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The performance of recently proposed flag-based energy harvesters is strongly limited by the
chaotic response of flags to strong winds. From an experimental point of view, the detection
of flag chaotic dynamics were scarce, based on the flapping amplitude and the maximal Lya-
punov exponent. In practice, tracking the flapping amplitude is difficult and flawed in the large
oscillation limit. Also, computing the maximal Lyapunov exponent from time series of limited
size requires strong assumptions on the attractor geometry, without getting insurance of their
reliability. For bypassing these issues, (1) we use a time series which takes into account the whole
dynamics of the flag, by using the flapping moment which integrates its displacements, and (2)
we apply an algorithm of detection of chaos based on recurring values in time series.
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1. Introduction

The irregular flapping of flags is a common experi-
ence, as illustrated by physicists toying with their
immediate environment in the 70’s: “How far away
is the nearest strange attractor? [. . .] That flag snap-
ping erratically in a steady breeze?” [Gleick, 1987].
As earlier observed in wind tunnels, the flag oscilla-
tions become “violent and irregular” [Taneda, 1968]
at high wind velocity. Numerically, the intuitive
scenario “straight state–periodic flapping–chaotic
flapping” has been stated by several numerical

simulations [Yadykin et al., 2001; Connell & Yue,
2007; Alben & Shelley, 2008; Michelin et al., 2008;
Huang & Sung, 2010], but scarce experimental
works have undertaken to confirm it. Recent pro-
totypes of energy harvesters based on the periodic
oscillations of flags (see e.g. [Xia et al., 2015; Virot
et al., 2016]) are now motivating quantitative esti-
mations of the range of wind velocities allowing
periodic motions as a function of the characteris-
tics of flags. As we will see, this requires to tackle
two major issues. Firstly, (1) the attempts to our
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knowledge to detect flag chaotic dynamics [Ait
Abderrahmane et al., 2011; Zhao et al., 2012;
Ait Abderrahmane et al., 2012] were based on
the tracking of a single point of the flag with a
laser beam perpendicular to the flag, reasonable
in the limit of small oscillations but biased in
practice since typical flapping amplitudes can be
of the order of the flag length [Shelley & Zhang,
2011]. A global observable is preferable to take
into account the whole dynamics: in this paper
we use the moment around the flagpole induced
by fluid forces (hereafter called flapping moment).
Secondly, (2) an equivalent attractor is classically
reconstructed with the time-delay method [Packard
et al., 1980; Takens & Mañé, 1981] to characterize
the rate of separation of close trajectories. Then,
the maximal Lyapunov exponent is usually com-
puted but requires assumptions on the attractor
geometry. We suggest that a method stating its con-
vergence is more appropriate: we use an algorithm
based on recurring values in a time series (as pro-
posed in [Faranda et al., 2012]), combining the work
of Poincaré [1890] and the extreme value theory
[Leadbetter et al., 1982]. Unlike classical tools, the
method is based on theoretical results for chaotic
systems which predict the type of the underlying
distribution of recurrences. This information allows
to check whether the results obtained experimen-
tally agree with the theoretically expected distri-
bution. It allows to include statistical tests in the
algorithm and increase the robustness of the results.
This is a crucial issue when dealing with relatively
short time series.

2. Experimental Set-Up

The flag studied is rectangular, made of bi-oriented
polypropylene, with a mass density 890 kg · m−3

and a bending rigidity 1.3 × 10−4 N · m (Fig. 1).
Since it does not sag at rest, gravity effects are
neglected. The flag is placed in an Eiffel-type wind
tunnel of rectangular cross-section width×height =
260mm × 240 mm and it is clamped in a flagpole
of thickness 4mm. The distance to the wind tun-
nel walls below and above the flag is respectively
40 mm and 100 mm. The wind velocity can be var-
ied up to 15 m/s by increments of 0.4 m/s, for a
Reynolds number based on the flag length lower
than 3 × 105 and a turbulence level — the rela-
tive importance of velocity temporal fluctuations —
about 0.4%. The instantaneous flapping moment
is reconstructed by a linear combination of the

Fig. 1. Schematic representation of the experiment: the flag
is placed in a wind tunnel and fixed at a flagpole which is con-
nected to four force sensors. The flapping moment is recon-
structed from the signals of the force sensors.

force sensor signal, as shown in Fig. 2, with 1024
acquisitions per second. The data are filtered above
60 Hz and the noise is reduced by treating indepen-
dently six blocks of 4 sec (with an overlap of 50%);
the resulting frequency resolution is then 0.25 Hz
(see also [Virot et al., 2013] for further conception
details). Since the acquisition lasts 14 sec, the time
series contains approximately 1.4×104 observations,
spanning more than hundred flapping periods in
general. The length of the time series is irreme-
diably limited, due to the experimental procedure.
Indeed, a typical test consists of successive acqui-
sitions, each separated by some minutes to reach
steady states. Since the wind velocity range U = 0–
15 m/s is scanned with increments of 0.4 m/s, the
flag undergoes about 105 cycles, which in practice
leads the flag to fracture by fatigue [Virot, 2015].

3. Detection of Chaos

Some ideas pertaining to the extreme value the-
ory are recalled to design the algorithm of detec-
tion of chaos (see also [Leadbetter et al., 1982]).
Let independent and identically distributed obser-
vations x(t) be sampled into n blocks, each con-
taining m observations. We know that in the limit
n,m → ∞ the cumulative distribution function
of block maxima (Mj)j=1,...,n becomes [Gnedenko,
1943]:

F (x) = exp

{
−

[
1 + ξ

(
x − µ

σ

)]−1/ξ
}

, (1)
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where µ ∈ R is the “location parameter”, σ ∈ R
+∗

is the “scale parameter” and ξ ∈ R is the “tail
index”. The tail index indicates the thickness of the
tail of the distribution: Fréchet distribution (ξ > 0),
Gumbel distribution (ξ = 0) or Weibull distribution
(ξ < 0). Originally, this theory has been devised
for the study of independent and identically dis-
tributed variables x(t). More recently, important
contributions have been made in [Collet, 2001; Fre-
itas & Freitas, 2008; Freitas et al., 2009; Gupta
et al., 2011; Faranda et al., 2011] to deal with vari-
ables with a dependency structure. This is possi-
ble by adapting the Poincaré recurrence theory for
dynamical systems [Poincaré, 1890] to the study of
time series: if one considers a point ζ and takes
as observable the function y(t) = g(dist(ζ, x(t)))
i.e. the time series of the distances between ζ and
the other points conveniently weighted by a func-
tion g(·), it has been proven [Freitas et al., 2009]
that the (block) maxima of the (sampled) observ-
able y(t) converge to the generalized extreme value
distribution [Eq. (1)] providing that the underlying
system is chaotic (meaning intuitively that a partial

loss of dependency structure is achieved). In partic-
ular, if g(·) = −log(·) is selected, one gets conver-
gence towards the Gumbel distribution, i.e. ξ = 0
[Lucarini et al., 2012]. A key point is that the con-
verse is also assumed: by taking a time series of an
unknown dynamical system one can detect whether
it is chaotic or not by fitting the distribution of
maxima of the time series y(t) = −log(dist(ζ, x(t))
to the Gumbel distribution. As a result, a success-
ful fit expresses that the time series is chaotic and
an unsuccessful fit means that it is not chaotic
[Faranda et al., 2012]. In such a framework, there
is no assumption on the attractor geometry (e.g. its
embedding dimension). These ideas have recently
been applied to the detection of chaos in the stan-
dard map [Faranda et al., 2012].

4. Algorithm

Accordingly, the following algorithm is proposed:

(1) Consider a time series x(t) and select an arbi-
trary point ζ, as shown in Fig. 2(a).

(a) (b)

(c) (d)

Fig. 2. (a) Time series of flapping moment at U = 0.9 m/s. The flapping is periodic with a noisy background. (b) The same
at U = 13.8 m/s, without any clear periodicity. (c) Distribution of the maxima of y(t) at U = 0.9m/s [Fig. 2(a)] with a
random value ζ = 0.1981. The red curve is the best fit to Eq. (1) with parameters indicated beside. In this situation the
parameter ξ is moved to the boundary of the parameter space ξ ∈ [−1, 1] and the fit is unsuccessful. (d) The same distribution
at U = 13.8 m/s [Fig. 2(b)] with a random value ζ = 0.4562.
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(2) Compute the series y(t) = −log(dist(ζ, x(t))),
where “dist” refers to the distance operator
[Fig. 2(a)].

(3) Once the series y(t) is divided into n blocks,
extract the maxima (Mj)j=1,...,n. The maxima
of y(t) are related to the minima of dist(ζ, x(t)).

(4) Fit the maxima to the generalized extreme
value distribution [Eq. (1)] with an L-moments
method [Faranda et al., 2012] and register the
best fit parameter ξ [Figs. 2(c) and 2(d)].

(5) Average the best fit tail index ξ for several
points ζ in order to reduce the uncertainty (we
use hundred random values ζ in the following
computations).

(6) Perform a Lilliefors test [Lilliefors, 1967] (an
adaptation of the Kolmogorov–Smirnov test) to
check the reliability of the fit. If the null hypoth-
esis is rejected, the parameters are taken with
caution and not registered.

5. Analysis of the Flag Dynamics

In the following, we focus on three indicators of
chaos: (1) the power spectral densities, (2) the max-
imal Lyapunov exponents, and (3) the algorithm
results (i.e. the statistical test of Lilliefors and the
tail index). The indicators are computed with the
time series of flapping moment, by applying 39
values of wind velocity to the flag.

As a rough indicator of chaos, the power spec-
tral densities are reported in Fig. 3(a), where we
observe a sharp frequency peak for U � 0.5–4 m/s,
suggesting a strongly periodic flapping. The linear
increase of the dominant frequency is consistent
with previous experimental and numerical works
(see e.g. [Virot et al., 2013] and references therein).
Above U � 4m/s, a continuous spectral enrichment
is observed and a growing low-frequency domain
appears at U � 9m/s. Intuitively, these features are
indicative of a transition towards chaotic behavior
[Manneville, 2004].

Prior to the algorithm results, we discuss the
maximum Lyapunov exponent, by following the
steps detailed in [Wolf et al., 1985]. The compu-
tation implies the arbitrary choice of a time-delay
for analyzing an equivalent attractor [Packard et al.,
1980; Takens & Mañé, 1981], and more particularly
the knowledge of its embedding dimension. In order
to do so, we attempted two different methods [Cao,
1997; Gautama et al., 2003], but in both cases the
embedding dimension remained out of reach: both
methods rely on the minimization of a function for

Fig. 3. (a) Evolution of the power spectral densities of the
flapping moment when the wind velocity is increased. The
flag starts to flutter at U � 0.5 m/s. (b) Algorithm results.
The gray area indicates where the data are considered to be
not reliable (data in this regime are not shown). (c) Tail index
ξ. The red area indicates where the convergence towards
a Gumbel distribution is achieved (ξ � 0), i.e. where the
dynamics is chaotic. Error-bars correspond to the standard
deviations of ξ for hundred random values ζ in the algorithm.

which we did not find reliable minima. Our observa-
tions lead us to hypothesize that it is linked to the
short character of the time series. Actually, even if
an embedding dimension were extracted, there is no
way of stating whether the method has converged
to a reliable value or if the time series is too short.
As a result, the computation of the maximal Lya-
punov exponents can be misleading, and does not
clarify whether the flapping is chaotic or not in our
case.

We therefore apply the algorithm based on
recurring values to discriminate between chaotic
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and nonchaotic dynamics. The time series of flap-
ping moment are sampled in n = 56 blocks contain-
ing m � 260 ms (i.e. 250 observations). As a first
step, the results of the statistical test of Lilliefors
are presented in Fig. 3(b). A test parameter lower
than the critical value 0.4 means that on average
there are no differences between the observed dis-
tributions and the generalized extreme value dis-
tribution [Eq. (1)] at the 10% significance level. If
the test is not rejected, we consider that the data
are reliable for the algorithm. We notice that when
the flapping frequency is lower than 4Hz (i.e. below
U = 2m/s), less than one period is included in a
block and the Lilliefors test is rejected. As previ-
ously pointed out, the detection of chaos is based on
the value of the tail index ξ: if ξ � 0, the fit to the
Gumbel distribution succeeds and the dynamics is
chaotic. Otherwise the dynamics is periodic, based
on the analysis of recurrence distribution obtained.
The underlying recurrence distribution for the peri-
odic case is a Dirac’s delta [Lucarini et al., 2016].
In the quasi-periodic case, the distribution is not
bell-shaped but rather narrow as the one observed
in Fig. 2(c). There is no other possibility for the
nonconvergence to the extreme value laws, but note
that as studied in [Faranda et al., 2013; Faranda &
Vaienti, 2013], strong noise can also bring the statis-
tical convergence of the recurrences to the extreme
value distributions. The evolution of the tail index
ξ is presented in Fig. 3(c). We observe a rather con-
tinuous transition from periodic flapping to chaotic
flapping at U � 8 m/s. This threshold is consistent
with the appearance of low frequencies in the power
spectral densities [Fig. 3(a)]. Nevertheless, there is a
systematic drift of ξ towards negative values, and a
short nonchaotic regime is detected at U � 11 m/s,
mirroring the intrinsic sensibility of the algorithm
to statistical fluctuations. The critical value of the
test parameter fixed for the acceptance of the Lil-
liefors test is higher than the one prescribed for
independent and identically distributed variables
(i.e. approximately 0.2 for n � 50 maxima) which is
achieved only for wind velocity higher than 12 m/s.
This value takes into account the dependence struc-
ture between the maxima. We found that maxima
are dependent on clusters of average length 2. This
can be quantified by the extremal index [Freitas
et al., 2012].

We can hypothesize three different behaviors:
a first one for U < 4.5 m/s, where the maxima are
dependent and the test parameter is higher than

0.4; a second one in the range U = 4.5–12 m/s,
where the maxima are dependent but where the
shape of their histogram approaches the general-
ized extreme value distribution; and a third one for
U > 12 m/s, where the maxima are almost indepen-
dent and identically distributed and consistent with
the generalized extreme value distribution accord-
ing to the statistical test.

6. Discussion and Perspectives

We have shown that the algorithm can provide
information on the location of chaotic regimes. We
stressed the fact that it is adapted to time series
of limited size (as usually encountered) because it
states its own convergence unlike classical tools.
Let us now examine the limits of this algorithm
by reporting its dependence on the sampling of the
time series. When fixing the number of blocks n or
the number of observations m on each block (nm
being the size of the time series), the time scale
at which we observe the temporal recurrences in
the algorithm becomes fixed. It therefore imposes
the lowest frequency at which we can analyze the
dynamic of the time series. In the case of Fig. 3(c),
we have chosen m � 260 ms, thus we “hide” the
frequency range 0–4 Hz. For judging the validity of
the algorithm results, we report in Fig. 4 the val-
ues of the wind velocity required for chaos (deter-
mined when the tail index is zero) when the time
scale of blocks is arbitrarily varied. We observe a

Fig. 4. Sensibility of the algorithm to the sampling. The
minimal wind velocity required to detect chaotic flapping
(determined when the tail index is zero) seems to converge
towards 8m/s, but with many discrepancies above 600 ms.
The red curve is a guide to the eyes. The arrow indicates the
block size chosen to do the previous analysis.
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decreasing trend below 100 ms, i.e. when the hidden
frequency range is of the order of the flapping fre-
quency (∼ 10 Hz). On the other hand, when the time
of observation is larger than 600 ms, we see many
discrepancies which can be associated to the fact
that less than n = 25 values are used for recon-
structing the distributions of maxima, probably not
enough.

We conclude that this framework needs to be
applied with care: if the time series is sampled in
too many blocks, the typical frequency of the sys-
tem can be hidden, giving misleading results. Con-
versely, if too few blocks are chosen (typically less
than 25 for this problem), the distributions cannot
be reconstructed properly, and many discrepancies
are reported.

We have discussed a framework which bypasses
a series of difficulties classically linked to the esti-
mation of the embedding dimension. Such anal-
yses could be a gateway for matching prediction
of dynamical system theory together with natural
systems.
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induced enhancement of the energy harvesting perfor-
mance of piezoelectric flags,” Appl. Phys. Lett. 107,
263901.

Yadykin, Y., Tenetov, V. & Levin, D. [2001] “The flow-
induced vibration of a flexible strip hanging vertically
in a parallel flow. Part I: Temporal aeroelastic insta-
bility,” J. Fluids Struct. 15, 1167–1185.
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