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ABSTRACT 

This paper addresses the vibration of a square 
section cylinder due to the alternate vortex 
shedding at moderate Reynolds number (3500). The 
numerical investigation is focused on the 
perturbation of the vortex shedding in order to 
decrease the amplitude of the vibrations at lock-in. 
By analyzing the unsteady flow results, we show 
that a control technique spatially localized at the 
surface of the cylinder, can be efficient only if the 
mean flow is modified, or/and that the energy input, 
i.e. the cost function, becomes very large. 

1. INTRODUCTION 

Vibrations induced by alternate vortex shedding 
and their control have been widely studied with 
circular cylinders. In this paper, we deal with such 
kind of vibrations on a square section cylinder at 
moderate Reynolds number (3500). The numerical 
investigation is focused on the perturbation of the 
vortex shedding in order to decrease the amplitude 
of the vibration at lock-in. 

The essential feature of a square cylinder 
configuration is the fixed point of flow separation 
at the leading-edge corners which leads to unstable 
shear layers on both lateral faces of the section. At 
moderate Reynolds number, the Kármán vortex 
street which develops in the far wake leads to the 
unsteady lift. When its frequency is close to that of 
a structural mode high amplitude vibrations can 
occur by lock-in. 

There exists a large number of techniques for 
perturbing or controlling these vibrations: Kubo et 
al. (1996) used small rotating cylinders flush 
mounted at the corners of the square cylinder. 
Small vibrating leading edge flaps have been tested 
by Li et al.  (2003). More recently, Cheng et al. 
(2003) proposed to implement oscillations of a 
lateral boundary, as presented in Figure 1. The 
actuation consists in forcing a small amplitude 
oscillation A(t) of one of the lateral boundaries of 
the cylinder by means of a piezo-electric actuator. 
This control scheme is of the opened-loop type and 

seems efficient when the actuator frequency is out 
of the lock-in range. Otherwise there is 
enhancement of the vibrations. 

The purpose of this paper is to show that such a 
control or perturbation technique is expensive in 
energy due to the robustness of the vortex shedding 
process. First we validate our numerical tool by 
comparison with literature data. The differences 
between the oscillating non perturbed case and the 
perturbed case are then studied, notably with the 
help of biorthogonal decompositions of the local lift 
distribution. 
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Figure 1 : Sketch of the studied configuration. 

2. NUMERICAL TECHNIQUE 

The physical model is formulated with the full 
incompressible 2D Navier-Stokes equations without 
turbulence modelling. The solver is based on a 
Lagrangian-Galerkin method. A mixed variational 
formulation of the full equations is implemented 
with a finite element approximation for space 
discretization. The convective problem is treated 
using a characteristic method, while the Stokes step 
is processed by an implicit algorithm. Low order 
characteristic methods are known to be diffusive on 
a large mesh but the region of interest (around the 
cylinder) is discretized, so that a first order 
derivative approximation with a fractional step 
characteristic method can be used.  



For the cylinder motion, the numerical 
simulations consider forced oscillations y(t) normal 
to the flow as in Figure 1. Since the movement is 
that of a rigid body, the vibrations of the structure 
are simulated by applying the movement on the 
external boundary conditions. The computations are 
then performed in the reference frame of the body, 
and the grid acceleration term is taken into account 
in the equations. 

The effect of the actuator acting as a perturbation 
of small amplitude is simulated with an unsteady 
boundary condition. The normal velocity )(tA

�

 is 
then prescribed at the upper surface of the cylinder 
(see Figure 1). 

3. STATIC CASE 

In a first step, the static case, without motion and 
without perturbation is simulated in order to 
validate the numerical technique. The Reynolds 
number based on the side H of the cylinder is 3500. 

The computed aerodynamic coefficients of the 
cylinder are presented in Table 1. The mean drag, 
its root-mean-square (RMS), the RMS value of the 
lift, the Strouhal number and the base pressure 
coefficient are globally in agreement with literature 
data (Bearman & Obasaju, 1982 ; Davis & Moore 
1982 ; Norberg, 1993 ; Verstappen, 2002 ; Yi & 
Okajima 1996). The RMS amplitude of the lift is 
more or less twice that observed on a circular 
cylinder (Bearman & Obasaju, 1982), due to the 
large lateral walls of the square shape which are 
submitted to the stalled flow. 
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Figure 2 : Time history of drag and lift forces, 
static case 

A sample of drag and lift coefficients versus 
dimensionless time is given Figure 2, after a 
stationary state has been reached. We can observe 
the standard oscillating behaviour, with the drag 
fluctuation at a frequency twice that of the lift 

force, which defines the Strouhal number of the 
alternate vortex shedding. The drag evolution, 
showing a subharmonic is typical of the moderate 
Reynolds number range (Davis & Moore, 1982).  

4. OSCILLATING CASES 

4.1 Non perturbed case 

The cylinder is now put into motion at the 
frequency St = 0.139 of the vortex shedding in 
order to simulate the oscillating corresponding case, 
as in the experiments presented by Cheng et al. 
(2003). The imposed motion is sinusoidal: 

( ) ( )ϕπ += tStztz 2sin0 . (1) 

The motion amplitude z0 is set to 8% of the 
dimension H of the section. Note that the results 
presented hereafter are for a stationary state in 
which the transient period between static case and 
oscillating one has been removed. Hence, the phase 
angle ϕ  in equation (1) is not significant. 

Time histories of the force coefficients are given 
in Figure 3, together with the cylinder section 
velocity z

�

. 
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Figure 3 : Time history of drag and lift force, non 
perturbed oscillating case. 

The resulting lift force is delayed of 30° with the 
cylinder displacement, which is in the range of the 
drastic change observed in the experimental results 
of Bearman and Obasaju (1982). Moreover, they 
noticed that the unsteady lift is increased by the 



cylinder motion, which is found also by the present 
computation, as presented in Table 2. The mean 
drag decrease has also been found by Yi and 
Okajima (1996). 

 

Cx mean 2.19 
Cx RMS 0.16 
Cz RMS 1.40 

St 0.139 
Cp base -1.51 

Table 1 : Computed aerodynamic coefficients of the 
static case 

 

 (a) (b) 
Cx mean 1.92 2.14 
Cx RMS 0.20 0.24 
Cz RMS 1.44 1.46 

Table 2 : Computed aerodynamic coefficients  
(a) non perturbed oscillating case ; (b) perturbed 

4.2 Perturbed oscillating case 

In this section, we now simulate the perturbed 
oscillating case using the parameters values 
presented by Cheng et al. (2003) in their 
experiments. The cylinder displacement remains 
similar to equation (1) with an amplitude 0z  
decreased to 2% of H.  

The displacement generated by the actuator is  

( ) ( )ϕπ += tStAtA c2sin0 , (2) 

in which the control Strouhal number Stc is 0.1 and 
the amplitude 0A  is 2.8% of H. Once again, the 
phase angle is not significant at stationary state. 
Note also that the cylinder displacement is forced at 
another frequency. This will generate a very low 
frequency component (i.e. St-Stc) corresponding to 
the interaction between cylinder displacement and 
the actuator. 

The resulting force coefficients are given in 
Table 2. The mean drag recovers more or less the 
value of the static cylinder, due to the vortex 
location closer to the base of the cylinder, thus 
decreasing the base pressure coefficient. 

But the drag and lift, in terms of RMS value are 
not decreased as it is expected with the perturbation 
scheme and a deeper analysis of the results is 
necessary. Time histories are presented in Figure 4 
with the cylinder velocity z

�

 and the perturbation 
velocity A

�

 (dotted line). It is interesting to notice 
that with the parameters chosen by Cheng et al. 
(2003), the velocity amplitude of the cylinder 
motion and that of the perturbation are of same 
order. 

It is clear in Figure 4 that the drag is really 
perturbed, showing disorganized oscillations. Thus 
the RMS value is not a pertinent indicator because 
the corresponding spectrum shows a number of 
frequencies in the signal. However, this is not the 
case for the unsteady lift which shows indeed a 
quasi-sinusoidal evolution, weakly modulated at 
low frequency. The corresponding RMS value 
weakly perturbed is therefore pertinent. 
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Figure 4 : Time history of drag and lift forces, 
perturbed oscillating case. 

It must also be mentioned that, in another case 
not presented here due to limited length, we have 
simulated the enhancement of vortex shedding and 
of the lift by setting the perturbation frequency as 
the same value as the natural shedding (i.e. St=Stc). 
Results were in agreement with the similar 
experimental tests of Cheng et al. (2003).  

5. COMPARISON AND ANALYSIS  

5.1 Flow morphology 

From the previous results, it seems that the 
perturbation scheme is not efficient enough to 
decrease the vortex shedding effect on the lift.  

In Figure 5 the vorticity distribution, 
superimposed with contour of iso-pressure, are 
plotted at the instant of maximum lift, for the non 
perturbed (5a) and perturbed (5b) cases. We 
observe that the actuator injects locally an 
additional circulation which remains confined in 
the shear layer, as it can be seen on the upper 



surface of the cylinder section (Figure 5 b). But the 
main wake vortices are not really influenced by the 
perturbation, which explain the results concerning 
the lift force.  

Thus to overcome natural vortex shedding, the 
amplitude of the perturbation must be much larger 
than the one used here. This point will be discussed 
later. 
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Figure 5 : Comparison of vorticity distributions, (a) 
non perturbed oscillating case; (b) perturbed 

We perform now a deeper comparison of the two 
cases via the spatio-temporal analysis of the wall 
pressure coefficients. We use then the biorthogonal 
decomposition of the local lift force in the way that 
we have proposed recently (2003). This technique 
is useful in analysing complex signals by 
decomposing them into space functions (called 
topos) and time functions (called chronos) which 
are orthogonal between them and classified by 
order of importance. 

For the oscillating case, the first 6 topos are 
shown Figure 6, with the wind blowing from left to 
right. The topos 1 is representative of the average 
value and is not relevant in the discussion. The 
corresponding chronos (with the first one removed) 
are presented Figure 7.  

It is found that the main component of the lift 
(more than 99%) is given by the second chronos 
and topos. On the latter, it is interesting to note that 

the downstream part of the two side boundaries 
have a low contribution in the global lift.  
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Figure 6 : Topos, oscillating case 
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Figure 7 : Chronos, oscillating case 

For the perturbed oscillating case, the topos and 
the chronos are presented similarly in Figure 8 and 
9. As for the non perturbed case, the second spatio-



temporal structure (topos + chronos) is sufficient to 
recompose the total lift at a level larger than 99%. 
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Figure 8 : Topos, perturbed oscillating case 
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Figure 9 : Chronos, perturbed oscillating case 

It is seen that the effects of the perturbation are 
located on the topos 3 and 4 because these 
structures do not appear in the decomposition of the 
non perturbed case. The topos 5 and 6 of the 

perturbed case indeed remain similar to the topos 4 
and 5, respectively (eventually up to an arbitrary 
sign), of the non perturbed case. 

Therefore the perturbation is shown to deeply 
modify the topos 3 of the non perturbed case, 
transforming this structure into the topos 3 and 4. 
Note that the non perturbed topos 3 has a 
symmetrical shape on the upper boundary compared 
to the lower boundary, leading to a zero lift force. 
For the perturbed case, this symmetry remains but it 
is decomposed into two topos (3 and 4). But these 
structures have a contribution in terms of global 
force which is representative of the drag (and the 
pitching moment) as it can be seen on the 
corresponding chronos that are similar to the drag 
time history. 

The spatio-temporal analysis confirms then that 
the lift produced by the alternate vortex shedding is 
globally not perturbed by the actuator. The 
perturbation, localized inside the shear layer, is not 
able to disorganize the instability which is caused 
by the mean flow characteristics around the 
cylinder section.  

5.2 Actuation 

In fact this control scheme is very different of 
those of Kubo et al. (1996) or Li et al. (2003) for 
which the actuators are mounted at the leading edge 
corners of the square section. These corners are the 
separation points where the two shear layers are 
generated, thus where a perturbation will have a 
maximum efficiency. 

The mean flow characteristics can be modified 
by these schemes, which can lead for instance to the 
generation of a steady lift, indicating a global 
change in the stall regions on the lateral faces of the 
section. 

It is therefore interesting in the present case to 
consider the effects of the amplitude A0 of the 
perturbation. Without oscillation of the cylinder, 
the main results are given in Table 3. 

 
A0 0 2.8 % 10 % 

Cx mean 2.19 2.19 2.03 
Cx RMS 0.15 0.21 0.22 
Cz RMS 1.40 1.38 1.18 

Table 3 : Computed aerodynamic coefficients 
without oscillation versus perturbation amplitude 

It is seen that the small amplitude of 2.8 % is not 
able to modify significantly the unsteady lift value, 
and the mean drag remains unchanged.  

To observe a decrease of the unsteady lift, the 
actuator amplitude has to be increased up to 10 %. 
In this case, the perturbation leads to a mean drag 
decrease of about 10 %, which means that the wake 



morphology has also been modified. But the energy 
associated to the actuator, roughly proportional to 
the square of the perturbation amplitude, becomes 
then of the same order as that of the oscillations. 

6. CONCLUSION 

A numerical study of perturbed oscillations of a 
square section cylinder, due to alternate vortex 
shedding, has been presented. With the help of 
biorthogonal decomposition of the unsteady lift 
distribution, a spatio-temporal analysis was 
performed. We have shown that the perturbation 
scheme, similar to the experiments of Cheng et al. 
(2003), is efficient in perturbing the base flow only 
when the actuator amplitude is high.  

Further work is to use another approach in 
understanding the sensitivity of the flow to 
perturbation. The idea is to use the results of the 
stability theory, based on the wake velocity profile 
as the base flow. 

7. REFERENCES 

BEARMAN, P.W. & OBASAJU, E.D., 1982 An 
experimental study of pressure fluctuations on fixed 
and oscillating square-section cylinders. Journal of 
Fluid Mechanics 119: 297-321. 

CHENG, L., ZHOU, Y. & ZHANG, M.M., 2003 
Perturbed interaction between vortex shedding and 
induced vibration. Journal of Fluids and Structures 
17: 887-901. 

DAVIS, R.W. & MOORE, E.F., 1982 A numerical 
study of vortex shedding from rectangles. Journal 
of Fluid Mechanics, 116: 475-506. 

HEMON, P. & SANTI, F., 2003 Applications of 
biorthogonal decompositions in fluid-structure 
interactions. Journal of Fluids and Structures 17: 
1123-1143. 

KUBO, Y., MODI, V.J., KOTSUBO, C., 
HAYASHIDA, K. & KATO, K., 1996. Suppression 
of wind-induced vibrations of tall structures 
through moving surface boundary-layer control. 
Journal of Wind Engineering and Industrial 
Aerodynamics 61: 181-194. 

LI, Y.F., FLAY, R.G.J. & RICHARDS, P.J., 2003 
Cross-wind excitation of a 2D square prism with 
vibrating leading edge flaps. Journal of Wind 
Engineering and Industrial Aerodynamics 91: 185-
197. 

LUO, S.C., YAZDANI, Md.G., CHEW, Y.T. & 
LEE T.S., 1994 Effects of incidence and afterbody 
shape on flow past bluff cylinders. Journal of Wind 
Engineering and Industrial Aerodynamics 53: 375-
399. 

NORBERG, C. 1993. Flow around rectangular 
cylinders: pressure forces and wake frequencies. 
Journal of Wind Engineering and Industrial 
Aerodynamics 49: 187-196. 

VERSTAPPEN R. 2002. On computing a turbulent 
square cylinder wake. Conference on Bluff Body 
Wakes and Vortex-Induced Vibrations (BBVIV3), 
Port Douglas, Australia, 17-20 December. 

YI D. & OKAJIMA A. 1996 Aerodynamic forces 
acting on an oscillating rectangular cylinder and the 
aeroelastic instabilities at moderate Reynolds 
number (experiments). JSME International Journal, 
series B, 39(2): 343-353. 


