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ABSTRACT: Flexible structures such as cable-stayed bridges are subject to dynamic wind loads. 
These are usually divided into two categories, flutter which is a motion-induced load and buffeting, 
which is generally considered as an uncoupled load. When these two phenomena are intertwined, 
it becomes difficult to use spectral methods and time simulation represents a relatively new and 
better alternative. The present study focuses on a new time-delayed model for the motion-induced 
pitching moment which can be combined with the effect of a gust. The experimental validation in 
wind tunnel is provided where flexibly mounted deck sections are submitted to a single gust. Three 
typical sections, stable or unstable, are considered: the Millau bridge, the Tacoma bridge and the 
NACA-4412 section. 
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1 INTRODUCTION 
Aeroelastic design of bridges have been predominantly conducted in the frequency domain (1). 
Based on linear formulations of motion-dependent and buffeting loadings, spectral methods are 
generally sufficient for catching the critical parameters for the onset of flutter or calculating the 
variance of the dynamical response to a stationary turbulent wind. Nevertheless, spectral methods 
fail to reproduce neither transient behavior nor nonlinearities. Current challenges in wind engi-
neering are to study nonlinear and transient behavior of structures (2-3), in order to describe effects 
of highly turbulent winds, or unusual topography effects (4). Because of the mentioned restrictions, 
these problems can only be solved using a time-dependent framework (5). Time domain analysis 
of bridge deck response conveniently combine different kinds of wind load including transient 
gusts effects. It can also take into account structural or aerodynamic nonlinearities (6-7). To ac-
count for delayed interaction between fluid and bridges, indicial function generalization can be 
used (8, 9), or measured (10). On the other hand, Nakamura studied the mechanism of flutter of 
bluff bodies depending on their aspect ratio and quasi-steady theory (11, 12). He highlighted that 
fluid memory effects are responsible for the onset of torsional flutter, and that quasi-steady ap-
proach generally fails to predict it. 

A new and improved version of quasi-steady theory, which includes an additional time-delay 
component, is introduced. Based on experimental data, this upgraded model should cover fluid 
memory effects as well. The objective is to propose a time-dependent formulation of pitching mo-
ment which is able to reproduce dynamical behavior of a deck under steady and unsteady wind. 
Such a model has to describe both stable damped behavior and unstable torsional flutter phenom-
enon. It should also allow the insertion of nonlinearities. The study is restricted to the case of a 
single degree of freedom bridge deck system (Fig. 4), subject to a gust solicitation, see (Fig. 5), 
superimposed to steady wind conditions. 

Usual wind design procedure requires the results of two different representation of wind forces 
that are combined to compute both the aeroelastic response to steady wind and the buffeting re-
sponse of the structure (Fig. 1(a)). It is based on static and dynamic tests in wind tunnel. The 



alternative approach proposed in this paper (Fig. 1(b)) involves the same kind of wind tunnel tests. 
It relies on a new formulation of aeroelastic forces where the amplitude is calibrated with static 
coefficients and on a time-delay computed through the flutter derivatives. Both experimental co-
efficients are well known to bridge engineering community. Compared to the indicial function 
approach identified with flutter derivatives that provides the same type of predictions (8, 9), the 
proposed formulation requires fewer calculations. 
 
 

  
Figure 1 : usual bridges torsion design procedure (a) versus new time-delayed procedure (b) 

2 WIND TUNNEL TESTS 

2.1 Structural, aerodynamic and aeroelastic parameters 

Details of the geometry of the cross sections of the model of the Millau viaduct and Tacoma bridge 
are shown in (Fig. 4). Reduced models are tested in an 18 cm square section wind tunnel. The 
obstruction coefficient in the vein does not exceed 6% for Millau and 8,5% for Tacoma, for an 
angle of attack of 10 degrees. 
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For the static wind tunnel tests, cross-sections are mounted on a force balance. The lift force and 
the pitching moment are measured for several angles of attack from -12 degrees to +12 degrees 
(Figs. 3-4). For the dynamic tests, the rigid bridge deck sections are flexibly mounted in pitch. 

 
 

 
 

Figure 2 : (a) Millau reduced model scale: 1/460, (b) Tacoma reduced model scale: 1/200 

 

 

 

  
 
Figure 3 : Static lift coefficient 𝐶𝑧 vs angle of attack, (a) Millau Re=78 000, (b) Tacoma Re=70 000 

 

 

  
 
Figure 4 : Static pitch coefficient 𝐶𝑀 vs angle of attack, (a) Millau Re=78 000, (b) Tacoma Re=70 000 
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Table 1 : Millau and Tacoma - slope of static force coefficients 

Cross section Millau Tacoma 

Reynolds number 78 000 70 000 

𝑪𝑴
′  1,08 -0,86 

𝑪𝒛
′  3,8 6,15 

 

 
Table 2 : Dynamic test main parameters 

 Natural frequency (Hz) Structural reduced damping (%) 

Millau 11,0 0,12 

Tacoma 10,8 1,0 

 

 

The pitch angle 𝜃(𝑡) is measured using a laser displacement sensor. Response frequencies of 

the systems are obtained by spectral analysis. Damping is measured during free decay tests. The 

structural stiffness 𝑘𝜃 , the reduced damping 𝜂𝜃  and the natural frequency 𝜔𝜃  are identified 

without wind (see Table 2). Aerodynamic damping is obtained by subtracting structural damping 

(small, typically 0.15%) to the total damping measured under wind conditions. Values of flutter 

derivatives 𝐴2
∗  versus reduced velocity result from this measurements (Fig. 5). 

In order to get the largest consistency of the upcoming results, static and dynamic tests are 

performed with the same models, in the same wind tunnel, and for the same Reynolds numbers. 

The slope of the Tacoma bridge pitching coefficient is negative while it is generally positive 

for stable structures such as the wings or the Millau viaduct (Table 2). The analysis of bridge flutter 

stability is generally based on the sign of the flutter derivative 𝐴2
∗ . However, wind tunnel experi-

ments and results from the literature show that sections with a positive 𝐴2
∗  generally have a neg-

ative 𝐶𝑀
′  coefficient slope. From this experimental point of view, it seems possible to study the 

torsional stability of bridge decks, as it is done for some particular bluff body geometries. 

2.2 Experimental and numerical gust simulation 

Gusts are produced in the wind tunnel by a flap mounted upstream (Fig. 6), powered by an engine, 
so that its motion is perfectly replicable. Within the scope of this study two kinds of gusts with 
different time length are generated. They are respectively selected to obtain a duration of the per-
turbation about one period of the system under zero wind condition (case A), and half of this period 
(case B). The vertical component 𝑤(𝑡) of wind speed profile (Fig. 7) measured with hot wires 
can be fitted using Gaussian functions. Mean values of maximum and minimum amplitudes of 
vertical components computed from five distinct gust records are plotted versus wind velocity see 
(Fig. 8). 
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The simulated transient load due to the gust is written as in (2), using a Küssner’s function 𝜑 
integrated over the non-dimensional time 𝑠 = 𝑡 𝑈 𝐵⁄  in (Equ. 2). Duhamel’s integral is calculated 
using the approximation of 𝜑 proposed by Jones (13) for an elliptic airfoil (Equ. 3). Note that the 
longitudinal component of the gust 𝑢(𝑡) does not appear in this model. 
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Figure 5: 𝐴2

∗  flutter derivative vs reduced frequency - Millau (a), Tacoma (b) 

 
 
  

 

 

 

Figure 7: Gust velocity profile vs non-dimensional time Figure 8: Gust amplitude vs mean velocity 
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Figure 6 : wind tunnel flap setup 

𝐴
2∗
 

𝐴
2∗
 

𝑈𝑟 

(a) (b) 

𝑈𝑟 



3 NUMERICAL SIMULATION AND VALIDATION 

3.1 Time-delayed pitching moment model 

Quasi-steady approximation neglects fluid memory effects, which are important to predict tor-
sional flutter of bluff bodies (11). Quasi-steady models are based on static aerodynamic coeffi-
cients measured in wind tunnel for different position of the bridge decks. They are measured on 
motionless structures so that the dynamic effect is missing. The time domain model presented here 
is a simple way to compensate this limit. 

 

 
The simulated bridge deck section is flexible in pitch. While the rotation axis and gravity center 

are located at the mid-chord (Fig. 9), the system can be described by the equation of motion: 

𝐽0�̈� + 2𝐽0𝜂𝜃𝜔𝜃�̇� + 𝑘𝜃𝜃 = 𝑀𝑦
𝑚(𝑡) + 𝑀𝑦

𝑔𝑢𝑠𝑡
(𝑡),  (4) 

where 𝐽0 = 𝑘𝜃/𝜔𝜃
2 , 𝑀𝑦

𝑚 is the motion-induced moment and 𝑀𝑦
𝑔𝑢𝑠𝑡

 the gust-induced moment.  
 
The motion-dependent load 𝑀𝑦

𝑚 is the key of the model. It is formulated thanks to a new time 
domain model inspired by quasi-steady theory, introducing the time delay 𝜏 relative to memory 
fluid effects (Equ. 5). The lag 𝜏 is the time taken by the flow to adapt itself to the new configura-
tion induced by the movement of the bridge. It is similar to previous work achieved in the field of 
aeroelastic behavior of tube bundles (14) or in-line chimneys (15), where the time delay is intro-
duced to take into account interactions between bodies as in Price & Païdoussis model (16). De-
layed aerodynamic behaviors are also used in models of the dynamic stall flutter of airfoils. Leish-
man and Beddoes (17) developed semi-empirical model for dynamic stall based on a time-delay 
method where two different time delays are used. One represents the time during which the leading 
edge vortex process occurs. Stall delay appears in ONERA method as well (18). 

𝑀𝑦
𝑚(𝑡) =

𝜌𝑈 2𝐵2

2
𝐶𝑀(𝑡 − 𝜏). (5) 

By including the slope of the pitching moment coefficient 𝐶𝑀
′  at low angle of attack, the mo-

tion-induced force can be linearized: 

𝑀𝑦
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2
𝐶𝑀
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By assuming a periodic motion it is possible to link the time lag with the aerodynamic damping, 
and so with the so-called flutter derivative 𝐴2

∗  (1). Introducing 𝜏∗ = 𝜏 𝑈 𝐵⁄  as the non-dimen-
sional time-delay and the reduced velocity 𝑈𝑟 = 𝑈 /𝑓𝐵 we obtain (Equ. 7): 
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2 
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Figure 9: Studied configuration of bridge deck section 
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Values of time-delay obtained from (Equ. 7), using 𝐴2
∗  measured in wind tunnel, are plotted 

versus 𝑈𝑟 in (Fig. 10). Note that in (Equ. 7) the coefficient 𝐶𝑀
′  is obtained also in wind tunnel 

by static tests. It is positive for the stable streamlined sections, Millau and NACA and negative for 
the Tacoma unstable section. An important result of (Fig. 10) is that the condition 𝜏∗ 𝑈𝑟⁄ < ½ 
remains valid, so that the sign of 𝐴2

∗  is completely imposed by the sign of 𝐶𝑀
′ . This result is 

similar to the stability criterion established by Nakamura [11] on small aspect ratio bluff bodies. 
 

Figure 10: Non-dimensional time delay 𝝉∗ vs reduced velocity 𝑼𝒓 

3.2 Physical interpretations of the time-delay parameter 

Physically, the values of 𝜏∗ are connected with the adaptation delay of the flow to the bridge’s 
motion. This may explain why, it is found that streamlined cross-sections (e.g. Millau or NACA) 
are characterized by smaller values of 𝜏∗ than bluff bodies (e.g. Tacoma) for which stalled flow 
is much more dominant.  

Let 𝐵/𝑈 = 𝑇𝑤𝑖𝑛𝑑  be the fluid’s characteristic time, required by a particle of fluid to travel 

across the bridge deck section. Then 𝜏∗ = 𝜏/𝑇𝑤𝑖𝑛𝑑 is the ratio between the time-delay and the 

fluid travel time. It represents a time scale of the flow disturbances due to the obstacle. For the 

Millau deck, 𝜏∗ is lower than one, indicating that the time-delay is smaller than the fluid travel 

time. On the contrary, for the Tacoma bridge 𝜏∗ is about three, indicating that the time-delay is 

much greater than the fluid travel time. Observations show that unstable sections are characterized 

by time-delays longer than the fluid travel time, whereas the time-delays of stable sections are of 

the order of magnitude or smaller than the fluid travel time. But in either case, it is experimentally 

demonstrated that the variations of 𝜏∗ remain without influence on the flutter stability of the 

bridge decks, which is controlled only by the sign of 𝐶𝑀
′ . 

The time delay 𝜏∗ can also be seen as a portion of the reduced velocity. If it is between zero 

and 𝑈𝑟 2⁄ , system is stable if 𝐶𝑀
′ > 0, and unstable if 𝐶𝑀

′ < 0. If it is between 𝑈𝑟 2⁄  and 𝑈𝑟, 

system is unstable if 𝐶𝑀
′ > 0, and stable if 𝐶𝑀

′ < 0. Recall however that bridge decks belong to 

the first category. 

Furthermore one can observe (Fig. 10) that some results obtained with Tacoma reduced model 

are close to the maximum value of aerodynamic damping which can be estimated trough the 

proposed time-delay model, which is reached when 𝜏∗ = τ𝑙𝑖𝑚
∗ = 𝑈𝑟/4. Indeed, when 𝑈𝑟 = 14.6 

then τ𝑙𝑖𝑚
∗ = 3.65, just larger than the value shown in (Fig. 10). The highest value (either positive 

or negative) of the corresponding flutter derivative is then 𝐴2𝑙𝑖𝑚𝑖𝑡

∗ = −𝐶𝑀
′ 𝑈𝑟

2/4𝜋2 . This is 

𝜏
∗
 

𝑈𝑟 



consitent with the fact that H-shape cross sections are known for having higher negative 

aerodynamic damping than other current bridge sections (1). Thus, despite this limitation, the time-

delay model should be able to predict torsionnal behavior of most existing bridges, which are 

usually better profiled. 

3.4 Results and comparison with wind tunnel tests 

Finally, simulation of pitching motion is plotted simultaneously with the corresponding records 
of measurements in wind tunnel. Response accounts for both terms, movement and gust induced 
loads according to (Equ. 4). An example of simulated and measured motions of the Millau cross-
section, subject to a gust excitation, is presented in (Fig. 11). Both transient and steady-state results 
are in good agreement with experiments. Indeed, amplitude of initial bump and damped decay are 
computed with a good accuracy.  

Another example of simulated motion with the unstable cross-section of the Tacoma bridge 
subject to motion-dependent wind loads only is shown in (Fig. 12). Here the instability is triggered 
by residual wind tunnel turbulences after a short time. The behaviour at small angles of attack is 
in good agreement with the experiments. The differences appear at higher angles of attack, espe-
cially above 5 degrees, due to aerodynamic non-linearities. It may be noted that the implementation 
of a non-linear expression of the pitching coefficient in the model, instead of the linearized (Equ. 
6), could significantly improve the simulation at larger amplitude of motion. 

4 CONCLUSIONS 

A new time delay approach of motion-induced forces shows good ability to calculate the tor-
sional behavior of bridge decks subjected to a single gust versus time. The model requires classical 
experimental results already used in wind engineering, such as the static force coefficients and the 
flutter derivative 𝐴2

∗ . A link between the non-dimensional time delay of the pitching moment is 
established with the aerodynamic damping, providing a physical meaning consistent with experi-
mental results. Moreover, identification of a range of reduced velocity in which the time-delay is 
almost constant for a given deck cross-section seems possible. Direct relationship between the 
slope of pitch coefficient and the flutter stability is also established. This provides a useful design 
tool to the structural engineering community. The variance and the extreme values of the buffeting 
response of bridge decks are explored in an additional work which compares experimental results 
and time simulations. 

Figure 11: Response to a single gust versus non-dimensional time – Millau deck, gust case A, 𝑈𝑟 = 21 
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Figure 12: Response to steady wind versus non-dimensional time – Tacoma deck, 𝑈𝑟 = 14,6 


