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Abstract

An experimental and theoretical study of the pressure oscillations generated by the flow over a deep cavity is presented.
Such a configuration, which is akin to a Helmholtz resonator, arises in many applications, for instance when a window or
the sunroof of an automobile remains open. The linear resonator model is fully validated by experiments. The linear stability
characteristics of the free shear layer in the neck of the caatyedrieved from neck wall pressure measurements. An efficient
sound reduction scheme is proposed, which is based on the use of piezo-electric actuators placed upstream of the neck. These
elements act as small discrete flaps which force the shear layer in the neck to oscillate at a frequency distinct from the cavity
resonance frequency. A quasi complete attenuation of the peak pressure may then be achieved. The classical linear stability
analysis of the free shear layer is successful in accounting for the experimental observations and it leads to the identification of
the physical mechanism responsible for the efficiency ofsthnd reduction scheme. Moreovmear stability theory yields
limitations to the efficiency of the technique in the form of an energy criterion involving the Strouhal number.

0 2003 Elsevier SAS. All rights reserved.
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List of notations

Ac Neck section (1)

c Sound velocity (mis)

fe Frequency of the shear layer instability (Hz)
fo Resonance frequency of the cavity (Hz)

H Effective thickness of the neck (m}f = H, + 2H’
H, Thickness of the neck (m)

H,y Height of the cavity (m)

H’ Added thickness of the neck (m)

k Wave number (complex)

L, L, Length of the neck, of the cavity (m)

Lg Reference thickness of the shear layer (m)
M Mach numberM = U, /c
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De, Pv, Pe Acoustic pressures in the neck, in the cavity and outside the cavity
p1. p2, p3 Wall pressures around the neck: backward face, forward face and upstream

St Strouhal numberSt= fLg/U1

U Velocity (m/s)

Ue Convection velocity (1/s)

Uy Upper free-stream velocity of the shear layer/én

Uy Lower free-stream velocity of the shear layer/&n

1% \Volume of the cavity (r)

W., W, Spanwise width of the neck, of the cavity (m)

X, 2 Streamwise and wall normal coordinates

X Relative energy of forcing

81, 82  Boundary layer displacement and momentum thicknesses (m)
Sw Shear layer vorticity thickness (M), = 2Lg

y Empirical parameter in Rossiter’s formula

nr Reduced damping of the resonator

0 Air density (kym®)

1) Angular frequency (rack)

we Angular frequency of the shear layer (yadl, o, = 27 f,.
wr Angular frequency of the resonator (y&, w, = 27 fy

1. Introduction
1.1. Pressure oscillations in flow over cavities

Pressure oscillations generated by the flow over cavities have been widely studied in the past due to their importance
in aeronautics. In the present paper, we study this problem in the context of car vehicles which exhibit low-frequency
oscillations when windows or sunroofs are opened. The improvement of the airtightness, combined with the increasing volume
of the passenger compartment, lead to a higher sensitivity to self-sustained interior pressure oscillations. In most cases, the
phenomenon causes nausea and headache to the passengers and the driver. Automobile manufacturers must therefore devise
technical solutions to prevent these oscillations.

In practice, the problem can be reduced to the deep cavity configuration sketched in Fig. 1. As shown by Kang et al. [1] the
passenger compartment has however a more complex shape leading to a number of acoustic modes which may become active
in the response.

There exists a large number of publications concerning cavity pressure oscillations: many of them are mainly interested in
the characteristic frequencies of osciltaits, for instance [2-5]. The effect of thawity geometry has also been studied: the
depth of the cavity by East [6], the neck geometry by Panton [7], and recently the aspect ratio of a rectangular neck by Disimile
et al. [8]. A scaled model of a icle has been considered in [9]. It shows hofficlillt it is to suppress the oscillations without
directly acting on the mean flow characteristics, for instance by using a spoiler.
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Fig. 1. Cross-sectional view defirg the geometrical parameters.
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The reduction of the pressure level in the cavity may also be achieved in a different way. It consists in applying an unsteady
pressure field inside the cavity by means of a loudspeaker and implementing an active control method [10]. One encounters
also actuators made of small pulsed jets near the trailing-edge. Another technique consists in mounting an active spoiler on the
trailing edge of the cavity neck, using loudspeakers [11}ing piezo-electric matiais as actuators [12,13].

The latter was employed also by Amandolése et al. [14] and the present paper is an extension of these experimental results in
order to more satisfactorily explain the physical behaviour of the system. The study is organized as follows. First, the origin of
the oscillations is examined from a hydrodynarstability point ofview. The experimental sepuand conditions are described
(Section 2) and measurements are made in order to validate a model of the Helmholtz resonator (Section 3). The excitation term
for this resonator, provided by the neck pressure, is appeabefithin the context of linear ability theory (Section 4). A sound
reduction scheme is finally presented and discussed in Section 5.

1.2. From free shear layers to cavity necks

As will be seen hereafter, the mean flow field in the neck of the cavity, for instance in the Helmholtz resonator of Fig. 1,
is similar to the mean velocity profile of a free shear layere Tihstable behaviour of this fundamental base flow constitutes
therefore an essential ingredient in underdtag the origin of the pressure oscillais. The linear instability properties of free
shear layers have been studied by Michalke, for the temporal [15] and spatial [16] cases by using the hyperbolic tangent velocity
profile as an approximation.

A generalization was then proposed by Monkewitz and Huerre [17,18]. In the latter, it is demonstrated that the mixing layer
with a small velocity ratio, which is our case, is subjected to a convective instability, i.e. instability waves are spatially growing
and advected along the streamwise direction. In the experimental study of Ho and Huang [19], it was demonstrated that vortex
merging and the associated subharmonitaibidity constituted the main ecthanism for the streamwise growth of mixing layers.

This pairing phenomenon occurs at given locations in the streamwise direction and it coincides with an increase of the local
spreading rate.

However, in the case of a cavity, the streamwise direcsdrounded by the edges of the neakich leads to an additional
perturbation generated by the periodic impingement of théioes. This results in the generation of self-sustained shear
layer oscillations, the frequency of which is related to the distance between the upstream and downstream edges [20]. This
phenomenon has been found in a wide range of flow situations as reviewed by Rockwell [21]. It is roughly explained by a
feed-back mechanism in which the impingement of a vortex creates an acoustic pulse travelling upstream and thus triggering
the shedding of a new synchronized vortex.

When a cavity is flush mounted, interactions between theskatiens and the acoustic modes of the cavity become possible,
leading to high level tones, as described for instance by Meissner [22].

2. Experimental techniquesand setup

The cavity models are mounted in a small acoustic wind tunhéie Institut Aérotechniquevhich generates low noise
airflow. An original feature of the facility is that it allows measurements of the external acoustic prgg$area given range
of frequencies [80—660 Hz] even when the wind is blowing: this kind of measurement is performed by plane wave intensimetry
which is limited to frequencies lower than 660 Hz due the size of the tunnel section. The pressuthe cavity is measured
by a microphone (type 4193 provided by B & K).

The wall pressures around the nepk, p, and p3, as specified in Fig. 2, are measured with flush-mounted miniature piezo-
resistive microphones (type 8507C-2 provided by Endevco) which yield the mean and the fluctuating pressures. The sensitive
region of these probes is a small circle 2 mm in diameter which is well suited to small models. The vertical locatioarfdr
p2isz=—1.15 mm and the streamwise location fef is x = —7 mm.

A data acquisition PAK system provided by Miller-BBM is used together with the measurement hardware based on the
VXI standard. The acquisition card is a 16 bits A/D converter equipped with direct signal processors for Fast Fourier Transform
measurements. The frequency resolution is chosen to beHz.18Bhe acoustic pressure accuracy is typically 1dB, and 5% for
the mean wall pressures. The reference free-stream velocity is measured with an accuracy of around 1%.

Pressure measurements are supplemented with hot wirdtyetleeasurements. Boundary layer probes (type P15 provided
by Dantec) are used. The constant temperature anemometer is calibrated using a standard calibration nozzle and a nonlinear
fitting curve with a resulting accuracy less than 5% maximunttervery low velocities. Acquisition and numerical processing
were also made using the PAK system. The probes are moontedsmall vertical displaceent trail which has a position
resolution of 0.1 mm.

Two models of the cavity have been flush-mounted in a rectangular closed test section 260 mm high and 300 mm wide. The
first two transverse acoustic modes of the tunnel are then 670 and 580 Hz respectively. No interactions were expected to occur
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Fig. 2. Detail of the neck cross-sectional view. Fig. 3. Boundary layer profile.Q5L upstream of the neck.
Table 1 Table 2
Cavity dimensions Neck dimensions and characteristics
Cavity A Cavity B L (m) 0.020
L, (m) 0.100 Q0072 He (m) 0.005
Hy (M) 0195 Q195 We (m) 0200
W, (m) 0.200 Q200 H'(m) 00203
v (md) 0.0039 00028 Ac (M%) 0.0040

with the cavity oscillations which have much lower frequencies. However, one can notice that a resonance may be observed
(cavity A peak 2 in Fig. 4). Two anechoic terminations are alsmunted at the extremities of the test section. This ensure that
there is no significant reflexive longitudinal wave that could propagate along the tunnel, which was verified by intensimetry.
The dimensions of the cavity models are given in Tables 1 and 2. The neck is identical for both deep cavities with a height
H, = 10L. All these dimensions have been chosen a priori in order to obtain a resonance frequency within the intensimetry
measurement range of the setup for a wind velocity between 10 and25 m
The incoming boundary layer profile is measd in detail: the mean and the root-mean-square (RMS) velocities are given in
Fig. 3 in nondimensional variables scaled with respect to the upper velocity of the sheay{symal the reference height.
This height is characteristic of the velocity vertical gradient inside the neck, which is essential in the excitation mechanism and
will be detailed later on. The mean velocity profile outside the viscous sub-layer can be fitted by a logarithmic profile, which
is a typical characteristic of a fully devsged, equilibrium, turbulertioundary layer, Wh zero pressure graht. The resulting
displacement and momentum thicknessessare 4.5 mm ands, = 3.6 mm.

3. TheHemholtz resonator

The purpose of this section is to study a simplified system representation of the passenger compartment in a car vehicle.
Typically such a configuration may be considered as a Helmholtz resonator. We first describe the analytical model for this
system, with the internal acoustic presspteas the main reference variable. In a second step, the experimental validation of
the model is presented.

3.1. Basic equation

The Helmholtz resonator has been widely described from an acoustical point of view, notably by Bruneau [23]. Starting from
the geometrical parameters shown in Fig. 1, the displacemehthe air layer in the neck section follows the basic equation

. . A2
PAcHE + pcAc(2Ry+ Ry + I'He)¢ +pc27‘c =EAcpe, 1)
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where the acoustic pressupg in the neck (spatial mean) acts as the excitation force for the resofdtog dimensionless
coefficient to be determined ai}, R1 andI” are damping parameters detailed below. The assumption is made that the acoustic
wavelength is larger than the geometrical dimensions of theesysander consideration, so that the resonator is acoustically
compact.

According to the linear acoustic approximation for a perfect gas, the displacement of the air layer in the neck is linked to the
acoustic pressure inside the cavity via the relation

Vv

=——=py. 2
;‘ ACpCZ pl) ( )
By substituting (2) into (1) we obtain the basic equation for the cavity pressure
VH | v,
2pv+(2R0+R1+FHc)_pv+Pv=€Pc- (3
ACC ACC

In this expressionH is the effective thickness of the air which oscillates in the neck. It is composed of the thickness of the
neck H, increased by the thicknessgg of the air layers which are entrained, as sketched in Fig. 2. There exists a number of
expressions which give these added thicknesses, especially for circular holes. In the present case, the shape of the aperture is
rectangular, close to a slit and the usual expres&l6a: 0.4,/A. is not applicable. For noncircular holes, Crighton et al. [24]

and references therein, provide the relation

H' =0.854%75/ /I, 4

wherel. is the perimeter of the aperture.
The termRq represents radiation damping due to the power lost by the resonator to the surrounding medium and to the
cavity volume [23]. It is proportional to the square of the angular frequency and given by

2
w A
- 2nc?’ ®

The termR1 in (3) represents the power lost due to the cavity wall impedance. The last damping tierandissipation factor

due to viscous effects along the walls of the neck. Using the analytical expression provided by Bruneau [23], it is found that
these two damping terms are numerically much smaller than the damping due to radiation through the neck and they can be
neglected. Finally the basic equation of the resonator becomes

Ro

N w2 A, - A, _: 2A,
U T He 4 2HN e T V(H, +2H) P T V(H. + 2H) PE

Introducing the resonator eigenfrequency

/ Ac
wyr =C 7‘/(11( T 2H/) , (7)

and the reduced damping

p (6)

\%4
_ .2
nr=wtor s, (8)
Eq. (6) reduces to
Dv + 2nrwr py + wrzpv = 50)3[70 9

The final form (9) is similar to a standard damped mechanical oscillator excited by the shear layer instability in the neck.
3.2. Comparison with experiments

3.2.1. Frequency and damping without flow
The resonance frequenay and the reduced damping are measured without wind by using an acoustic source delivering
a (pseudo) white noise in the test section. The parameters of the resonator can be retrieved by measuring the transfer function
(modulus and phase anglg between the external pressysg and the cavity pressurg,. In fact the resonator equation (9)
should be rewritten in the form

o+ 20r0p py + @2 (py — pe) =0, (10)
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Table 3

Cavity A resonance frequeies and damping without flow
Theoretical Experimental

f (Hz) 259+1 268+ 2

nr (%) 68+0.1 205+ 0.15

where the external pressure is assumed to be of the form

Pe =apy + Bpu. (11)
Upon using Fourier transforms, it is easy to show from (11) that
co —sin
o= % = —Sne (12)
[P/ pel w|pv/pel

The first coefficienty should be regarded as an added stiffness, and the sgcasdan added damping. The latter can be
rewritten as a reduced damping, leading to

—sing wy
2|pyv/pel @ '

which can then be compared with the theoretical value (8). At resonance, the system has to be in equilibrium, i.e. at a zero
balance of energy over one period, which impliegp = 1, andw = wy.

The comparison between experimental and theoretical results is given in Table 3 for cavity A, where the specified dispersion
in the numerical values is due to temperature variations during the tests (betw®e€ra@ 25°C). The phase angle at the
specified resonance frequency was measured to be exa@i; as expected for such an oscillator.

The comparison between experiments and theory is very favourable for the resonance frequency, (3.4% difference), showing
the reliability of the neck thickres correction based on Eq. (4). The same bieli was found for cavity B, with a theoretical
frequency of 305 Hz, against 302 Hz for the experiments.

However, the measured damping does not agree so well with the theoretical value. One explanation might be the effect of
confinement due to the closed test section, which constitutes finediffarence with the assumptis underlying the theoretical
expression (5) for which an infinite medium above the cavity neck is assumed. In the following, the experimental value will be
used.

Nexp= (13)

3.2.2. Results in presence of grazing flow

The measured frequency and the cavity pressure jgyelre given in Fig. 4 versus the free-stream velo&ity The linear
evolution of the frequency will be discussed later: the purpose of this section is to present the different kinds of resonance peaks
which are observed.

For cavity A, the presence of two peaks has to be accounted for. The first one occurs around the eigenfrequency of the
Helmholtz resonator and it is due to resonance with the impinging shear layer. The resonance frequency, at which the pressure
level is maximum, is modified by the flow and decreases from 268 Hz (see Table 3) to 262 Hz (see Fig. 4). The acoustic power
generated, measured by intensimetry reaches 83 dB (referred’f& W) at resonance, which is considerable for a single tone.

The second peak is however more complex and should be considered as an experimental artefact because it is linked to a
resonance of a first harmonic of the shear layex @90 Hz) with an acoustic transverse mode of the test section (580 Hz). This
interpretation was experimentally verified once by modifying temporarily the transverse dimension of the test section, thereby
modifying the related frequency. As expected, the measurements then showed the suppression of this peak.

The purpose of this paper is focused on the first of these two peaks, even if the experimental results will consider both.
Similar duct — cavity resonances have been experimentally studied by Amandolése et al. [25].

For cavity B, the previous two resonances are not well separated in frequency and produce a single but wider peak. The
pressure level is also much higher, which is attributed to a resonance involving three systems: the shear layer, the cavity and the
test section.

3.2.3. Added damping and stiffness in the presence of flow

The transfer functiorp, /p. was measured for both cavities and the tveaks which appeared in the response. This is
significant only when the coherence function is close to unity and the reported results satisfy this condition. Far from the
resonance points, the coherence vanishes and the measurements are not possible.

The added damping and stiffness are given in Fig. 5 versus the dimensionless frequency, i.e. the Strouhal number, defined
by St= fLo/U1. The reference lengthq corresponding to the height of the shear layer in the cavity neck will be detailed
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later. The documented damping is the additional term due to the flow, obtained by subtracting the resonator damping from the
total damping. The resonance points have been indicated with an arrow. One can observe a similar behaviour of the cavity A
peak 1 (cavity-shear layer resonance) with the cavity B peakicBEarly, the damping is at a minimum when resonance occurs,
which is not the case for the test section resonance.

The difference between the test section-shear layer resonance and the cavity-shear layer resonance is more obvious for the
added stiffness, which is negligible for the cavity-shear fagsonance, whereas it reaches more than 12% for its test section —
shear layer counterpart.

3.2.4. Excitation term

The knowledge of the excitation term is not trivial, since it should be considered as the streamwise mean of the unsteady
pressure along the neck. The wall acoustic presspesd p,, defined in Fig. 2, represent the limiting range of this excitation
pressure. Their dimensionless levels are given in Fig. 6 together with the upstream wall ppgs3ime phase angle pertaining
to p;p is also given for later use. The displayed results extracted from the PSD are those for which the coherence function
betweenp, and p, and betweerp, and p3 is unity at the corresponding frequency. They are therefore within the lock-in
region.

It is interesting to observe that the pressure ratios are quasi-constant with Strouhal number in the explored range. The
upstream wall pressuges shows a particularly strong coupling with the cavity presgyrevhich is logical for the present very
low Mach number flow, as already observed for instance by Graf and Durgin [26].

At resonance, the transfer function of the linear Helmholtz oscillator (9) leads to an estimation of the vaasge of

& = 2nexp Pv | (14)

{(Pc)

We will see in the next section that the neck pressure evolution along the stream takes an exponential form, which through a
spatial integration yields the spatial mean valpg). This leads to the resuft=0.0637.

The last unknown quantity in the modé)(of the Helmholtz resonator excited by a grazing flow is the presguré&his
pressure is generated by the grazing flow over the neck thereby creating a shear layer which oscillates via a self-sustaining
mechanism. The next section presents the application of the linear stability theory of mixing layers to the problem at hand. The
analysis of the experimental results will further validate the concepts.
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4. Shear layer instability
4.1. Theoretical background

This section is devoted to the application of hydrodynamicikiatheory in order to descridthe behaviour of the pressure
in the neck. It is mainly based upon the work of Michalke [15,16], which is generalized in [17] and reviewed more recently
by Huerre and Rossi [27]. Our interest lies in disturbances travelling and growing in the mean flow direction along the neck
length. Thus one has to deal with the spatial problem which was studied by Michalke [16]. The results can be compared with
the experiments, especially in order to validate the control concept proposed in Section 5. The present study is concerned with
cavity A peak 1, i.e. the resonance between the Helmholtz resonator and the shear layer.

4.1.1. Reference qutities and hyperbolicangent velocity profile

The mean flow characteristics of the mixing layer inside the neck provide the velocity scale and the length scale which are
essential in the determination of the instability characteristics. The mean velocity profile is measured at mid-length of the neck
with a hot wire probe and it is given in Fig. 7. Due to the small dimension of the set-up, only one streamwise position could be
explored without pettrbing the flow by the intrusion dhe probe. The mid-length positios considered as a good compromise
to represent the evolution of the shear layer velocity profile in the neck.

The mean velocity profile is fitted as in [17] by the hyperbolic-tangent profile,

U =Ui[1+ Rtanhz/Lg)]/2. (15)
where the velocity ratio is by definition
R=(U1-U2)/(U1+U2). (16)

Nonlinear best fitting of the experimental curve leds- 1.02. The velocity ratiaR may effectively be taken to be unity as in
Michalke [16]. This means that the lower shear layer velotifyis zero. It must be noted that the profile in the upper region
does not fit well with the hyperbolic tangent velocity profile, which is due to the internal flow characteristics. The mixing region,
which is fundamental in the problem at hand, is however well represented.

At 0.5L of the neck, the best nonlinear fit of the experimental profile ldagls- 2.3 mm andU; = 13.24 my/s. Note that
the chosen reference lengkly is just the vorticity thickness,, = (U1 — U2)/(0U /9z)max (With Uz = 0 in the present case)
divided by 2 [17]. By using the dimensionless quantitiesz/Lg andU = U /U, the velocity profile reduces to

U(z) = [1+tanhz]/2. a7)
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4.1.2. Stality analysis

We give a brief summary of the analysis of Michalke [16]. We focus the study on the flow in the neighbourhood of the cavity
neck which is supposed two-dimensional and parallel. The influence of the feed-back and the coupling with the cavity volume
is not taken into account in this analysis.

The velocity and pressure fields are decomposed into a mean and an unsteady part according to

Ux,z,t) =U(2)ex +ulx,z,t)ex +v(x,z,t)ez,

P(x,z,t) = Py+ p(x,z,1). (18)

For simplification, the symbot denoting dimensionless quities is omitted. The mean velocity is given by the hyperbolic
tangent profile (17) and® is a constant pressure. Assuming small fluctuations, the problem is analysed within the linearized
inviscid incompressible Euler equations:

(8 + Udy)u+vd.U = —dy p,
(0 +Udx)v=—09;p, (19)
oxu + d;v=0.

The incompressibty condition allows the introdution of the stream functioy such that

u=2ay, v=—0x V. (20)
We are interested in disturbances which propagate in the mean flow direction and take the form of spatio-temporal waves, i.e.,
¥ (x,z,1) = Re[¢ (2) explihx — wn)}], (21)

where Re denotes the real part. Substituting the expressions (20) and (21) into the momentum equations of (19), one obtains the
standard Rayleigh equation

(U - %)(df’ ~K29) - U"p=0, (22)
where a prime denotes differentiation with respecs.tdhe boundary conditions are given by
lim ¢(z)=0. (23)
z—+o0

The pressure distribution takes the normal mode form

p(x,z,t) =Re pz)explitkx —wn)}]. withp=U"¢ — <U - %)(p/. (24)
It is shown in [18] that for the Rayleigh equation and the hyperbolic tangent velocity profle=at, the possible instabilities
are convective. We then consider only real angular frequencisd complex wave numbeks= k, + ik;. The spatial growth
rate is—k; and the phase velocity/ k.. Michalke [16] has solved this problem numerically and the resulting phase velocity
and spatial growth rate are given in Fig. 8. The most amplified perturbations are obtained for a Strouhal number of 0.0329.

4.2. Links with experiments

The previous theoretical results, phase velocity and spatial growth rate, are compared with the quantities which can be
extracted from the pressure measurements along the neck.

4.2.1. Convection velocity
Convection velocity measurements in turbulent shear flows have been discussed by Wills [28]. Here, the convection velocity
is obtained through the phase anglbetween the coherent pressure signalsp, and p3 as

UC = wcL/(P; (25)

where the ratiap/w,. represents the duration taken by the perturbation to cross the neck length. It should be noticed that the
phase angle is always measuraddulo2z which may lead to an ambiguity. In the present case, it is assumed that there is only
one fundamental period involved in the resonance problem and this ambiguity vanishes.

Using the phase angle between the trailing and the leadinggggeiven in Fig. 6, we obtain the results shown in Fig. 8
where they are compared with the theoretical values. The agreement is seen to be very good.
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4.2.2. Pressure in the neck

Starting from the wall pressure measurements, a rough estimation of the growthkfatan be obtained, by fitting the
experimental pressure levels with the exponential distribution (24) of the shear layer pressure. The measurements are performed
in presence of cavity resonance. This leads to the data showg.i8 Wwhere the comparison with the theoretical values is seen
to be unsatisfactory.

The disagreement is partly due to the reference lergftdefined at 50% of the neck length which is, in reality, not
constant along the stream, leading to continuously changihg waf the experimental Strouhal number. Ho and Huerre [29]
among others, have shown that a turbulent mixing layer spreads linearly along the mean flow direction, with a spreading rate
dLq/dx = 0.09 for a velocity ratioR = 1. By applying this linear evolution and by taking the value at 75% of the neck length
as a more representative median value, the corrected reference length bégpmea<5Lq. This correction applies also on
the Strouhal number and we observe then that the experimental results get closer to the theoretical results. It should be noticed
that the convection velocity might be corrected in the same way, without changing the good agreement between theory and
experiments, since it is almost constant in this region.

Even with this correction, the agreement for the growth rate is not satisfactory. As pointed out by Michalke [16], nonlinear
effects which are intensified by the cavity are not accounted for in the theory. In the present case, it is not surprising that the
shear layer in the neck, forced by the cavity resonance, produces a flatter pressure distribution, such as the one created by a
piston, rather than the exponential distribution of a free shear layer.

It is obvious that our shear layer is saturated by resonance with the cavity acoustics. In the cavity problem, the interactions
with the neck lips and the cavity volume are crucial and these phenomena are not taken into account in the framework of
classical linear stability theory, as pointed out by Rockwell [21]. The limitations of linear stability theory can be illustrated by
observing the resonance frequency evolution with velocity.

4.3. Frequency evolution

The measured Strouhal number is plotted versus free-stream velocity Fig. 9. The cavity reduced frequency and
Rossiter’'s Strouhal number are also displayed. Resonance occurs when these curves cross.

The Rossiter formula [2] is commonly used in order to obtain the frequencies generated in a shear layer developing in a
neck. Itincludes the feed-back mechanism but not the interaction with the cavity volume. A discussion of this formula has been
given by Tam and Block [3] and more recently in [30,5]. In our case, it is given by

L —

stlo_"—v

Lo M+U/Uc
wheren is an integer characterizing the order of the mode. In this paper werhavk due to the physical dimensions of the
set-up. The empirical parametgr linked to the shape of the neck lips and the cavity depth, represents the phase lag in the
feed-back loop. In the usual scenario, the corresponding time geélays the sum of the times taken for the impingement of a
vortex at the trailing edge, emission of an acoustic pulse, arrival of the pulse at the leading edge and finally shedding of a new
vortex.

We already have measured the convection velocity in the previous section. The vgdwaifnow be estimated as 0.090
which is approximately 3 times lower than the value 0.25 proposed by Rossiter. This difference is attributed to the very low

(26)
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Mach number flow ¢ = 0.04 at resonance) which makes the compressibility effect negligible in the feed-back mechanism.
There is also the interaction with the cavity neck, with a neck length much lower than the acoustic wavelength, which should
probably be taken into account [30].

Coming back to Fig. 9, one can observe that the measurements do not follow those of any single oscillator, cavity or shear
layer. When the free-stream velocity is varied outside the range displayed in Fig. 9, the system is off resonance and due to a
poor signal-to-noise ratio the frequency of the shear layer and the frequency of the cavity mode can be observed separately but
not correctly measured.

5. Sound reduction

This section is devoted to the description of a forcing technique of the shear layer, the purpose of which is the reduction of
the pressure level in the cavity. In a first step we present the experiments and in a second step, a deeper analysis of the results is
made.

5.1. Experiments
5.1.1. Actuators

The noise reduction setup is mounted on the surface of the upstream lip. It consists of a series of small flaps which are
constituted of piezo-electric material. Such a technique has already been used, for instance in [12,13]. Our setup differs however

in the sense that our flaps are discontinuously distributed along the span of the neck, as shown in Figs. 10 and 11.

Wall of test section

[}
- Piezo-electric
U, actuator
/
- Hot wire
L. . . U,
location axis . .
300 mm _— Piezo-electric
R ——— axis of cross-sectional view actuator 4
L
\Cavity
_— neck
\i

(@) (b)

Fig. 10. Actuators mounting: (a) top view; (bjoss-sectional view of upstream lip region.
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Fig. 11. Photo of the cavity neck and the actuators at the upstream lip.

The actuators are piezo-electric bimorph elements (two layers of PZT with a middle layer metal sheet, provided by
Piezomechanik) which are assembled in order to producenditig motion as in a cantilever beam. Their active length is
20 mm, and their width 6 mm, which leads to a bending eigenfrequency in the desired range, around 310 Hz. Eight actuators
are mounted spanwise with a distance of 20 mm between their axis. This distance represents one length wave in the neck, and
it is expected that it is small enough to be efficient.

These actuators are all excited electrically by the same sine signal at a frequency of 310 Hz. This value is their first bending
frequency, for which the obtained displacement is maximum. All the actuators are correlated, i.e. they are all in phase. An
arbitrary estimate of the displacement amplitude gave an order of magnitde®28 mm at their extremity. It is expected that
the perturbation produced is almost two dimensional, as if the actuators were a unique large flap. There is also the possibility to
use only one actuator out of two, in order to have an estimate of the influence of spanwise separating distance.

This system does not contain any feedback loop and may not qualify as an active control scheme, as for instance in [11]. We
have however to bring an external energy into the system. Our purpose here is to propose a simple forcing technique rather than
a comprehensive active control scheme.

5.1.2. Results

The results are presented in Table 4 for the two cavity A resonance peaks and the cavity B single resonance. Pressure levels
are extracted from a power spectral density function ipJAdz. Typical spectra are plotted in Fig. 12 for the cavity A first
peak. The thin peak at 310 Hz in the spectrum with actuators on corresponds to a vibroacoustic perturbation of the microphone,
occurring also without wind and must be considered as an experimental artefact.

The sound reduction is observed to be very efficient for cavity A and the technique seems to work simply by detuning of the
resonance frequency. The case of cavity B reinforces this interpretation: the actuators are indeed forcing the shear layer at its
natural resonance with the cavity, leading as expected to a higher level of the cavity pressure. The residual noise for cavity A is

Table 4

Cavity pressure levels without and with the sound reduction scheme

Number of actuators Cavity A peak 1 Cavity A peak 2 Cavity B
0 245 283 49.4
4 84 -

8 14 21 95.0
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close to that of turbulence when all the actuators are on. When only one out of two actuators is on, the sound is reduced but a
nonnegligible sound level remains.

The shear layer velocity profiles with forcing have been measured and plotted in Fig. 13 where they are compared with the
free unforced case. The mean velocity profile is not perturhethé actuators and remains identical as in the natural case.
Cattafesta et al. [12] also found the same behaviour. This implies that the cavity drag is not modified: a confirmation was
obtained by measuring the mean pressure inside the cavity which did not show any difference without and with the actuators on.

The unsteady part of the shear layer is however considerably modified as seen in Fig. 13 for the root-mean-square (RMS)
level. The latter results from the integration of a large frequency band and is not representative of what really happens at the
frequency of interest. This has led us to extract the single resonance or forcing frequency component by means of the power
spectral density (PSD), that is 262 Hz for the free case and 310 Hz for the forced case. It is seen in Fig. 13 that the actuators
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provide a larger component than in the unforced case (rationar 2.5). Forcing ab induces the maximum amplitude to be
located at a higher vertical position whigha consequence of the geometrical gasif the actuators, flush mounted on the
upstream wall.

5.2. Discussion

In these experiments, the technology of the actuators allows us to explore the effect of a single control frequency. The
limitations of the sound reduction scheme cannot be obtained experimentally but these can be estimated with the help of
hydrodynamic stality theory, as shown below.

The idea is to deal with a characteristic quantity, such as amgmatio, corresponding to the spatial mean square pressure
in the neck. The reference energy is chosen at natural resonance. Starting from the pressure distribution (24), we define the
energy ratio as

( J& expl—kjcx]dx )2
x=\"7—""].

27
J& exp—k;x] dx @)

where—k;. is the spatial growth rate corresponding to resonance-dnds the spatial growth rate associated with the forcing
control frequency. Thus/k represents the relative energy necessary to overcome the natural resonance of the system. In other
words, it is a measure of the forcing energy required for the control to be effective at the particular forcing Strouhal number
under consideration. The paramejefts plotted in Fig. 14 for the natural resonance observed in the experiments (solid curve)
and for the theoretical case (dashed curve) where the resonance would occur at the maximum growth rate in Fig. 8. The Strouhal
numberSt* is the one obtained with the corrected reference leagtas in Section 4.2.2. The double arrow indicates the forcing
Strouhal number used experimentally for cavity A peak 1.

Consider first the experimental curygSt*): when the forcing Strouhal number coincides with the resonance frequency
St* = 0.056, x = 1 since—k; = —k;.. As the forcing Strouhal number is increased above the resonance yainereases
above unity since-k; < —k; (see Fig. 8): controlling the resonance becomes “harder and harder” in the sense that a larger
amount of forcing energy is required. As the forcing Strouhal number is decreased below the resonange detueases
below unity since-k; > —k;.: controlling the flow is “cheaper”. This trend @sts as long as the forgy Strouhal number is
larger than the Strouhal number of maximum growth rate S&sis further decreased, the control energy starts to rise again
since—k; takes smaller and smaller values.

The same reasoning applies for the dashed cyr¢e:1 whenSt* coincides with the Strouhal number of maximum growth
rate which is assumed to be resonant.3¥sdeparts from this resonance point, from above or from bejoincreases above
unity and effective control requires a gradually larger forcing energy.

The velocity component displayed in Fig. 13, raised to the fourth power in order to represent the energy indicates that
the actuators provide an energy which is about 40 times larger than in natural resonance. This much more than required in
comparison with the ratio 1.8 computed in Fig. 14.

We have already mentioned the limitations of linear stability theory concerning the lock-in mechanism. The current
interpretation has to take this feature into account: there is a small region surrounding the resonance frequency where the
forcing will enhance the inability, a feature which is not acanted for in thedefinition of x. This is precisely what happens
with cavity B where only a feedback control would be efficient.

o b b b b b e

0
0.01 0.02 003 004 005 0.06 0.07 0.08
St*

Fig. 14. Energy amplitude ratig from (27) for control versus corrected Strouhal numB&r —, present case; - - -, at maximum growth rate.
Double arrow indicates experimil forcing Strouhal number.
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6. Conclusion

A study of the pressure oscillations generated by a low-speed flow over a deep cavity has been presented. The thread of the
paper is to provide a justification for a resonance reductiormeetbased on detuning the frequency of the unstable impinging
shear layer from the cavity mode frequency. The shear layer forcing technique is rather simple and does not modify the mean
flow characteristics.

If mounted on a car sunroof, it should not increase the mean drag coefficient, as in the case of the usual spoilers. Active
spoilers can then be designed using the Strouhal number as the main similarity parameter. These spoilers could be discrete as
in the present study, but one can expect that a unique two dimensional spoiler would probably be easier to implement. Due to
the very low frequencies involved in a passenger cabin, the piezo-electric actuators can be replaced by standard electro-magnets
which are more reliable. The improvement of the instrumentation in recent generations of car vehicles allows the excitation
signal to be set easily by the vehicle speed, using the linear law provided by the Strouhal similarity.

The method and its limitations have been discussed in light of classical linear stability analysis. More investigations are
required in order to develop a nonlinear model which should be capable of reproducing the real behaviour of the coupled
cavity-shear layer system.
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