, equilibrium, turbulentboundary layer, with zero pressure gradient. The resulting
displacement and momentum thicknesses areδ1 = 4.5 mm andδ2 = 3.6 mm.

3. The Helmholtz resonator

The purpose of this section is to study a simplified system representation of the passenger compartment in a ca
Typically such a configuration may be considered as a Helmholtz resonator. We first describe the analytical mode
system, with the internal acoustic pressurepv as the main reference variable. In a second step, the experimental valida
the model is presented.

3.1. Basic equation

The Helmholtz resonator has been widely described from an acoustical point of view, notably by Bruneau [23]. Start
the geometrical parameters shown in Fig. 1, the displacementζ of the air layer in the neck section follows the basic equatio

ρAcH ζ̈ + ρcAc(2R0 + R1 + Γ Hc)ζ̇ + ρc2 A2
c

V
ζ = ξAcpc, (1)
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where the acoustic pressurepc in the neck (spatial mean) acts as the excitation force for the resonator,ξ is a dimensionless
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coefficient to be determined andR0, R1 andΓ are damping parameters detailed below. The assumption is made that the a
wavelength is larger than the geometrical dimensions of the system under consideration, so that the resonator is acousti
compact.

According to the linear acoustic approximation for a perfect gas, the displacement of the air layer in the neck is linke
acoustic pressure inside the cavity via the relation

ζ = V

Acρc2
pv. (2)

By substituting (2) into (1) we obtain the basic equation for the cavity pressure

V H

Acc2
p̈v + (2R0 + R1 + Γ Hc)

V

Acc
ṗv + pv = ξpc. (3)

In this expression,H is the effective thickness of the air which oscillates in the neck. It is composed of the thickness
neckHc increased by the thicknessesH ′ of the air layers which are entrained, as sketched in Fig. 2. There exists a num
expressions which give these added thicknesses, especially for circular holes. In the present case, the shape of the
rectangular, close to a slit and the usual expressionH ′ = 0.4

√
Ac is not applicable. For noncircular holes, Crighton et al. [

and references therein, provide the relation

H ′ = 0.85A0.75
c /

√
lc, (4)

wherelc is the perimeter of the aperture.
The termR0 represents radiation damping due to the power lost by the resonator to the surrounding medium an

cavity volume [23]. It is proportional to the square of the angular frequency and given by

R0 = ω2Ac

2πc2
. (5)

The termR1 in (3) represents the power lost due to the cavity wall impedance. The last damping termΓ is a dissipation facto
due to viscous effects along the walls of the neck. Using the analytical expression provided by Bruneau [23], it is fo
these two damping terms are numerically much smaller than the damping due to radiation through the neck and th
neglected. Finally the basic equation of the resonator becomes

p̈v + ω2Ac

π(Hc + 2H ′)c ṗv + c2Ac

V (Hc + 2H ′)pv = ξ
c2Ac

V (Hc + 2H ′)pc. (6)

Introducing the resonator eigenfrequency

ωr = c

√
Ac

V (Hc + 2H ′) , (7)

and the reduced damping

ηr = ω2ωr
V

2πc3
, (8)

Eq. (6) reduces to

p̈v + 2ηrωr ṗv + ω2
r pv = ξω2

r pc. (9)

The final form (9) is similar to a standard damped mechanical oscillator excited by the shear layer instability in the nec

3.2. Comparison with experiments

3.2.1. Frequency and damping without flow
The resonance frequencyωr and the reduced dampingηr are measured without wind by using an acoustic source delive

a (pseudo) white noise in the test section. The parameters of the resonator can be retrieved by measuring the transf
(modulus and phase angleϕ) between the external pressurepe and the cavity pressurepv . In fact the resonator equation (
should be rewritten in the form

p̈v + 2ηrωr ṗv + ω2
r (pv − pe) = 0, (10)



622 P. Hémon et al. / European Journal of Mechanics B/Fluids 23 (2004) 617–632

Table 3
Cavity A resonance frequencies and damping without flow

be

at a zero

ispersion
e

, showing
l

effect of
l
will be

ce peaks

cy of the
pressure

tic power
ne.
linked to a
. This
, thereby

er both.

eak. The
ity and the

s is
rom the

efined
ailed
Theoretical Experimental

f (Hz) 259± 1 268± 2
ηr (%) 6.8± 0.1 2.05± 0.15

where the external pressure is assumed to be of the form

pe = αpv + βṗv. (11)

Upon using Fourier transforms, it is easy to show from (11) that

α = cosϕ

|pv/pe| and β = −sinϕ

ω|pv/pe| . (12)

The first coefficientα should be regarded as an added stiffness, and the secondβ as an added damping. The latter can
rewritten as a reduced damping, leading to

ηexp= −sinϕ

2|pv/pe|
ωr

ω
, (13)

which can then be compared with the theoretical value (8). At resonance, the system has to be in equilibrium, i.e.
balance of energy over one period, which impliesηexp= ηr andω = ωr .

The comparison between experimental and theoretical results is given in Table 3 for cavity A, where the specified d
in the numerical values is due to temperature variations during the tests (between 20◦C and 25◦C). The phase angle at th
specified resonance frequency was measured to be exactly−90◦, as expected for such an oscillator.

The comparison between experiments and theory is very favourable for the resonance frequency, (3.4% difference)
the reliability of the neck thickness correction based on Eq. (4). The same behaviour was found for cavity B, with a theoretica
frequency of 305 Hz, against 302 Hz for the experiments.

However, the measured damping does not agree so well with the theoretical value. One explanation might be the
confinement due to the closed test section, which constitutes the main difference with the assumptions underlying the theoretica
expression (5) for which an infinite medium above the cavity neck is assumed. In the following, the experimental value
used.

3.2.2. Results in presence of grazing flow
The measured frequency and the cavity pressure levelpv are given in Fig. 4 versus the free-stream velocityU1. The linear

evolution of the frequency will be discussed later: the purpose of this section is to present the different kinds of resonan
which are observed.

For cavity A, the presence of two peaks has to be accounted for. The first one occurs around the eigenfrequen
Helmholtz resonator and it is due to resonance with the impinging shear layer. The resonance frequency, at which the
level is maximum, is modified by the flow and decreases from 268 Hz (see Table 3) to 262 Hz (see Fig. 4). The acous
generated, measured by intensimetry reaches 83 dB (referred to 10−12 W) at resonance, which is considerable for a single to

The second peak is however more complex and should be considered as an experimental artefact because it is
resonance of a first harmonic of the shear layer (2× 290 Hz) with an acoustic transverse mode of the test section (580 Hz)
interpretation was experimentally verified once by modifying temporarily the transverse dimension of the test section
modifying the related frequency. As expected, the measurements then showed the suppression of this peak.

The purpose of this paper is focused on the first of these two peaks, even if the experimental results will consid
Similar duct – cavity resonances have been experimentally studied by Amandolèse et al. [25].

For cavity B, the previous two resonances are not well separated in frequency and produce a single but wider p
pressure level is also much higher, which is attributed to a resonance involving three systems: the shear layer, the cav
test section.

3.2.3. Added damping and stiffness in the presence of flow
The transfer functionpv/pe was measured for both cavities and the two peaks which appeared in the response. Thi

significant only when the coherence function is close to unity and the reported results satisfy this condition. Far f
resonance points, the coherence vanishes and the measurements are not possible.

The added dampingη and stiffnessα are given in Fig. 5 versus the dimensionless frequency, i.e. the Strouhal number, d
by St= fL0/U1. The reference lengthL0 corresponding to the height of the shear layer in the cavity neck will be det
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Fig. 4. Cavity pressure levelpv and frequency versus free-stream
velocity U1: !, cavity A peak 1;", cavity A peak 2;1, cavity B.

Fig. 5. Reduced added dampingη and added stiffnessα versus
Strouhal numberSt: !, cavity A peak 1;", cavity A peak 2;
1, cavity B.

later. The documented damping is the additional term due to the flow, obtained by subtracting the resonator damping
total damping. The resonance points have been indicated with an arrow. One can observe a similar behaviour of the
peak 1 (cavity-shear layer resonance) with the cavity B peak. Particularly, the damping is at a minimum when resonance occ
which is not the case for the test section resonance.

The difference between the test section-shear layer resonance and the cavity-shear layer resonance is more obv
added stiffness, which is negligible for the cavity-shear layer resonance, whereas it reaches more than 12% for its test sec
shear layer counterpart.

3.2.4. Excitation term
The knowledge of the excitation term is not trivial, since it should be considered as the streamwise mean of the

pressure along the neck. The wall acoustic pressuresp1 andp2, defined in Fig. 2, represent the limiting range of this excitat
pressure. Their dimensionless levels are given in Fig. 6 together with the upstream wall pressurep3. The phase angle pertainin
to p1 is also given for later use. The displayed results extracted from the PSD are those for which the coherence
betweenp1 and p2 and betweenp1 andp3 is unity at the corresponding frequency. They are therefore within the loc
region.

It is interesting to observe that the pressure ratios are quasi-constant with Strouhal number in the explored ra
upstream wall pressurep3 shows a particularly strong coupling with the cavity pressurepv which is logical for the present ver
low Mach number flow, as already observed for instance by Graf and Durgin [26].

At resonance, the transfer function of the linear Helmholtz oscillator (9) leads to an estimation of the value ofξ as

ξ = 2ηexp

∣∣∣∣ pv

〈pc〉
∣∣∣∣. (14)

We will see in the next section that the neck pressure evolution along the stream takes an exponential form, which
spatial integration yields the spatial mean value〈pc〉. This leads to the resultξ = 0.0637.

The last unknown quantity in the model (9) of the Helmholtz resonator excited by a grazing flow is the pressurepc. This
pressure is generated by the grazing flow over the neck thereby creating a shear layer which oscillates via a self-
mechanism. The next section presents the application of the linear stability theory of mixing layers to the problem at h
analysis of the experimental results will further validate the concepts.
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Fig. 6. Neck wall pressures versus Strouhal numberSt: �, p1/pv ;
�, p2/pv ; �, p3/pv ; *, ϕ2/1; ×, ϕ3/1.

Fig. 7. Shear layer mean velocity profile atx = 0.5L: - - - ,
hyperbolic-tangent;!, measurements.

4. Shear layer instability

4.1. Theoretical background

This section is devoted to the application of hydrodynamic stability theory in order to describe the behaviour of the pressu
in the neck. It is mainly based upon the work of Michalke [15,16], which is generalized in [17] and reviewed more r
by Huerre and Rossi [27]. Our interest lies in disturbances travelling and growing in the mean flow direction along t
length. Thus one has to deal with the spatial problem which was studied by Michalke [16]. The results can be compa
the experiments, especially in order to validate the control concept proposed in Section 5. The present study is conce
cavity A peak 1, i.e. the resonance between the Helmholtz resonator and the shear layer.

4.1.1. Reference quantities and hyperbolic tangent velocity profile
The mean flow characteristics of the mixing layer inside the neck provide the velocity scale and the length scale w

essential in the determination of the instability characteristics. The mean velocity profile is measured at mid-length of
with a hot wire probe and it is given in Fig. 7. Due to the small dimension of the set-up, only one streamwise position c
explored without perturbing the flow by the intrusion ofthe probe. The mid-length position is considered as a good comprom
to represent the evolution of the shear layer velocity profile in the neck.

The mean velocity profile is fitted as in [17] by the hyperbolic-tangent profile,

U = U1
[
1+ R tanh(z/L0)

]
/2, (15)

where the velocity ratio is by definition

R = (U1 − U2)/(U1 + U2). (16)

Nonlinear best fitting of the experimental curve leadsR = 1.02. The velocity ratioR may effectively be taken to be unity as
Michalke [16]. This means that the lower shear layer velocityU2 is zero. It must be noted that the profile in the upper reg
does not fit well with the hyperbolic tangent velocity profile, which is due to the internal flow characteristics. The mixing
which is fundamental in the problem at hand, is however well represented.

At 0.5L of the neck, the best nonlinear fit of the experimental profile leadsL0 = 2.3 mm andU1 = 13.24 m/s. Note that
the chosen reference lengthL0 is just the vorticity thicknessδω = (U1 − U2)/(∂U/∂z)max (with U2 = 0 in the present case
divided by 2 [17]. By using the dimensionless quantitiesz̃ = z/L0 andŨ = U/U1, the velocity profile reduces to

Ũ(z̃) = [1+ tanhz̃]/2. (17)
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We give a brief summary of the analysis of Michalke [16]. We focus the study on the flow in the neighbourhood of the
neck which is supposed two-dimensional and parallel. The influence of the feed-back and the coupling with the cavity
is not taken into account in this analysis.

The velocity and pressure fields are decomposed into a mean and an unsteady part according to

U(x, z, t) = U(z)ex + u(x, z, t)ex + v(x, z, t )ez,

P (x, z, t) = P0 + p(x, z, t ).
(18)

For simplification, the symbol∼ denoting dimensionless quantities is omitted. The mean velocity is given by the hyperbo
tangent profile (17) andP0 is a constant pressure. Assuming small fluctuations, the problem is analysed within the lin
inviscid incompressible Euler equations:

(∂t + U∂x)u + v∂zU = −∂xp,

(∂t + U∂x)v = −∂zp,

∂xu + ∂zv = 0.

(19)

The incompressibility condition allows the introduction of the stream functionψ such that

u = ∂zψ, v = −∂xψ. (20)

We are interested in disturbances which propagate in the mean flow direction and take the form of spatio-temporal wa

ψ(x, z, t) = Re
[
φ(z)exp

{
i(kx − ωt)

}]
, (21)

where Re denotes the real part. Substituting the expressions (20) and (21) into the momentum equations of (19), one
standard Rayleigh equation(

U − ω

k

)
(φ′′ − k2φ) − U ′′φ = 0, (22)

where a prime denotes differentiation with respect toz. The boundary conditions are given by

lim
z→±∞φ(z) = 0. (23)

The pressure distribution takes the normal mode form

p(x, z, t) = Re
[ �
p(z)exp

{
i(kx − ωt)

}]
, with

�
p = U ′φ −

(
U − ω

k

)
φ′. (24)

It is shown in [18] that for the Rayleigh equation and the hyperbolic tangent velocity profile atR = 1, the possible instabilitie
are convective. We then consider only real angular frequenciesω and complex wave numbersk = kr + iki . The spatial growth
rate is−ki and the phase velocityω/kr . Michalke [16] has solved this problem numerically and the resulting phase ve
and spatial growth rate are given in Fig. 8. The most amplified perturbations are obtained for a Strouhal number of 0.0

4.2. Links with experiments

The previous theoretical results, phase velocity and spatial growth rate, are compared with the quantities whic
extracted from the pressure measurements along the neck.

4.2.1. Convection velocity
Convection velocity measurements in turbulent shear flows have been discussed by Wills [28]. Here, the convection

is obtained through the phase angleϕ between the coherent pressure signalsp1, p2 andp3 as

Uc = ωcL/ϕ, (25)

where the ratioϕ/ωc represents the duration taken by the perturbation to cross the neck length. It should be noticed
phase angle is always measuredmodulo2π which may lead to an ambiguity. In the present case, it is assumed that there
one fundamental period involved in the resonance problem and this ambiguity vanishes.

Using the phase angle between the trailing and the leading-edgeϕ2/1 given in Fig. 6, we obtain the results shown in Fig
where they are compared with the theoretical values. The agreement is seen to be very good.
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Fig. 8. Phase velocityUc/U1 and spatial growth rate−ki versus Strouhal numberSt: —, Michalke [16]; 	, experiments usingp1/p2;
�, experiments usingp3/p2.

4.2.2. Pressure in the neck
Starting from the wall pressure measurements, a rough estimation of the growth rate−ki can be obtained, by fitting th

experimental pressure levels with the exponential distribution (24) of the shear layer pressure. The measurements are
in presence of cavity resonance. This leads to the data shown in Fig. 8 where the comparison with the theoretical values is s
to be unsatisfactory.

The disagreement is partly due to the reference lengthL0 defined at 50% of the neck length which is, in reality, n
constant along the stream, leading to continuously changing value of the experimental Strouhal number. Ho and Huerre
among others, have shown that a turbulent mixing layer spreads linearly along the mean flow direction, with a sprea
dL0/dx = 0.09 for a velocity ratioR = 1. By applying this linear evolution and by taking the value at 75% of the neck le
as a more representative median value, the corrected reference length becomesL∗

0 = 1.25L0. This correction applies also o
the Strouhal number and we observe then that the experimental results get closer to the theoretical results. It should
that the convection velocity might be corrected in the same way, without changing the good agreement between th
experiments, since it is almost constant in this region.

Even with this correction, the agreement for the growth rate is not satisfactory. As pointed out by Michalke [16], no
effects which are intensified by the cavity are not accounted for in the theory. In the present case, it is not surprising
shear layer in the neck, forced by the cavity resonance, produces a flatter pressure distribution, such as the one cr
piston, rather than the exponential distribution of a free shear layer.

It is obvious that our shear layer is saturated by resonance with the cavity acoustics. In the cavity problem, the int
with the neck lips and the cavity volume are crucial and these phenomena are not taken into account in the fram
classical linear stability theory, as pointed out by Rockwell [21]. The limitations of linear stability theory can be illustra
observing the resonance frequency evolution with velocity.

4.3. Frequency evolution

The measured Strouhal number is plotted versus free-stream velocityU1 in Fig. 9. The cavity reduced frequency a
Rossiter’s Strouhal number are also displayed. Resonance occurs when these curves cross.

The Rossiter formula [2] is commonly used in order to obtain the frequencies generated in a shear layer develo
neck. It includes the feed-back mechanism but not the interaction with the cavity volume. A discussion of this formula h
given by Tam and Block [3] and more recently in [30,5]. In our case, it is given by

St
L

L0
= n − γ

M + U1/Uc
, (26)

wheren is an integer characterizing the order of the mode. In this paper we haven = 1 due to the physical dimensions of th
set-up. The empirical parameterγ , linked to the shape of the neck lips and the cavity depth, represents the phase lag
feed-back loop. In the usual scenario, the corresponding time delayγ /f is the sum of the times taken for the impingement o
vortex at the trailing edge, emission of an acoustic pulse, arrival of the pulse at the leading edge and finally shedding
vortex.

We already have measured the convection velocity in the previous section. The value ofγ can now be estimated as 0.0
which is approximately 3 times lower than the value 0.25 proposed by Rossiter. This difference is attributed to the v
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Mach number flow (M = 0.04 at resonance) which makes the compressibility effect negligible in the feed-back mech
There is also the interaction with the cavity neck, with a neck length much lower than the acoustic wavelength, which
probably be taken into account [30].

Coming back to Fig. 9, one can observe that the measurements do not follow those of any single oscillator, cavity
layer. When the free-stream velocityU1 is varied outside the range displayed in Fig. 9, the system is off resonance and d
poor signal-to-noise ratio the frequency of the shear layer and the frequency of the cavity mode can be observed sep
not correctly measured.

5. Sound reduction

This section is devoted to the description of a forcing technique of the shear layer, the purpose of which is the red
the pressure level in the cavity. In a first step we present the experiments and in a second step, a deeper analysis of th
made.

5.1. Experiments

5.1.1. Actuators
The noise reduction setup is mounted on the surface of the upstream lip. It consists of a series of small flaps w

constituted of piezo-electric material. Such a technique has already been used, for instance in [12,13]. Our setup differ
in the sense that our flaps are discontinuously distributed along the span of the neck, as shown in Figs. 10 and 11.

(a) (b)

Fig. 10. Actuators mounting: (a) top view; (b)cross-sectional view of upstream lip region.
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The actuators are piezo-electric bimorph elements (two layers of PZT with a middle layer metal sheet, prov
Piezomechanik) which are assembled in order to produce a bending motion as in a cantilever beam. Their active length
20 mm, and their width 6 mm, which leads to a bending eigenfrequency in the desired range, around 310 Hz. Eight
are mounted spanwise with a distance of 20 mm between their axis. This distance represents one length wave in the
it is expected that it is small enough to be efficient.

These actuators are all excited electrically by the same sine signal at a frequency of 310 Hz. This value is their firs
frequency, for which the obtained displacement is maximum. All the actuators are correlated, i.e. they are all in ph
arbitrary estimate of the displacement amplitude gave an order of magnitude of±0.25 mm at their extremity. It is expected th
the perturbation produced is almost two dimensional, as if the actuators were a unique large flap. There is also the pos
use only one actuator out of two, in order to have an estimate of the influence of spanwise separating distance.

This system does not contain any feedback loop and may not qualify as an active control scheme, as for instance in
have however to bring an external energy into the system. Our purpose here is to propose a simple forcing technique r
a comprehensive active control scheme.

5.1.2. Results
The results are presented in Table 4 for the two cavity A resonance peaks and the cavity B single resonance. Pres

are extracted from a power spectral density function in Pa/
√

Hz. Typical spectra are plotted in Fig. 12 for the cavity A fi
peak. The thin peak at 310 Hz in the spectrum with actuators on corresponds to a vibroacoustic perturbation of the mic
occurring also without wind and must be considered as an experimental artefact.

The sound reduction is observed to be very efficient for cavity A and the technique seems to work simply by detunin
resonance frequency. The case of cavity B reinforces this interpretation: the actuators are indeed forcing the shear
natural resonance with the cavity, leading as expected to a higher level of the cavity pressure. The residual noise for c

Table 4
Cavity pressure levels without and with the sound reduction scheme

Number of actuators Cavity A peak 1 Cavity A peak 2 Cavity B

0 24.5 28.3 49.4
4 8.4 – –
8 1.4 2.1 95.0
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Fig. 12. Power spectral density of cavity pressurepv at resonance: (a) without forcing; (b) with forcing at 310 Hz.

Fig. 13. Shear layer velocity profiles atx = 0.5L: !, free unforced case;�, forced case.

close to that of turbulence when all the actuators are on. When only one out of two actuators is on, the sound is redu
nonnegligible sound level remains.

The shear layer velocity profiles with forcing have been measured and plotted in Fig. 13 where they are compared
free unforced case. The mean velocity profile is not perturbed by the actuators and remains identical as in the natural c
Cattafesta et al. [12] also found the same behaviour. This implies that the cavity drag is not modified: a confirma
obtained by measuring the mean pressure inside the cavity which did not show any difference without and with the actu

The unsteady part of the shear layer is however considerably modified as seen in Fig. 13 for the root-mean-squa
level. The latter results from the integration of a large frequency band and is not representative of what really happe
frequency of interest. This has led us to extract the single resonance or forcing frequency component by means of
spectral density (PSD), that is 262 Hz for the free case and 310 Hz for the forced case. It is seen in Fig. 13 that the
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5.2. Discussion

In these experiments, the technology of the actuators allows us to explore the effect of a single control freque
limitations of the sound reduction scheme cannot be obtained experimentally but these can be estimated with th
hydrodynamic stability theory, as shown below.

The idea is to deal with a characteristic quantity, such as an energy ratio, corresponding to the spatial mean square pres
in the neck. The reference energy is chosen at natural resonance. Starting from the pressure distribution (24), we
energy ratio as

χ =
(∫ L

0 exp[−kicx]dx∫ L
0 exp[−kix]dx

)2

, (27)

where−kic is the spatial growth rate corresponding to resonance and−ki is the spatial growth rate associated with the forc
control frequency. Thus 1/χ represents the relative energy necessary to overcome the natural resonance of the system
words, it is a measure of the forcing energy required for the control to be effective at the particular forcing Strouhal
under consideration. The parameterχ is plotted in Fig. 14 for the natural resonance observed in the experiments (solid
and for the theoretical case (dashed curve) where the resonance would occur at the maximum growth rate in Fig. 8. Th
numberSt∗ is the one obtained with the corrected reference lengthL∗

0 as in Section 4.2.2. The double arrow indicates the forc
Strouhal number used experimentally for cavity A peak 1.

Consider first the experimental curveχ(St∗): when the forcing Strouhal number coincides with the resonance frequ
St∗ = 0.056, χ = 1 since−ki = −kic . As the forcing Strouhal number is increased above the resonance value,χ increases
above unity since−ki < −ki (see Fig. 8): controlling the resonance becomes “harder and harder” in the sense that
amount of forcing energy is required. As the forcing Strouhal number is decreased below the resonance value,χ decreases
below unity since−ki > −kic: controlling the flow is “cheaper”. This trend persists as long as the forcing Strouhal number is
larger than the Strouhal number of maximum growth rate. AsSt∗ is further decreased, the control energy starts to rise a
since−ki takes smaller and smaller values.

The same reasoning applies for the dashed curve:χ = 1 whenSt∗ coincides with the Strouhal number of maximum grow
rate which is assumed to be resonant. AsSt∗ departs from this resonance point, from above or from below,χ increases abov
unity and effective control requires a gradually larger forcing energy.

The velocity component displayed in Fig. 13, raised to the fourth power in order to represent the energy indica
the actuators provide an energy which is about 40 times larger than in natural resonance. This much more than re
comparison with the ratio 1.8 computed in Fig. 14.

We have already mentioned the limitations of linear stability theory concerning the lock-in mechanism. The
interpretation has to take this feature into account: there is a small region surrounding the resonance frequency
forcing will enhance the instability, a feature which is not accounted for in thedefinition ofχ . This is precisely what happen
with cavity B where only a feedback control would be efficient.

Fig. 14. Energy amplitude ratioχ from (27) for control versus corrected Strouhal numberSt∗: —, present case; - - - , at maximum growth ra
Double arrow indicates experimental forcing Strouhal number.
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A study of the pressure oscillations generated by a low-speed flow over a deep cavity has been presented. The th
paper is to provide a justification for a resonance reduction scheme based on detuning the frequency of the unstable impin
shear layer from the cavity mode frequency. The shear layer forcing technique is rather simple and does not modify
flow characteristics.

If mounted on a car sunroof, it should not increase the mean drag coefficient, as in the case of the usual spoile
spoilers can then be designed using the Strouhal number as the main similarity parameter. These spoilers could be
in the present study, but one can expect that a unique two dimensional spoiler would probably be easier to implemen
the very low frequencies involved in a passenger cabin, the piezo-electric actuators can be replaced by standard electr
which are more reliable. The improvement of the instrumentation in recent generations of car vehicles allows the e
signal to be set easily by the vehicle speed, using the linear law provided by the Strouhal similarity.

The method and its limitations have been discussed in light of classical linear stability analysis. More investigat
required in order to develop a nonlinear model which should be capable of reproducing the real behaviour of the
cavity-shear layer system.

Acknowledgements

The authors wish to express warm thanks to Prof. P. Huerre for the stimulating discussions and his contributio
improvement of the manuscript.

References

[1] S.W. Kang, J.M. Lee, S.H. Kim, Structural-acoustic coupling analysis of the vehicle passenger compartment with the roof, air-gap a
trim boundary, ASME J. Vib. Acoust. 122 (2000) 196–202.

[2] J.E. Rossiter, Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds, Aero. Research
Reports and Memoranda, Technical Report 3438, 1964.

[3] C.K.W. Tam, P.J.W. Block, On the tones and pressure oscillations induced by flow over rectangular cavities, J. Fluid Mech. 89 (19
373–399.

[4] M.J. Lucas, R. Noreen, L.D. Sutherland, J. Cole III, M. Junger,The acoustic characteristics of turbomachinery cavities, NASA CR 4671
1995.

[5] C.W. Rowley, T. Colonius, A.J. Basu, On self-sustained oscillations in two-dimensional compressible flow over rectangular cavi
J. Fluid Mech. 455 (2002) 315–346.

[6] L.F. East, Aerodynamically induced resonance in rectangular cavities, J. Sound Vib. 3 (1966) 277–287.
[7] R.L. Panton, Effect of orifice geometry on helmholtz resonator. Excitation by grazing flow, AIAA J. 28 (1) (1990) 60–65.
[8] P.J. Disimile, N. Toy, E. Savory, Effect of planform aspect ratioon flow oscillations in rectangular cavities, ASME J. Fluids Engrg. 1

(2000) 32–38.
[9] H. Kook, L. Mongeau, D.V. Brown, S.I. Zorea, Analysis of interiorpressure oscillations induced byflow over vehicle openings, Nois

Control Engrg. J. 45 (6) (1997) 223–234.
[10] M. Sunyach, J.-C. Bera, Active control of flow instabilities generated by cavities, in: VKI Lecture Ser., vol. 1997-07, 1997.
[11] H. Kook, L. Mongeau, M.A. Franchek, Activecontrol of pressure fluctuations due to flow over Helmholtz resonators, J. Sound Vib. 255 (

(2002) 61–76.
[12] L.N. Cattafesta III, S. Garg, M. Choudhari, F. Li, Active control of flow-induced cavity resonance, AIAA paper 97-1804, 1997.
[13] S. Kikushi, Y. Fukunishi, Active flow control technique using piezo-film actuators applied to the sound generation by a cavity, ASM

paper FEDSM99-7232, 1999.
[14] X. Amandolese, P. Hemon, F. Santi, J. Wojciechowski, Réduction semi-active du battement de volume engendré par une cavité profo

soumise à un écoulement aérodynamique, C. R. Mécanique 330 (2002) 101–106.
[15] A. Michalke, On the inviscid instability of the hyperbolic-tangent velocity profile, J. Fluid Mech. 19 (1964) 543–556.
[16] A. Michalke, On spatially growing disturbancesin an inviscid shear layer, J. Fluid Mech. 23 (1965) 521–544.
[17] P.A. Monkewitz, P. Huerre, Influence of the velocity ratio on the spatial instability of mixing layers, Phys. Fluids 25 (7) (1982) 1137–11
[18] P. Huerre, P.A. Monkewitz, Absolute and convective instabilities in free shear layers, J. Fluid Mech. 159 (1985) 151–168.
[19] C.-M. Ho, L.-S. Huang, Subharmonics and vortex merging in mixing layers, J. Fluid Mech. 119 (1982) 443–473.
[20] S. Ziada, D. Rockwell, Oscillations of an unstable mixing layer impinging upon an edge, J. Fluid Mech. 124 (1982) 307–334.
[21] D. Rockwell, Oscillations of impinging shear layers, AIAA J. 21 (5) (1983) 645–664.
[22] M. Meissner, Aerodynamically excited acoustic oscillations in cavity resonator exposed to an air jet, Acta Acoustica united

Acustica 88 (2002) 170–180.
[23] M. Bruneau, Manuel d’acoustiquefondamentale, Hermès, Paris, 1998.



632 P. Hémon et al. / European Journal of Mechanics B/Fluids 23 (2004) 617–632

[24] D.G. Crighton, A.P. Dowling, J.E. Ffowcs Williams, M. Heckl,F.G. Leppington, Modern Methods inAnalytical Acoustics, 2nd edition,
Springer-Verlag, London, 1994.

ted

ear

des
[25] X. Amandolese, P. Hemon, C. Regardin, A study of the acoustic oscillations by flows over cavities, ASME J. Vib. Acoust. (2002), submit
for publication.

[26] H.R. Graf, W.W. Durgin, Measurement of the nonsteady flow field inthe opening of a resonating cavity excited by grazing flow, J. Fluids
Structures 7 (1993) 387–400.

[27] P. Huerre, M. Rossi, Hydrodynamic instabilities in open flows,in: C. Godrèche, P. Manneville (Eds.), Hydrodynamics and Nonlin
Instabilities, Cambridge University Press, Cambridge, 1998.

[28] J.A.B. Wills, On convection velocities in turbulent shear flows, J. Fluid Mech. 20 (1964) 417–432.
[29] C.-M. Ho, P. Huerre, Perturbed free shear layers, Ann. Rev. Fluid Mech. 16 (1984) 365–424.
[30] X. Gloerfelt, Bruit rayonné par un écoulement affleurant une cavité : simulation aéroacoustique directe et application de métho

intégrales. Ph.D. Thesis of École Centrale de Lyon, France, 2001.


