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ABSTRACT

A ribbon hanging in a vertical airstream experi-
ences sudden vibrations by flutter when the flow
velocity reaches a critical value. The experiments
conducted here for strips made of different ma-
terials show two distinct behaviors depending on
the length of the strip. For short strips, the crit-
ical flow velocity depends strongly on the length,
whereas for longer strips the critical velocity is
independent of the length. These behaviors are
analysed using a model derived by Datta, based
on slender body approzimation and unsteady po-
tential flow theory. This yields an equation simi-
lar to that pertaining to a hanging pipe conveying
fluid. The corresponding critical velocities are in
good agreement with those of the experiments on
a set of twelve different ribbons

For each strip, an asymptotic velocity can be
defined from high lengths results. The model pre-
dicts that this velocity only depends on the ra-
tio between the fluid added mass and the ribbon
mass. This is compared with experiments using
strips of various width and materials.

1. INTRODUCTION

Vibration of paper due to axial airflow is an im-
portant issue for paper manufacturing and paper
printing (Watanabe, 2002). In those industries
long bands of paper are fed through machines
at high speed. Paper is consequently swept by
an airflow which is likely to cause instabilities.
Such vibrations can provoke folding, wrinkling
and even tearing of the paper bands, thereby lim-
iting the production pace.

A strip hanging in a vertical airflow is observed
to vibrate when the flow velocity is raised above
a critical value. This system was first studied by
Datta and Gottenberg (1975) who developed a
model based on potential flow theory and con-
ducted experiments with Mylar strips.

A similar problem is that of a hanging pipe
conveying a water flow, see Paidoussis (1998) for
an extensive review. Recently, Doaré and de Lan-
gre (2002) showed that an asymptotic régime ex-
ists for long pipes, where the characteristics of

the instabilities do not depend on the pipe length.
The corresponding transition length could be de-
rived by considering the local stability of bending
waves.

The aim of the present paper is to conduct for
hanging ribbons an analysis similar to that of
Doaré and de Langre (2002) for pipes. In sec-
tion 2, the experimental results are given. They
are analysed in section 3 using a potential flow
model proposed by Datta. The particular case of
long ribbons is addressed in section 4.

2. EXPERIMENTS

We test four different materials: paper, Mylar,
fabric and silk. In order to investigate the effect
of the width, three different ribbon widths B are
selected for each material: 20 mm, 30 mm and
55 mm. Hence, a set of twelve different ribbons
is tested. The paper is classical printer paper,
the fabric is from cotton sheets, the Mylar is a
polyester film used as dielectrics and the silk is
taken from an advertising streamer. The flexural
rigidity D of each ribbon is measured through the
buckling height h, (minimum height for which
a vertical strip, clamped at its bottom, buckles
under its own weight), Doubrere (2001)

h3mg
= e 1
7.83 (1)

where g denotes gravity and m is the mass per
unit area. The four materials have very different
characteristics, as detailed in Table 1.

m (g/m?) he (mm) D (kg.m?/s%)
Paper 79,0 130 220.10°°
Mylar 51,6 72 24.1076
Fabric  216,5 40 17.1076
Silk 63,0 26 1,4.10°6

Table 1: Ribbon characteristics: m, mass per unit
area; hc, buckling height; D, flexural rigidity.

A strip of length L is hanged in a vertical wind
tunnel. The flow velocity is progressively raised
until a critical velocity U, is reached and steady



vibrations are observed, Figure 2. To analyse the
dependence of U, on L, we vary the length of the
strip by progressively shortening it.

Table 2: Flutter of a hanging paper strip over a
half period.

The critical flow velocity is plotted in Figures
1 and 2 as a function of the ribbon length for
each material and for each width. In all cases,
two regimes are observed. For short ribbons, the
critical velocity depends strongly on the length,
whereas for long ribbons the critical velocity is
weakly dependent on the length. This is very
pronounced in the case of paper and Mylar, Fig-
ure 1, but is less obvious in the case of fabric and
silk, Figure 2. These evolutions are very sim-
ilar to those observed for fluid-conveying pipes
(Doaré and de Langre, 2002).

3. MODEL

The Reynolds number based on the wind tunnel
diameter is Reg ~ 70000 (U = 5 m/s, charac-
teristic flow velocity and d = 19.4 cm, diameter
of the test section). The critical Reynolds num-
ber for transition in Hagen-Poiseuille flow being
2100 (Bird et al, 1960), the flow is fully turbulent.
Here the experimental set-up (fine grid, honey-
comb and convergent at the inlet) provides a low
turbulence level, of less than to 0.1% so that we
assume the flow to be uniform and steady.

The ribbons have very small thickness, be-
tween 0.05 and 0.6 mm, compared to their length,
5 to 50 cm. Thus, they can be considered as slen-
der bodies.
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Figure 1: Effect of ribbon length on the criti-
cal velocity for flutter: (a) paper and (b) Mylar.
Ribbon width: (¢) 20 mm, (+) 30 mm and (o)

55 mm.
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Figure 2: Effect of ribbon length on the critical
velocity for flutter: (a) fabric and (b) silk. Rib-
bon width: (¢) 20 mm, (+) 30 mm and (o) 55

min.

Figure 3: Ribbon hanging in a vertical airstream

We use an unsteady potential flow theory to
derive fluid action (Paidoussis, 2003).

Under these conditions, the equation governing
the lateral deflection of the strip, Figure 3, as
proposed by Datta, reads

o'y o 2 OY
ox7 ~ ax | Mo~ X) ~MU) 5%
o’y o’y

where Y is the deflection of the strip, 7 is time,
g is gravity, L is the total length of the strip, U
is the flow velocity and M is the added mass due
to the presence of the fluid.

For a unit area of strip, the added mass is
taken as M = wpB /4, which models an infinitely
long rigid plate undergoing pure translation. The
added mass in air is not negligible here, being of
the same order as the ribbon mass.

Note that for typical values of the parameters,
such as U = 4m/s, L = 0,3 m and a flutter
frequency of f = 5 Hz, the reduced velocity is
Ugr = 2.7. Hence, all the terms in equation (2)
are of similar order of magnitude and none of
them can be neglected.

The boundary conditions associated to equa-



tion (2) are

oY
%Y 3’y
W( ):W(L):O’ (3)

respectively for the clamped top and for the free
extremity at the bottom.

Following Doaré and de Langre (2002), we
define now dimensionless variables using 1 =

(D /mg)l/ 3 as the characteristic length

X Y
n n
, |: mg :|1/2 |:M:|1/2U
= | ; vV=|——0o ;
n(M+m) nmg
M L
= . f:—.

Equation (2) then becomes
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with clamped boundary conditions (y'(0) =
y"”(0) = 0) at the top and free conditions at the
bottom end (y"(£) = y"'(£) = 0).

This equation is identical to the one used by
Doaré in the case of a fluid-conveying pipe.

Material Width Mass parameter
B B

Paper 20 mm 0.19
30 mm 0.26

54 mm 0.40

Mylar 20 mm 0.27
30 mm 0.35

54 mm 0.50

Fabric 20 mm 0.08
30 mm 0.12

55 mm 0.19

Silk 20 mm 0.23
30 mm 0.31

55 mm 0.45

Table 3: Mass parameter varying according to the
material and the ribbon width.

For a given flow velocity v, the strip is unstable
if one of the eigenmodes of this system has a neg-
ative damping. The governing parameters are £,
the reduced ribbon length, v, the dimensionless
flow velocity and 3, the mass ratio. The critical
velocity v, is the lowest value of v such that an
unstable mode exists. This critical velocity de-
pends on two parameter, £ and 3. As in Doaré
and de Langre (2002), we derive the character-
istics of the eigenmodes of this equation using a
Galerkin approximation based on the eigenmodes
without flow nor gravity. This is done for the
twelve different values of B, Table 3, as a func-
tion of the dimensionless length £.

In Figures 4 and 5 we compare four typical re-
sults of the model with experimental data. On
all cases the dependence of the critical velocity
with length is similar to that observed in the ex-
periments: (a) for short ribbons the dependence
is strong (b) for long ribbons the dependence is
weak.

The order of magnitude of the critical velocity
is well recovered by the model.

4. THE LONG STRIP CASE

Both the experiments and the model show low
length dependence of the critical velocity for long
strips. We may therefore define for each ribbon
an asymptotic critical velocity, vg°.

In the model this velocity only depends on the
mass ratio 8. We compare the experimental val-
ues of this asymptotic velocity with those derived
from the model, for all values of 3 given in Table
3. This is shown in Figure 6.

The monotonic evolution of vg° given by the
model is seen to be a good approximation of
the experimental critical velocities. Note that in
the experiments (3 is varied either by changing
the ribbon mass or by changing the added mass
through the ribbon width. This results in non-
monotonic evolutions of the experimental values
of vZ°, indicating that 3 is not the only param-
eter of the system. This is clearly the limit of
Datta’s model.

5. CONCLUSION

We carried out experiments for twelve differ-
ent ribbons hanging in axial airflow. The tests
confirm the expected likenesses of behavior be-
tween the hanging ribbon and the hanging pipe:
the critical velocity for short ribbons depends
strongly on the length whereas the critical ve-
locity depends weakly on the length for longer



Figure 4: Effect of length on the critical velocity. Figure 5: Effect of length on the critical velocity.
(-) Computations, (o) Experiments; (a) Paper, (-) Computations, (o) Experiments; (a) Fabric,
B=20 mm; (b) Mylar, B=20 mm. B=30 mm; (b) Silk, B=55 mm.
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Figure 6: Asymptotic critical velocity depen-
dence on the mass ratio. (O0) Model, equation (4);
(0) B=54 mm, (+) B=30 mm, (¢) B=20 mm.

ribbons.

The experimental conditions make Datta’s
model for airswept hanging strips relevant in our
case. We proposed a non-dimensionalisation for
these equations that leads to the same equation
as Doaré’s for a hanging fluid conveying pipe.
The mass parameter 8 appears as the variable
characteristic of the strip.

The model predictions are in good agreement
with the experimental data. At low length, it
predicts a critical velocity strongly dependent on
the length; at high length, it predicts a critical
velocity almost constant with the length.

The high length behavior allows to define an
asymptotic velocity v°® for each ribbon. The
model predicts that v° is an increasing func-
tion of the mass parameter only. The experi-
ments confirm this result as long as ribbons of
the same material are concerned. The model is
limited however to compare high length behav-
ior of strips made of different materials. An-
other parameter, material-dependent like inter-
nal friction, might also be taken into account in
the model. This is currently being done.
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