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Preface

ISFA, the International Symposium on Flutter and its Application, is a cycle of conferences
initiated by the Japan Research Association on Flutter (JRAF). After ISFA2016, organized
in Tokyo in May 2016, the Second ISFA was supposed to be held in Paris on 12-14 May 2020.
Unfortunately, due to the Covid19 sanitary crisis, ISFA2020 had to be cancelled.

However, to recognize the important work done by more than 160 authors from all over
the world, we have decided to publish numerical proceedings of the symposium and to hold
the PhD award. On behalf of the organizing committee of the Second International Sympo-
sium on Flutter and its Application (ISFA2020), we would like to warmly thank all authors
for their scientific contribution to these proceedings.

To quote Dr. Jiro NAKAMICHI, Chair of ISFA2016, "the objectives of this symposium
are to investigate the integration of traditional and fundamental technologies of flutter in
a multidisciplinary research environment, involving aerospace engineering, mechanical engi-
neering, civil engineering, architecture and biological engineering, and to establish new areas
such as energy conversion, explorations of bio-flight mechanisms and propulsions through
analytical and experimental concept of flutter phenomena."

As you will see in these proceedings, ISFA2020 would have been, after ISFA2016, a great
opportunity for students, scholars, researchers and engineers from more than 21 countries
to scrutinize and exchange on flutter and fluid-structure instability topics, encompassing a
great and stimulating variety of disciplines and applications.

Sponsored by the Japan Research Association on Flutter, ISFA2020 was concurrently orga-
nized by the Hydrodynamics Laboratory (LadHyX/CNRS-Ecole Polytechnique), the Struc-
tural Mechanics and Coupled Systems Laboratory (LMSSC/Cnam) and the French aerospace
agency (ONERA).

On behalf of the organizing committee, we would like to warmly thank the Japan Research
Association on Flutter for their support, the international scientific committee for their work
and all our partners and sponsors for their contributions.

Best regards and we hope you will enjoy reading these proceedings!

X. Amandolese and P. Hémon

Chairmen of ISFA2020
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Aerodynamics and Flutter Problems of Sports Ball Flight
Taketo MIZOTA!

Professor Emeritus of Fukuoka Institute of Technology, Fukuoka, Japan, mizota@fit.ac.jp

Keyword: sports ball aerodynamics, flutter, 3-D trajectory, golfball, baseball, soccer ball

Summary
The strange behavior of three kinds of sport balls flying in the air are studied.

First, the three-dimensional flight trajectory theory for golf ball has been described. The
bank concept of a ball rotation axis was introduced instead of side spin one, which has
been described for over 100 years. Drag and lift around the body axis of a golf ball in
flight are converted into drag, lift, and lateral forces in ground coordinates by vector
analysis. These results were verified by field experiments in still air and atmospheric
boundary layer flow.

Next, the mechanism of strange orbit change of baseball ball has been studied. The
research of pitching, yawing, and rolling knuckle balls focuses on the changes in surface
seam position with slight rotation. The transition from laminar to turbulence boundary
layer flow result in large shift of separation line. We are studying the SFF called front
door ball or back door ball as a mechanism of the trajectory change of 2-seam ball and
4-seam ball. It also describes how to measure the aerodynamic three-component force
and aerodynamic friction torque on the golfball and baseball ball by wind tunnel
experiments.

Finally, the aerodynamic mechanism of the unstable behavior of a slowly rotating soccer
ball was investigated. This phenomenon was clarified by the relationship between the
unsteady force and the wake behaviour. Before in this study, in the supercritical Reynolds
number region of the smooth sphere, the irregular change of Q-shaped and two
longitudinal vortices position had been discovered. This is topologically similar with the
bound vortex and wing tip vortex of an aircraft in stable. This finding could be applied to
the strange behavior of a soccer ball flying with supercritical flow due to the seam effect.

We will also report some topics and products that have been commercialized or are
under development as the application examples of this work.

1 Introduction
Mehta' discusses cricket, baseball, and golf balls as a comprehensive report of
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aerodynamic research on sports balls. Azuma? reports on the flight of various sports balls,
including flight-related quantities from an aerodynamic point of view. He covered the
physical factors related to flying sports not only for baseball, volleyball, shot put, soccer,
table tennis, golf, tennis, but also for frisbees, boomerangs, spears and arrows.

(1) Golfball flight aerodynamics.

The golf balls are hit by various golf clubs such as wood, irons, and wedges.
Professional golfers can fire balls at a maximum speed of 288 km / h (80 m / s) with a
driver and a rotational speed of 10,000 rpm (183 rps) with a wedge. The maximum flight
distance is more than 300m. This is a flight distance of more than 7,000 times the ball
diameter, in which are biggest in the ball sports. Players are fighting with the technology
of landing accuracy of pinpoint less than 1% of the total distances. Predicting the flight
trajectory of a golf ball requires very accurate experiments in the aerodynamics.

The aerodynamic description of how a golf ball hooks and slices was described by J. J.
Thomson? in the concept of side spin. Golf instructors have explained this concept to
golfers since then, to more than 100 years. Davies* conducted an experiment in which a
golf ball was given 8000 rpm (130 rps) of rotation and dropped in a wind tunnel airflow
to identify aerodynamic force from its trajectory. The precise measurement of the
aerodynamic force of a rotating golf ball has been performed by Bearman and Harvey®
using a 2.5 times larger ball. The two-dimensional results of numerical calculations have
been good agreement with the experiment of two-dimensional flight trajectory.

Tavares et al.° measured the decreasing rotational speed of a golf ball during flight by
using a radar technique. As a result, the aerodynamic damping coefficient has been
successfully measured. This was confirmed in our wind tunnel experiments.

The flight trajectory and the rotation speed of a golf ball in flying are easily detected
nowadays with the advent of precise electronic measuring instruments using echoes of
reflected radio waves.

The fact that the rotation axis is tilted from the Cartesian coordinate system can be
explained by the construction of the rotation vector around each axis. However, it is
physically difficult to understand that a golf ball with rigid rotation has two axes, such as
back spin and side spin. Therefore, we explain the results of constructing a three-
dimensional flight trajectory equation under the physical condition that one rotation axis
has a bank angle to the X axis of the initial shooting plane.

By the way, Ohnishi” and Jorgensen® pointed out that the physical mechanism that
changes the trajectory of a golf ball in three dimensions is not a side spin but a bank of
spin axes. However, it was not formulated.

In this equation®'®, the aerodynamic force, which is an external force, must be
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determined by a wind tunnel experiment, so it can be called a semi-experimental method.

Four new technologies were developed in this golf ball research. (1) A technology for
rotating a commercially available golf ball without a resonance speed of up to 200 rps in
the wind tunnel flow. (2) Wind tunnel experimental technology that continuously
measures aerodynamic and friction torque with high accuracy. (3) Measuring method of
the flight distance in still air ® '° or in the atmospheric boundary layer' have been
developed. (4) New smoke wire method effective at flow speed up to atleast40 m/s,10
times or more of conventional SW method.

As a product based on this theory, a hitting ball analyzer has been commercialized.
The ball movement immediately after firing is shot with a camera while slightly changing
the shooting time. From this image analysis, the initial conditions of the ball motion are
detected. The subsequent ball flight trajectory is determined by this built-in equation of
motion.

(2) Baseball ball flight aerodynamics.

According to Ichiro Tani'?, there is a report'® that this is an illusion that baseball curves
appear to be curved despite the observation with a high-speed camera. In smooth ball
rotation experiments by Maccoll'*negative Magnus forces appear in a practical range. It
was pointed out that the trajectory of the smooth ball does not change quantitatively
unless the rotation speed increases significantly. However, in the next issue of Life,
experienced catchers testify that the ball will curve. The magazine, Look's, provides
evidence that not only curved balls, but also so-called straight balls, are curved. Early
researchers may have been obsessed with the negative Magnus effect of the smooth
spheres, ignoring the importance of baseball seam effects.

However, Tani'® performed a wind tunnel experiment on a rotating baseball ball and
stated that a negative Magnus effect did not appear in a baseball ball and that the value
of the lateral force generated by the seam effect caused a curved ball. Tani'® had also
interested in the study of knuckle balls by Watts & Sawyer'’. Ichiro made many
achievements in the US Major League, but Japanese fluid mechanic scholar Ichiro
pioneered baseball science, also.

One result of wind tunnel study state that the drag of the ball has Re dependence™,
and another paper argues'® against to this issue. Although the effects of seams have
been discussed, they are not fully understood. The knuckleball equation of motion was
constructed by Watts & Sawyer'’. Weaver?, a student at the University of Calgary at the
time, pointed out the effects of aerodynamic friction torque in an interesting question. An
answer to this question is obtained in the current study. In recent years, new orbit
changing balls have been recognized one after another. Recent performance
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improvement and technical research of baseball pitchers themselves have made
remarkable progress with the times. We will call them the scientists on the mound.

Modern pitchers throw balls at speeds ranging from 70 km /h (19 m/s)to 170 km / h
(47 m / s). Rotational speeds range from 0 rpm (Orps) to 3000 rpm (50rps). Strangely
changing balls, collectively known as knuckle balls and SFF, are created by the
relationship between the direction of the axis of rotation and the seams. There are many
types of changing balls, called straight balls, curves, shoots, sliders, and folk balls. In the
baseball world, if the pitcher himself declares my ball to be such a changing ball, it tends
to be recognized as it is. From the standpoint of conducting research, another definition
is needed. Here, we describe the research results focusing on the initial state at the
moment when the pitcher releases his hand.

The initial conditions refer to the initial speed U of the ball, the rotation speed N, the
relationship between the ball seam and the rotation axis, the direction of the rotation axis,
and the direction of travel of the ball. Only gravity and aerodynamic forces act on the
flying ball. In this research, we deal with a changing ball called a magic ball. Motivated
by this research, Mizuno Co. developed a sensor ball called MA-Q, will appeared in 5-2
(1).

(3) Slowly spinning soccer ball aerodynamics.

The last topics is a study on the magical change of a soccer ball flying with a slowly
rotation. Phenomena such as balloons on going to the high sky exhibiting strange
fluctuation behavior had been observed for a long time. Taneda?' explained this by
observing bound vortices and random wake motion in the supercritical Re number region
of a smooth surface sphere. Mizota?? described this phenomenon by adapting it to the
erratic behavior of a weakly rotating soccer ball in flight. The soccer ball's flight speed
ranges from 5m /s to 30m / s. In the smooth sphere, the flow is almost in the subcritical
Re number range. The rotation speed is ranging 0 to 10 rps.

The surface of the soccer ball is made up of pentagonal and hexagonal panels. The 8-
shaped panels have been also used since 2014. Between the panels there is a groove
of about 1-2 mm deep seam. This makes the surface of the soccer ball rough, which has
the effect of lowering the critical Re number. Due to this roughness, the boundary layer
on the soccer ball surface becomes turbulent. It has the effect of lowering the resistance
by flying in the supercritical region. At the same time, the random position change of the
bound vortex and the wake is important for this phenomenon. The reaction force by the
random movement of the vortex flow, quantitatively generates a random movement of
the soccer ball. Research on recent differences in panel shape is also being conducted?.

When a sports ball flies in the still air, it develops a three-dimensional motion under the
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influence of aerodynamic force and gravity g. The aerodynamic factors related to the
motion in the still air, when limited to the three types of balls discussed in this paper, are
as follows.
@ Geometric factors: ball diameter d, surface roughness (golf ball: dimple?*, baseball
ball: seam, soccer ball: groove between surface panels),
@ Kinematic factors: Initial velocity U, number of rotations N, relationship between
ball advancing direction and rotation axis (or relation with seam),
@ Physical properties of air: air density p, static (dynamic) viscosity coefficient y (v)
of air.

According to the results of the dimensional analysis, the aerodynamic force F (Fx, Fy,
Fz and aerodynamic torque T) =(D, L, S, M) =on the ball is represented by the Reynolds
number Re = Ud /v and the spin parameter Sp = mNd / U (Tangential velocity of the ball
surface with spin/ Ball speed). D=Cp0.50U%A, L= C.0.50U%A , S= Cs0.50U%A, M=
Cm0.50U?Ad, (Cp, Ci, Cs, Cu)= f(Re, Sp), D: Drag, L: Lift, S: Side force, M: Aerodynamic
torque, (Cp, Ci, Cs, Cu): Aerodynamic (drag, Lift, Side force, torque) coefficient.

2. Golf Ball 3D Flight Equation and Wind Tunnel Experiment®1°

2-1 Three-dimensional flight theory of golf ball
The coordinate system of the equation of motion for a three-dimensional flight of a golf
ball in the absence of wind are shown in Fig. 2-1 (a) and (b). The initial launch direction
of the ball is in the XY plane. Each symbol is listed at the end of this section. The initial
conditions for ball movement are determined at the time of recovery from impact
deformation on the club surface. The equation of motion is built under the following
assumptions:
1) The bank of the axis of rotation is determined by the ball's initial conditions, and this
bank angle does not change until the ball lands on the ground.
2) When the axis of rotation is banked, the lift based on the body axis tilts, so a horizontal
lateral force is generated.
3) In the initial state of the ball, the rotation axis of the ball has no yaw angle with respect
to the initial firing direction. Even if a small yaw angle occurs, the lift does not change,
and no lateral force is generated.
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(a) 3-D flight of golf ball (b) Back view of the ball
Figure 2-1(a), (b) Drag and lift on golf ball flight with banked spinning axes

(a) The drag D is opposite to the traveling direction U of the ball, (b) The lift L acts in a
direction orthogonal to U and the rotation axis Zg.
Figure. 2-2 Relationship between velocity U, drag D and lift L during ball flight.
The origin of the coordinate axes (X, Yi, Zi) is the center of the ball during flight.

(1) Drag D and lift L in bank angle 6
The drag vector D is in the opposite direction to the ball velocity vector U. Lift vector L is
orthogonal to velocity vector U and rotation axis Zr. Since the rotation axis direction is
Zr (0, -sinB, cosB), the drag vector D and the lift vector L are as follows.
D=/ D/ (-cosacosB, -sina, -cosasinB) )

L =/L/ (sinBcosasinB+cosBsina, cosBcosacosPB, sinBcosacosp) (2)
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(2) Aerodynamic force Fx, Fy, Fzin ground coordinate axis direction
Thus, the aerodynamic forces in the direction of the ground coordinate axes are as

follows.
Fx=-1/2(CpcosacosB+ C.(sinBcosasinf + cosBsina))pAVg? (3)
Fy=-1/2(Cpsina- C.cosOcosacosf)pAVe>-mg 4)
Fz= 1/2(Cpcosasinf +C.sinBcosacosB)pAVg? (5)
Here, /U /=Vg= (Vx? +VWy2+V2) 2, (6)

(3) Orbital equation of motion and fluid friction torque
The flight trajectory was obtained by numerically calculating the following equation of
motion by the integral progression method (Euler method).
F=mdU/dt (7)
The initial rotational speed given by the club during the flight is reduced momentarily by
the fluid friction torque as follows.
N(t+At)=-pAdCm(t)VB(t)2At/(41Tl)+N(t) (8)
(4) Initial condition and measurement method of ball motion
The initial conditions of the flight speed and the rotation speed of the ball are given by
the following equations.

Vx(0)=Vp(0)cosao (9)
Vy(0)= V(0)sinao (10)
Vz(0)= 0 (11)
N(0)= No (12)

These initial conditions are obtained by photographing the ball motion immediately after
launch with two flash and CCD camera sets at optimal time intervals. We select the light
emission interval etc. so that two ball images are shot within the shooting screen. These
initial motion conditions were obtained by the DLT method from two or more marks
attached to the ball.

In an outdoor experiment described later, an initial lateral shift angle Bo always exists.
Bo is also measured, and the coordinates are converted during calculation.

The main symbols used here are as follows.
d: golf ball diameter 0.0427 [m], m: mass 0.0456 [kg], g: gravitational acceleration [m/s?], : A:
cross-sectional area by ball diameter[m?], p: air density[kg/m3], v : Kinematic viscosity coefficient
of air[m?/s], I: Moment of inertia of ball 1=8.10x10%[kg - m?] , U: Ball flight speed or wind tunnel
airflow speed[m/s], N: Golf ball rotation speed [rps], a: elevation angle [deg.], B: sideways angle

[deg.], B6: bank angle of ball rotation axis [deg.], D: Drag vector or drag [N], L: Lift vector or lift [N],
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T: fluid friction torque [N - m] , Cp: drag coefficient Cp=D/ (0.50U?A), C.: lift coefficient C.= L/
(0.50U%A), Cm : fluid friction torque coefficient Cn =T/ (0.50U?Ad), S, , Sp: spin parameter
Sp=mrdN/U, (peripheral speed due to ball rotation) / (ball speed or ball flight speed), Re: Reynolds
number Re=Ud/V.

2-2 Wind tunnel experiment of aerodynamic force and fluid friction torque measurements

In this experiment, aerodynamic three-component force and fluid friction torque are
obtained by a wind tunnel experiment with a commercially available golf ball. Fig. 3(a)
shows the setup of the wind tunnel test equipment in the early days. The subsequent
improvement results are shown in (b), (c), and (d).

Wind tunnel wall

/ Aluminum frame

L — Piano wire

(#0.3)

| Golf ball

Spinning center
-

Golf ball

Piano wire,
$0.3 mm

(c) Balancing technique of ball spinning (d) Jet nozzle flow for ball spinning
Figure 2-3(a) At the beginning of this study, the ball was suspended by a single vertical
piano wire (¢0.3mm) and rotated by a motor. (b) The ball is now supported by four piano
wires through the central axis. (c) A mechanism that tunes three set bolts to balance the
rotation, and (d) The rotation of the golf ball is given by a jet stream.
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In the early stage of the development of the aerodynamic three-component force
measurement method, as shown in Fig.2-3(a), a golf ball is suspended by a 0.3mm
diameter piano wire penetrating the wind tunnel wall without contact. The motor for
rotating the ball is attached to the upper part of the frame, and the other end of the piano
wire is attached to the lower part of the frame via a bearing. This frame is on the load
cell. When the fluid friction torque acts on the ball, the piano wire is twisted, so that the
time delay between the ball and the end of the piano wire can be measured to determine
the twist angle. A ball with good rotation balance is selected by dipping in a liquid such
as high-concentration saline. The probability was one or two per dozen.

In the updated apparatus, golf ball is suspended by four piano wires as shown in Fig.2-
3 (b). The rotating shaft is embedded in the ball, and miniature bearings attached to the
both ends. Four piano wires are fixed to the outer frame after passed through the bearing
and wind tunnel wall. The frame is on the 3-components load cell or air suspended load
cell. On the equator of the ball, three set bolt holes are arranged every 120 °, adjust
the depth of the set bolts to keep the static balance. As a result, all the practical golf balls
did not show a resonance rotation speed from a maximum of 200 rps to O rps, and
smoothly rotated. In the wind tunnel experiment, the rotation easily reached 200 rps by
the jet stream from the jet nozzle as shown in Fig. 2-3(d). The rotation speed slowly
decreased to about 20 rps during 180 seconds in still air. In the wind tunnel flow, the fluid
friction damping torque increased, so the rotation speed dropped to 20 rps for 60
seconds. The damping torque coefficients of the fluid friction was determined from the
decrease rate of the rotation speed. Aerodynamic data could be measured by continuous
measurement because the degree of rotation decay was slow.

The ratio of drag on the piano wire supporting the golf ball was about 50 % of the total
drag. In the baseball case, in the next chapter, this value was 25%.

2-3 Measurement results of aerodynamic three-component and friction damping torque

coefficients

Fig.2-4(a) shows the drag coefficient Cp and lift coefficient C. change with the spin
parameter Sp. The result of the fluid friction damping torque coefficient Cy is shown in
Fig.2-4(b). The spin parameter when the ball hit by a professional golfer flies in an actual
game varies depending on the club and during the flight. In the case of 1W or 3W, it is
around Sp = 0.1 to 0.25, and for the 5l it is around Sp = 0.2 to 0.7. In the results of this
wind tunnel experiment shown in Fig.2-4(a), the Re number dependence appears at a
ball speed in 25 m / s, but the it does not appear so much at more than the practical
speeds of 30 m / s. However, owing to the dimple shape, Re nhumber dependence

10
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(a) Drag and lift coefficients of golf ball (b) Fluid friction torque coefficient

Figure 2-4(a) Drag and lift coefficients of golf ball by wind tunnel experiment. (b) Fluid friction
torque coefficient. O: Motor driven method, A : Tavares® by radar method, Other symbols

by free rotation method. Free rotation results are well coincident with radar method.

happened to appear in a higher flow velocity region, and such a ball confuses the player.
Each manufacturer pays close attention to the development of the ball. According to
Fig.2-4(b), which shows the measurement results of the fluid friction torque coefficient,
the result of the free-rotation method by Mizota® is closer to the result of the radar method
by Tavares®.

In the early stage of the research, the measurement results of the aerodynamic
coefficients sometimes showed a large dependence on the Re number, and sometimes
varied. This was caused by the rotational vibration of the ball. The double amplitude of
the vibration of the ball or piano wire was taken with a camera. If it is over 90 uym, the
aerodynamic coefficient does not appear stably. The data became stable below 50 pm.

2-4 Verification of measured aerodynamic force by flight experiment in still air

Fig.2-5(a) shows the flight distance X at a bank angle 8= 0 without natural wind. The
measured and calculated results were on a 45-degree line, confirming the validity of this
calculation method and the correctness of the aerodynamic data from wind tunnel
experiments. The measured and calculated results of flight distance X with a bank angle
0# 0 of a robot shooting with no side slip angle o = 0 are shown in Fig.2-5(b). Fig.2-5(c)
shows the lateral distance Z in this case. These results are reasonably good but may
need some more detailed experiment in still air.

11
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(b) Left: Calculated and measured X in 3D hit by Robot. Bank angle 8 # 0, initial
side slip angle Bo = 0. Caution to the change of axes with Fig.(a).

(c) Right: Lateral distance Z. The calculated value (vertical axis) and the
measured value (horizontal axis).

Figure2-5 Measured and calculated distance X or Z in still air experiment.

2-5 Flight experiment in natural wind™

Golf balls trajectory in the air are greatly affected by natural wind. An outdoor
experiment was performed to investigate whether the three-dimensional trajectory
equation was valid under the wind influence of the atmospheric boundary layer. This was
conducted on a terrain where the natural wind blows stably for a long time. The
experiment was performed on a sandy beach where the sea breeze blows from the north
about5.5t0 7.0 m / s speed. Two types of experiments were performed in which the wind

12
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was blown from the right 107 ° (wind from the right side) and 157 ° (wind from the right
rear) with respect to the hitting direction X.

The 5m height natural wind speed was measured at 5 points under the ball trajectory.
The natural wind speed against the ball flight was extrapolated from the atmospheric
boundary layer theory. The ball was shot by a professional golfer and the ball initial

conditions were measured using Pythagoras?®.

300
X(m) 75
vy = 0.9807x Zm) | 2
50 s, %

s 200 F . i
3 3 -
3 _ 25 O
é y = 0.9476x e / o
© 100 r e 25 B0 7%

35 | Measured data

0 . .
0 100 200 300 /

Measured data X_(m) 355

(a) Comparison of flight distance X. Horizontal axis: measured value X. Vertical axis:
calculated one X. O: Only with initial conditions of the ball motion, m: Including the
effect of natural wind speed. The slope of the graph was improved from 0.9476
to 0.981, closer to the 45 ° line.

(b) Lateral distance Z. Horizontal axis: Measured Z. Vertical axis: calculated Z. O:
Without considering natural wind. m: Calculated value incorporating the effect of
natural wind. The results of wind effects incorporation approach the 45 ° line.

Figure 2-6 Measured and calculated distance X or Z direction in atmospheric boundary

layer by professional golfer’s hit.

Aflight experiment of a golf ball under the influence of natural wind was shown in Fig.2-
6(a)and (b). (a)The experimental range of flight distance is 80-270 m. By incorporating
atmospheric boundary layer wind speed data, the slope of the graph was closer to 45 °,
with an improvement of about 4%. The correction for the lateral displacement distance
(b) is also effective, and it is closer to the 45 ° line. Further confirmation experiments are
needed, but the validity of this calculation method is demonstrated.

Finally, three assumptions in constructing this three-dimensional trajectory theory are
described. Regarding section 2-1 1), we have experimentally observed that “the bank
angle of the ball's rotation axis remains unchanged until it touches the ground.” In
addition, a wind tunnel experiment was conducted with respect to the point of | that “the

13
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Yaw angle does not occur at the moment of hitting the club, or the new aerodynamic
lateral force is small even if the Yaw angle occurs”. Wind tunnel experiments were
performed by changing the Yaw angle of the rotation axis from 0 to 30 °, but no new
lateral force was generated in this range.

When | presented this study in Port Douglas (2002, BBVIV3) %6, P.W. Bearman said,
“Taketo, this 3D theory is fine, but | want you to develop it in the next step. When curved
to the right or left, can you develop a ball that returns correctly?” | responded seriously,
“it would find the R & A to be a complete violation.” But the correct answer at that time

was “OK, my next research topics is your order.”

3. Various changing ball of baseball?” -3

3-1 A hopping straight ball

The straight ball is backspinned and thrown by the 4-seam ball as shown in Fig.3-1.
Magnus force lifts the ball weight. If the ball's speed and rotation speed are fast, it will
rise up with same height of the ball diameter between 18.44 m (distance of mound plate
and home base). A ball speed of 160 km / h (44.4 m / s) and a rotation speed of 40 rps

L
Rolling

awing

U

"y,
%
(7

=
-

Pitching

e N
N

Figure 3-1 A coordinate system of the traveling direction X of the baseball and the seams.
2-seam ball: £ Rolling rotation around the X axis or + Yawing (Side spinning) rotation
ball around the Y axis with the ball seam arrangement in this figure.
4-seam ball: A ball that rotates + Pitching (Back or Top spinning) around the Z axis.

are the boundaries where the upward Magnus force balances the ball weight. If the latest
fastest ball is 170 km / h (47.2 m / s) at the same rotation speed of 40 rps, hop larger
than one ball diameter. In the past, it was said that hopping balls could not be physically
possible, but in recent years aerodynamics have certainly been realized due to improved

14
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performance of players. It is the largest changing ball that can be lifted by aerodynamic
lift at a distance of 0.74m falling by gravity.

Instead of a straight high-speed ball, there is a magic ball with a bank rotation axis of
10 ° or more to the left or right. This is the same principle of hooks and slices on golf
balls. The horizontal component of maximum Magnus force, lift, in which acts in the
perpendicular direction of spinning axis, generated by tilting the axis of rotation causes
the ball to shift left or right between 18.44m. If this shift could be skillfully changed at a
ball speed of 150km / h from 7cm to 20cm, it would be very difficult for the batter to
respond. Often missed or become a grounder. NYY's M. Rivera was succeed in this
magic ball called “Rivera’s cut ball”.

3-2. Quasi-stationary theory of knuckle ball and effect of seam?” ~32
(1) Observation of magical trajectory of knuckle ball

A strobe image of the flight trajectory was obtained from a TV image of a knuckle ball
thrown by pitcher T. Wakefield (Boston Redsox). Fig. 3-2 (a), (b), (c) and (d), including

U=110.0 [km/h]
N=0.5[rps]

/-\A 2f

Tegequaatsiiittigy
’

Y(t) [m]

o Spiral knuckle

1 0.5 0 05 -1
Z(t) [m]

(a) Left: Trajectory of rolling knuckleball (b) Center: Rolling ball from Pitcher’s view.
(c) Right upper, Catcher’s view: Calculated trajectory of one seam Rolling knuckleball.
U=110(30.55m/s) Km/h, N=0.5rps, (d) Spinning of this rolling knuckleball, every 5/240
sec., Pitcher’s view.

Figure 3-2 1-seam (Rolling) knuckleball by Tim Wakefield
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the results of knowing the seam position during flight, are shown. Let's call it one seam

rolling knuckle ball*® 3V or Rollin knuckleball. Fig.3-2 (a) shows the strobe image
trajectory of the ball flight. (b) clockwise rotation from the pitcher side. (c) Calculated
trajectory using later data, in which measured with wind tunnel experiment. (d) show the
strobe image of spinning every 5/240 second.

Fig.3-3 shows the (a) strobe trajectory and (b) the rotation of the ball observed from
the catcher side by the same pitcher's 4-seam back spin (pitching rotation)? 2, The
lateral displacement of the side (Yawing) spin knuckle ball® is shown in Fig.3-4, in which
was thrown by the same pitcher. This is a flutter that oscillates in the horizontal direction
for about 1.5 cycles during flight with a twice amplitude of about 10 mm during flight.

Two kinds of knuckle ball launcher (named Fairy 1: Rubber powered catapult system,
Fairy 2: Pneumatic system) were handmade. Fig. 3-5 (a) to (d) show the results of
shooting a ball with the same setting conditions, photographed with a video camera, and
processed to strobe image. The flight trajectory of the ball corresponding to the images
of these four cases is shown as Fig. 3-5 (e)Observation from the third base side, and
(f)Observation from above. It draws various orbits so that it returns to the original orbit or
not to return while flying to the home base (18.44m) but does not follow the same orbit

3 4 S
9 10

(a) Trajectory of back spin knuckle ball  (b) Back spin knuckle ball, 1/4 revolution.

Figure 3-3 Back spin knuckleball by Tim Wakefield (Catcher’s view).

60
£ 40 ‘@ s " ——
< 30
= 20 d
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Frame number of TV image
Knuckle ball to Berny Wiliams by Tim Wakefield

Figure 3-4 Double amplitude of side (Yawing) spin Knuckleball?
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(a) Yawing spin Knuckle ball with pitching machine, Catcher’s view. (b)
(Left to right, Fig.1g, 1h, 1i, 1j)
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(c) Side view from third base (d) Top View
Figure 3-5 Yawing or side spin knuckleball by shooting machine, named Fairly1.
Local numbering of Fig.1g, 1h, 1i, 1j in Figure 3-5(c) and (d) are correspond with Figure
3-5(a).

as one. Oscillatory changes in the vertical direction are difficult to discern.
(2) Aerodynamic force and friction torque of knuckleball*°

Fig. 3-6 (a) shows the measurement results of the aerodynamic three-component force
coefficient of a rolling 1-seam knuckle ball. In the case of the seam arrangement 6 =35 °
shown on the right side of the fig, the lateral force of the body axis is maximum as
described later, and the lift is zero. This lateral force acts obliquely by the rolling rotation
with the ball and is decomposed into a lateral force and a lift. The value of Cp should stay
constant during 360 ° but drops off at around 270 °. This is because the wake was
inclined and at about 270 °, the support rod resulted in the wake and the base pressure
changed. The aerodynamic friction torque coefficient Cy is shown in (b). It is interesting
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that this change follows a different history depending on the initial rotation direction. The
aerodynamic friction coefficient of CCW changes to a higher value over the entire region
of Sp compared to CW. The coefficient value in the case of CCW changes from 0 to the
positive(driven) value at a low rotation speed. Currently, rotation stops once and then
starts reverse direction to CW. When the wind tunnel velocity was around 40 m / s, the
steady rotation speed was 36.4 rpm (0.606 rps). This may be the riblet effect due to the
seam, but the details are unknown.

Rolling Knuckle ball is thrown at the ball speed of about U = 108 km /h (30 m/s). If the

initial spin speed is 0, the ball will rotate only 5.8° during 18.44 m flight. The effect of
aerodynamic friction torque is not significant.
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(a) Aerodynamic 3-component coefficients with rolling rotation. (b) Aerodynamic friction
coefficients in rolling with CCW or CW.

Figure 3-6 Aerodynamic coefficient and friction torque coefficient with 1-seam rolling.

Next, Fig. 3-7 (a) and (b) show the aerodynamic three-component coefficient and the
aerodynamic friction torque coefficient during a 360 ° side spin with a 4-seam ball. This
measurement was performed at each fixed angle. Aerodynamic side forces vary with the
same trend as Watts & Sawyer'. Aerodynamic friction torque was measured by the
following two methods. Angle correction load torque method: The rotation angle of the
ball is set to a predetermined angle every 10 °, and the angle change caused by the
action of aerodynamic friction torque is returned to the predetermined angle by the
correction torque. Strain gauge method: Obtained from the signal displayed on the leaf
spring strain gauge by aerodynamic friction torque.

The side force coefficients show the characteristic peak values in the degree of 35°,
125°, 215° and 305°.

Similarly, the aerodynamic friction torque coefficient changes by four periods per

18



Second International Symposium on Flutter and its Application, 2020

rotation with an amplitude CM of about 0.006 due to the yawing rotation of the ball. As
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Figure 3-7 Aerodynamic force coefficient and friction torque of side (Yawing) spin

knuckleball.

described later, the 4-seam knuckle ball is displaced up to 1.17 m, in one direction when
the initial rotation speed approaches 0 with the peak side force angle. In the case of the
maximum aerodynamic driven torque acts, the ball angle changes by about 8.8 °. It is
unlikely that this angular change will significantly affect the trajectory.

It should be noted that even in the 4-seam yawing rotation, automatic rotation of 5 rps
at 10 m/ s and nearly 20 rps at 40 m / s was observed in the wind tunnel experiments.
In the still air, the ball supported with less friction continues about 5 minutes rotation at
an initial rotation speed of 60 rps.

(3) Knuckle ball flutter equation and verification by wind tunnel experiment?”: 28. 3%
For a knuckle ball, the value of (ball speed) / (ball peripheral speed)is 1/Sp =133.5to
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1780. A quasi-stationary approximation can be applied to the aerodynamic forces acting
on a knuckle ball in flight. If this lateral force is used as a periodic function, a flutter
equation representing the lateral displacement can be obtained.

Lateral displacement Z (t) spirar Of Rolling type knuckle ball is

Z()spirat = (PUPACs/(2m(21TN)?) - [1-cos(21TNt)] (13)
The lateral amplitude Z () sise Of the Yawing (side spin) knuckle ball is
Z(t)siee = (PUPAC/(2m(81N)?) - [1-cos(8TTNE)] (14)

A flutter experiment was conducted with two types of knuckle balls. The ball is set with
a support rod in the center of the wind tunnel test section and placed on a trolley below
the wind tunnel. The ball and bogie reciprocate on the rails due to the aerodynamic lateral
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(a) Rolling knuckleball (U=30.5m/s), (b)Side (Yawing) spin knuckleball
ball oscillation N>0.813 rps. (U=21.5m/s), ball oscillation N>0.139 rps.
Figure 3-8 Double amplitude of flutter experiment and quasi-steady theory.

vibration force exerted by the rotation of the ball. Vibration amplitude is measured with a
laser displacement meter. The added mass and mechanical friction are modified in the
equations.

Fig. 3-8 (a) shows the experimental results of the full (double) amplitude value and the
results of the flutter Eq. 13. Fig. 3-8 (a) also shows the experimental results of the side
spin knuckle for comparison. Fig. 3-8 (b) shows a more detailed experimental result of
the side spin knuckle and the flutter Eq. 14. Distance Zmax means the maximum
amplitude converted during a flight of 18.44m. These vibration amplitude results are in
good agreement with the calculations. The knuckle ball indicates that it is a flutter that
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can be formulated by a quasi-stationary approximation.

The amplitude terms in Eq. 13 and Eq. 14 are for the rolling knuckle (oU?ACs / (2m
(21TN) 2) and for the side spin knuckle (oU?ACs/ (2m (81N) 2)).

At the same speed U and rotation speed N, the vibration amplitude of the rolling
knuckle ball is 16 times larger than that of the side spin knuckle. Rolling knuckles are
actually thrown at 1.5 times speed, so they have 36 times the amplitude. According to
Knuckler's opinion, as described below, it is actually more complex and very serious.

There is an interesting testimony about the trajectory of the knuckle ball shown in Fig.
3-8 (a) and (b). In connection with that testimony, (a) in a rolling knuckle ball, the
trajectory of the ball repeats at least one cycle between 18.44 m with N> 0.813 rps, and
(b) in a side spin knuckle ball, the trajectory of the ball is note that it oscillates in the
range of N> 0.139rps.

On the other hand, the impression expressions of the batters are as follows.

BN

It's like a spacewalk.

)
2) | can't hit without a tennis racket.
3) It's like a butterfly.
4) Shake and fail a couple of times, I've seen it but never hit it.

5) It's like catching flying flies with chopsticks.

The knuckler himself are not outdone.

1) I don't even know the ball where to go.

2) Please ask the ball its destination.

3) Even though | told him | would throw it now, so he stood with his back to home base
after giving up.

These fuzzy expressions show large swinging or oscillating trajectories. It is in good
agreement with the flutter experiment of Fig.3-8.

If the ball seam is arranged so that the maximum lift acts in the + Y direction, and the
ball speed is 30 (20) m / s, this ball will have 0.38 (0.73) g in the downward direction. |
had the opportunity to hit such a knuckle ball thrown by knuckler Shigeru Mizuno. | could
hit 100% if it was a ball other than a knuckle, but the ball passed 30 cm above my bat
swing.

Fig.3-9 (a) shows the side view of the streamline pattern at the ball with pitching angle
® = 0 and + 35 ° (40m / s) at which the maximum lift force occurs?. The wake is
significantly shifted by the action of the seam, consistent with the generation of a large
lift force. Fig.3-9 (b) shows the velocity defect distribution behind the ball (measured by
the one diameter behind with hot-wire). The peak position of the velocity defect is shifted
downward as same degree of the ball radius. The streamlines in Fig. 3-9 (a) were based
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on the PIV method. The original flow pattern was effective at 40 m / s by the modified
smoke-wire method®*.
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(a) Streamline pattern by PIV behind the ball at 6 = 35 °, acting on the maximum side
force (with top view) or lift force (with side view). Visualization by smoke wire method.
U =30m/s. 2114 flames average, 15,000 fps. (b) Large shift of wake velocity profile
with ball angle (6 = 0 °, £ 35 °), model at rest, hot-wire measurement, (6=+35°, X/d=1.5
from ball center).

Figure 3-9 Streamline®® and Velocity distribution of the wake,

The cause of this large lateral force is related to the wake shift by a single-sided tripping
wire effect on seam turbulence. Unsteady flow velocity was measured by inserting a hot-
wire into the position shown in Fig. 3-10 (b) at the yawing angle of 35 ° in Fig. 3-10 (a).
Output signals are shown in Fig.3-10 (c), (d), (e), (f).

(c) Point M X =0 mm, 0.5 mm above the surface: Turbulence signal.
(d) Point @ X =0 mm, 1.5 mm above the surface: Laminar flow signal.
(e) Point @ X =10 mm, 3.0 mm above surface: Laminar flow signal.
(f) Point @ X =10 mm, 0.5 mm above surface: Turbulence signal.

(DX =0mm,0.5nm from surface

@X=0pm,1.5mn from surface

(@X=10gm,3.0mn from surface

= @X=10mm,0.5m from surface
GX=20gn ,0.5m from surface

@X=25am ,0.5 mmfrom surface

(a) Baseballballin 6=35" . (b)Measured position near the surface.

22



Second International Symposium on Flutter and its Application, 2020

118 119
1L
Ulmis) 0 | U] 0 - s o
L} R
ahe P ] Py -11.9 - s
tgec] t[sec]
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(e) Point @ X =10 mm, 3.0 mm above (f) Point @ X =10 mm, 0.5 mm above
surface: Laminar flow signal. surface: Turbulence signal.

Figure 3-10 Flow velocity signal near the ball surface, 6 =35°, U=21.5m/s

On the upper surface of the ball, the boundary layer becomes turbulent due to the
tripping wire effect. The position of the separation line recedes around 130 ° from the
front surface of the ball. On the other side of the ball, the seam does not trigger
turbulence due to the low flow velocity outside the seam. The position of the separation
remains at 90 °. A large non-symmetric flow occurred in the wake®, and results in a large
lateral force3" 38,

The results of the knuckleball study are summarized as follows.

(1) The wake of a 4-seam side(top)-spin knuckle ball repeats its wake oscillation every
90 ° cycles as shown in Fig. 3-11.

(2) The one-seam rolling knuckle ball corresponds to (b) 8 = 35 °with rotation around X
axis creating the fluctuating lateral force and lift one as shown in Fig. 3-6 (a).

23



Second International Symposium on Flutter and its Application, 2020

(a) 6=0°

S.

(b) 6=+35° +Z_ ,
U &T8.

U:;qy‘ -
g:ig N
s,

(c) 6=+45°

S—_
=) 3_
W

£ -ﬁ

LS.
(@) 6= 0 °: Small wake area with minimum drag, (b) 6=35 °: Wake area inclined
maximum, + Z side force maximum, (c) 6=45 °: Expanded wake area , (d) 6=55 °:

Reverse lateral force of (b)6=35 °, (€¢) 6=90 °: Same flow as (a).
Figure 3-11 The characteristic wake flow of Knuckle ball wake. Wake flow during CW
quarter period. As a top view, this is Side (Yawing) spin knuckle ball. As a

side view, this is Back spin knuckle ball.

3-3 Split finger first ball (SFF) with rotation axis in the X direction

The SFF ball is thrown with a slight gap between the index and middle fingers. It is
thrown by devising how to put and hold a finger on the ball, or the action at the moment
of release. There is no reliable way to throw this magic ball, and pitching methods vary
widely depending on the pitcher. Unlike typical straight balls and curves whose ball
rotation axis is in the YZ plane of Fig. 1, many balls can be thrown at various angles (0 °
to 30 ° to 60 °, etc.) from the X axis. As a result, a lateral or a downward aerodynamic
force acts, and the ball slides while flying or slides while sinking, producing various
magical ball-like changes.

Fig.3-12 (a) shows an image of a ball thrown by pitcher Daisuke Matsuzaka (Seibu
Lions (NPB 11 years), BOS (MLB 8 years)), which is called a vertical slider3. The ball
rotation axis faces correctly toward the catcher. It is thrown with around Sp = 0.259
(U=140km/h, N=45 rps). According to the wind tunnel experiment, the aerodynamic
three-component force characteristics of this ball are as shown in Fig. 3-12 (b). The drag
coefficient of Cp = 0.26 is smaller than that of the 4-seam straight ball of Cp = 0.40 as
shown in Fig. 3-12 (¢). Compared to a 4-seam ball, there is no lift and drag is low, so
under the same speed, during 18.44m length, vertical slider ball reaches about 35 cm
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faster. This ball, which falls sharply by the gravity force, is a troublesome magic ball for

a batter.
n
(a) SFF ball called Daisuke Matsuzaka's vertical slider®. 90fps shooting.
N = 45rps, 140km / h (39m / s).
0.6 T ——TT T 0.6 —— T
04 04 1
CD ProsE ‘n'-mw
ﬁ‘-w‘
02 02 1
S, <
SN Cs,C, Sy oyt S o :
S S
0.2 0.2 B 1
® U-type arrangement Cp X-type arrangement Cof o 2-seam arrangement Cp & 4-seam arrangementCy
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(b) Aerodynamic three-component force coefficient of gyro (vertical slider) rotating ball.
(c) Aerodynamic three-component force coefficient of 2 and 4-seam back spin ball. Sp =
0.259, Cp = 0.40.

Figure 3-12 SFF ball image, it's aerodynamic force coefficient of gyro-rotating ball and
2 or 4seam spinning ball.

This is a 2-seam ball with Sp = 0.259 and the axis of rotation pointing correctly toward
the catcher. The ball falls sharply due to gravity. At the same time, it is a troublesome
sphere that approaches the batter's hand quickly due to the low drag coefficient Cp=0.26.

This ball was called a gyro-ball and was accidentally spread out as a magic ball where
the ball lifts. If the axis of rotation is oriented in the direction of travel, no lift act on and it
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falls by gravity. Since the drag is small, the deceleration is small and it reaches the batter
quickly, and it is a troublesome ball. It is currently called a gyro-rotating ball.

3-4 Magic ball SFF with yaw angle change of rotation axis3* 3°

At the end of the magic ball topics, we will discuss the so-called “front door ball” or
“back door ball” aerodynamic issues. The pitcher throws this ball along the ball course.
The batter cannot predict the ball to become a strike, finally. The ball coming from the 3-
base side of the home base is the “front door ball” for the right-handed batter’s box and
the “back door ball” coming from the opposite side (1-base side). The opposite is true for
left-handed batter.
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Figure.3-13 Aerodynamic characteristics of (a), (b) 4-seam ball and (c), (d) 2-seam ball.
Compare with both sign of Side force Cs in Yawing angle 50° and 60°.

The aerodynamic three-component force coefficients are shown in Fig.3-13 as (a) Yaw
angle 50 °, (b) 60 ° of 4-seam rotation and (c) 50 °, (d) 60 ° of 2-seam one. The
experimental results of both top spin (CCW) and back spin (CW) are shown. In each
figure, the drag coefficient Cp and the lateral force coefficient Cs do not change
depending on the rotation direction, but the lift coefficient C. acts in the opposite direction
by the reverse rotation. The lateral force Cs showed a difference in the opposite direction
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depending on the seam arrangement not by the different direction of rotation. In the case
of 4-seam rotation, both (a) 50 ° and (b) 60 ° have a negative value (-) in the Csover the
entire range of Sp, but in the case of 2-seam rotation, (c) Cschanges to a positive value
(+) for both 50 ° and (d) 60 °

Considering the repeatability of the seam shape on the entire ball surface, Fig. 3-14
shows the aerodynamic three-component coefficients near Sp = 0.2 in the range of Yaw
angle 6 = 0 ° to 90 °. Both lateral force coefficients Cs tend to take a negative value, but
in the case of a 2-seam ball, the value changes to a positive value in a narrow range of
8 =40 °to 70 °. Focusing around 60 °, this lateral force shifts the 2-seam ball to the right
and the 4 seam ball shifts to the left. The pitcher can throw a back-door ball with a 2 (4)
seam ball and a front-door ball with a 4 (2) seam ball to the right (left)-handed batter.

0.6
U=40 [m/s] , N=35 [rps] . Sp=0.2, YAW : 4-seam 6=0~90 [deg]
2-seam 6=0~~90 [deg]
*
Cpe-
04 ¢ ’ * * » D(@-seam) U i
N dse: S . . . 1
d X - - C L!.I-M_.illl) CD(4-sca1n) X 1 0=60°
- O > &
o 02 ~ . z
- (_ Ll Z2-seam) O /Q Top \-’iEW
|
0 B X'tf 6=60°
0, > ¥
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-0.2
0 30 60 90
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Figure 3-14 Aerodynamic 3-component force coefficient between 0 ° and 90 ° of Yawing
angle. Note that the direction of the lateral force in 8=60 °is opposite for 2-seam ball and
4-seam ball.

Fig. 3-15 (a) and (b) show the flutter experiment conducted by giving a ball with same
0=60 °yawing angle on a platform moving left and right. (a)4-seam ball moves to the
leftward as a front-door ball for a right-handed batter. (b) 2-seam moves to the rightward
as a back-door ball for a right-handed batter. These reflect the result of the aerodynamic
lateral force. In wind tunnel experiments, the effect of the ball surface on the ball support
rod and the edge of the spinning axis is not zero. To eliminate these effects as much as
possible, it is effective to throw the actual ball itself and check the results of the wind
tunnel experiment. Therefore, the pitcher of the college baseball team threw 2-seam ball
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and 4-seam ball. Fig.3-16 shows a strobe image of a high-speed camera. Image (a) is a
4-seam ball with 8 = 60 ° shifted to the left. Image (b) is a 4-seam ball at 6 = 46 ° and
moves to the right without inconsistency with previous flutter experiment. The ball attitude
was not exactly the same as the wind tunnel experiment, but the results showed the
same direction of change as the aerodynamic and flutter experiments. Flight trajectory
simulation calculations are also being performed.

It is difficult for the same pitcher to subtly change the direction of the rotation axis in
actual games and practice. However, it is relatively easy to throw while changing the

(a) 2-seam ball, 6=60°, to the left. (b) 4-seamball, 6=60°, to the right.

Figure 3-15 Flutter experiments of 2 and 4-seam ball with 6=60°Yawing angle rotation.
Balls in the wind tunnel center are at rest, other’s are spinning in wind tunnel flow, U=35
m/s.

C.W. Top view
¢=60"° 0=-3

(a) Yaw angle 60 °, 4-seam pitching. (b) Yaw angle 46 °, 2-seam pitching.
Shifted to left direction. Shifted to right direction.
Figure.3-16 Strobe video image of high-speed camera. SFF ball pitched by Yano (FIT).
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relationship between the seam and the rotation axis. Nevertheless, it is surprising that
the pitcher finds that the two-seam ball moves sideways within 20 ° of the yaw angle and
uses it separately as a 4-seam.

On the other hand, there is a magic ball called a ghost folk (by Koudai Senga, Soft
Bank Hawks, 2017 WBC). The ball is thrown with about 30 degrees downward direction
of rotation axis from the X axis. This ghost fork ball falls more vigorously than the vertical
slider ball in Fig.3-12. The total downward force is 1.3 g because the air force is added
to the gravity forces.

Also, there is a magic ball utilizing aerodynamic characteristics near 8 =0 ° to 30 ° in
Fig.3-14. In this angle range, the values of Cp and C. hardly change. Although 6 around
30 °, the lateral force of a 4-seam ball acts at Cs = -0.1, and the ball slides about 30 cm
to the left between 18.44 m. The vertical trajectory is the same as a speed ball thrown at
8 =0 °. When the ball is thrown towards a right-handed batter, he tries to escape to avoid
it, but the ball moves to the left and strikes mercilessly. This magic ball has been thrown
for a long time and it is difficult to respond without predicting the change.

3-5 Discussion on the wonder of baseball trajectory
(1) Report of knuckler Ryo Sanogawa®* and observation by Philip Nieklo

Knuckle pitcher Ryo Sanogawa had also played in the French Baseball League (2017,
MVP in the All-Star Game). He had a valuable opportunity to talk with Philip Nieklo
(knuckle pitcher, MLN, ATL, NYY, et al., between 26 and 48 years old, 318 major
league wins).

“Nieklo liked my knuckle ball. And | met Chris Nowlin, a knuckler who has been
throwing in the minor league for 10 years and gained a lot of knowledge. The topics
was the rotation of the ball.

(a) Wakefield (BOS, etc.) and Charlie Hough (TEX, etc.) seemed to throw a 1/4 turn
with top spin knuckle ball.

(b) Spiral (Rolling) knuckle ball looks good, but it is dangerous to keep throwing it,
because of easy to prediction the trajectory, so only one step away from missing.
The back-spin knuckle is a complete failed ball. Although the side spin fluctuates, it
seems that the change is easy to predict because it only shifts to one way of direction
of rotation. "

The wind tunnel results of the side spin knuckle ball related to the observations by

Nieklo is shown in Fig.3-17(a) and (b).
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Figure 3-17 Side force on slowly and side spinning 4-seam ball

Side spin balls produce steady lateral forces in the same direction as Magnus forces
with CS = 0.15 to 0.1, even at low rotation speeds, such as Sp = 0.01 to 0.001 (1.1 ~11
second period). This phenomenon of fluid memory or hysteresis may not occur in golf
ball® with a uniform surface roughness. This may occur with seam effect turbulence. The
Niekro’s observation on the mound as the ball shift toward its rotation direction was
confirmed by wind tunnel experiments.

(2) Mystery of 2 & 4-seam ball

The correct reason concerning the Fig.3-14 and Fig.3-15, why a leftward lateral force
acts when a 4-seam ball is thrown at a yaw angle of 0 to 90 °, and a right lateral force
acts on a 2-seam ball only in the range of 40 ° to 70 ° is unknown in this stage. In the
case where the whole area covered with roughness such as dimples of a golf ball, the
lateral force was almost 0 in the range of the Yaw angle of 0 to 30 °. There is a curved
seam on the baseball ball surface, and the position changes with the ball rotation.
Depending on the speed of the outer flow of the seam on the front side, it may be a
trigger to the turbulence of the boundary layer, which greatly affects the separation area.
The separation phenomenon seems to have hysteresis and is complicated, and the
experimental facts have been clarified, but the details of the mechanism are still unknown.
(3) Ball speed U and sharp lateral change Z.

Simplify that the average speed is U, between 18.44 m, and let Z be the distance that
changes by the action of the lateral force Fs. Z = 0.5 (Fs / m) t2, flight time is t = 18.44 /
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U, lateral force is Fs = 0.5pU?ACs, and Z = (pA18.44?/ 4m) Cs. If Cs = 0.1, Z = 2.84 Cs
= 0.281 [m], which is independent of the ball speed?. If the ball is fast, the flight time is
short, and the ball will change by the same distance in a short time, so that the batter will
feel a sharp change, and difficult to deal with. The natural fall due to vertical gravity is
about 1[m] at U = 140 ~ 150km / h, but if it is applied with aerodynamic force, it will fall
about 1.284m.

4. The strange flight behaviour of slowly spinning soccer balls?

There is no reasonable qualitative aerodynamic explanation for the mechanism of the
erratic flight trajectory of soccer balls. In the subcritical Reynolds number region, vortex
shedding from the spheres with smooth surface was previously investigated“°. For higher
Re numbers, some observations of steady fluid forces on the sphere with smooth surface
were reported*!, including the effect of surface roughness*? on the drag crisis
phenomenon®38 The mechanism of unsteady forces acting on smooth spheres with
supercritical Re numbers was explained by Taneda?' through observations of bound and
wake vortices; that is, the longitudinal twin - vortices irregularly move on the surface of
a sphere and in a wake. A model calculation of ring vortex shedding was performed to
explain the generations of unsteady lift and drag forces on spheres*®. Some research
also indicated** #° that the cause of the erratic behaviour of low-spinning soccer balls is
strongly related to the findings of Taneda. The steady aerodynamic forces were
calculated by CFD methods, and the flight trajectory estimation was conducted under the
quasi-steady approximation with the ball slow rotation*®. The aerodynamic forces of
strange flight trajectory of soccer ball depend on the Re number and spin parameter (Sp),
in which Sp is a non-dimensional parameter of (ball surface speed due to spin)/ (ball
speed).

4-1 Flight test image and Reynolds number

The initial speed of a low-spinning ball that was kicked by Keisuke Honda*" “8 was 104
km/h (28.9 m/s), and a goalkeeper hardly moves to stop the soccer ball because of the
erratic behaviour. A stroboscopic image from a free-fall experiment under natural low-
wind conditions is shown in Fig.4-1(a). A strange displacement of the soccer ball was
observed during free-fall. The maximum amplitude within the horizontal plane (Y-Z plane)
was approximately 0.75m during a 4.3s period, the ball shift frequency was
approximately f=1.2 Hz, and, the maximum speed was approximately 22.5 m/s in Fig.4-
1(a), and the ball speed continued to be still accelerated. According the measured value
of drag coefficient, the final speed of the ball could be estimated to be about 30m/s under
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higher free-fall drop test. The relationships between the lift and side forces are indicated
in Fig.4-1(b). In this free-fall experiment, the lift and side force direction were defined
toward upward and right directions, respectively, in Fig. 4-1(a). The abrupt change in
aerodynamic coefficients (C., Cs) is a characteristic feature of the final falling stage,
because of faster ball speeds.

The flight trajectory results obtained using a shooting machine showed strange erratic
behaviour as shown in Fig. 4-2(a), (b) and (c), (U=82 km/h, 22.8 m/s) and Fig. 4-2(d), (e)
and (f), (105 km/h, 29.2 m/s), including the Y-Z plane trajectory (Fig.4-1(b) and (e)) and
time trace of the side force coefficients Cs (Fig.4-1(c) and (hf)). We observed erratic
trajectories along dissimilar flight with probabilities greater than 80%. Ball shift
magnitudes in the Y-Z plane perpendicular to the beam of the camera image were
calculated. The results did not indicate a smooth shift of aerodynamic forces in the Y and
Z directions. In Fig.4-1(e), the initial direction of the ball is +Z, the side forces are acting
toward - Z (asin Fig.4-1(f)), and the maximum displacement is approximately 0.9 m. As
a result, the amplitude of the side force coefficient Cs and period are within the
approximate range of 0.1-0.15 and 1.3 s, respectively, as shown in Fig.4-2(c)and (f). The
Sp values were 0.002 in the free-fall experiment and about 0.03 in the machine shooting
experiments, respectively. Such the low spinning rates did not affect the strange
behaviour of soccer ball. As a result, the aerodynamic force in flight is available in the
quasi-steady condition.

05 T
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02

0.1

01

02

(a) 65 m free fall strobe image (b) aerodynamic coefficients (C. and Cs)
Figure 4-1 Strobe image of a 65m free-fall soccer ball and changes in aerodynamic side
force coefficients in flight.

(CL and Cs) were obtained from the two-step time derivative of position change. The

red arrow indicates the lapse of time from start S to landing E. N = 1/ 16rps, high-speed
camera shooting at 250fps, Sp = mNd /U = 0.002.
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(c) Time traces of side force coefficient (f) Time traces of side force coefficient (Cs)
(Cs) of (a) and (b). of (d) and (e).
Figure 4-2 Free-flight ball trajectories and aerodynamic forces of soccer balls launched
by shooting machine.

(a - ¢) and (d - f) are two examples of three-dimensional flight by a shooting machine.
(a) and (c) display stroboscopic images of balls shot by the machine. The initial speeds
in (@) and (d) were Up=82 km/s (22.8 m/s) and 105km/h (29.2 m/s), respectively. The spin
rates were about 1rps, and Sp was =0.03. (b) and (e) present displacements in the Y-Z
plane based on the stroboscopic image in (a) and (d). (c), (f), Time traces of the side
force coefficient (Cs). The Cs amplitude and period were 0.10-0.15 and 1.3 s,
respectively, in both cases. The accuracy of the measured ball position may be within
+5.0~ - 5.0 cm, due to the digitised pixel number.
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4-2 Time-averaged drag on soccer balls and spheres with smooth surfaces

The time-averaged drag Cp on soccer balls was measured in a wind tunnel with uniform
flow and indicated in Fig.4-3(a) with smooth-surfaced spheres*. For a sphere with a
smooth surface, the phenomenon of drag crisis appears at Re=3.5x105, under low-
turbulence flow. This result is due to the natural transition from the laminar boundary
layer to the turbulent boundary layer. However, many patches exist on surface of a
soccer ball that are surrounded by regions with approximate depths of 1.50-1.60mm,
which artificially promotes the transition of the boundary layer flow from laminar flow to
turbulent flow, and results in a drag crisis in the lower Re number region. These surface
roughness effects of soccer balls correspond well with spheres*! and soccer balls®®. The
supercritical Re number flow around soccer balls is similar to the flow around smooth
spheres (Re=3.8 x10° (U=26.0 m/s, in soccer ball diameter)), which is higher than
Re=2.0 x10° (U=13.2 m/s) as shown in Fig.4-3(b) and (c) for Type A-ball and Type B-ball,

06 T v T v —r—TTTT
Type - Aball Smooth sphere
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o 03
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(a) Time-averaging drag coefficients of a sphere with smooth surface and soccer balls.

(b) Type A-ball, +Teamgeist, Molten. (c) Type B-ball, truncated icosahedron, Mizuno
Figure 4-3 Time-averaged drag coefficients of a sphere with smooth surface and soccer
balls at various Re numbers. Type A-ball, Type B-ball.
respectively. All the experiments of the unsteady force measurements and flow
visualizations are conducted using Type A-ball in this study.
Fig.4-3(a) shows drag coefficients Cp of soccer balls and sphere with smooth surfaces.
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The drag coefficients depend on Re, d is the ball diameter, (0.225 m) and v is the dynamic
viscosity of the air. The drag crisis appeared at approximately U=25 m/s for smooth
sphere and 10 m/s for soccer balls. (b) Type A-ball, + Teamgeist, Molten: the groove depth
is 1.51 mm (average value of 10 locations on a random sample), and the standard
deviation is 0.042 mm.(c) Type B-ball, truncated icosahedron, Mizuno: the groove depth
is 1.69 mm (average value of 10 locations on a random sample), and the standard
deviation is 0.058 mm. The representation of these ball photographs (b) and (c) are under
the permissions of Adidas Co. and MIZUNO Co.

4-3 Unsteady aerodynamic forces and flight trajectory®’

Unsteady aerodynamic forces on Type A-ball (Fig.4-3(b)) were measured with a soccer
ball at rest in a wind tunnel flow. The coefficients of unsteady lift C. and side force Cs for
U=22 m/s are shown in Fig.4-4(a). These measured results exhibit purely random
characteristics, even when assessed by spectrum analysis. In this example, the results
were simultaneously constant for a few seconds as they centered for approximately 5 s.
The ball shift magnitudes were obtained by a two-step time integration as shown in Fig.4-
4(b) (10 s) and Fig.4-4(c) (2 s during a period of approximately 6.0-8.0 sec.). In these
calculations, the ball speeds are constant at 22.0 m/s and the gravity force is neglected
to emphasise the effect of aerodynamic forces. For 1.2 s during an approximately 6.8-
8.0 s period, the ball shifts 0.3 m right and rapidly returns to the reverse direction by 0.3
m.

These unsteady aerodynamic forces are induced by unsteady flow in the wake of the
ball. High-speed camera images of condensed smoke in the longitudinal vortex flows,
which will be mentioned later in the discussion, are shown in Fig.4-4(d) @ - ® and
Fig.4-4(e) - (g). The frame rate of high - speed camera was 250 fps, with images taken
every 0.004 s period, and the images in these figures represent every 0.128 s. During
these sampling times, the dominant positions of the vortex fall in the lower-right position.
Through precise observations within this sequence of 0.640 s, we were able to recognise
that the phases of these vortices change in every 0.128 s frames. The pattern of vortex
phase undergoes various changes from a pair of adjacent twin vortex to a pair of clearly
separated twin vortex (Fig.4-4(d)@0.384 s—Fig.4-4(d)®0.512 s or 60.640 s) and from
a pair of clearly separated twin vortex to a pair of adjacent twin vortex (Fig.4-4(e)—Fig.4-
4(f) and (g)) within a short time period. Other examples show a pair of clearly separated
twin vortex during a 0.34 s period or no phase change for more than 1 s.
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(a) Unsteady forces on soccer, Unsteady aerodynamic forces C. (red line) and Cs (blue
line) on the type A-ball during a 10 s period (Re=3.3x10° U=22.0 m/s, 50 Hz sampling

frequency).
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(b) Unsteady ball shift magnitudes. Ten seconds ball shift in the Y-Z plane during the
unsteady aerodynamic force of (a) (U=22.0 m/s).
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(c) Unsteady ball shift magnitudes. Magnification of the Y-Z plane ball shifts between 6
and 8 s of (a) and (b), (U=22.0 m/s).
Figure 4-4 Unsteady aerodynamic forces and ball shift magnitude during 10 seconds and

6-8 seconds.
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(a) Left : Images for each 0.128 s time step, D~®.
(b)Right: Mode change in the twin vortex.
Figure4-5 Unsteady flow patterns visualized by the smoke method. (a)Various image of
vortices. (b) Mode change in twin vortex.

Fig.4-5, M~® show various mode of vortices. During these periods of Fig.4-5(a), the
vortices primarily exist in the lower-right position with small variations. Two longitudinal
vortices are in close proximity. Between t=0.512 and 0.640 s, one vortex suddenly
separates as it passes two vortices. Fig. 4-5(b) show the mode change in the twin vortex
images 0.568 sec. to one vortex 0.868 sec., followed by the two vortices or the twin

vortex pattern, 1.180 sec.

4-4 Discussion of strange trajectory of slowly spinning soccer ball

Instantaneous flow images of smooth spheres?’ in the supercritical Re flow region are
illustrated in Fig.4-6(a), where the 3-D boundary layer flow on the surface is integrated
into a Q-shaped vortex that transforms into twin longitudinal vortices. Fig.4-6(b) displays
the flow image in the same region, which had appeared in the article by Taneda?" the
colour image was directly copied from his research notebook provided by his bereaved
family. This conceptual sketch, which appears very similar to the bound and tip vortices
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produced by airplane wings, as well as to the general flow around 3-D bodies, is a
reasonable shape from a topological stand-point, as is his sketch of the flow around a
delta wing in Fig.4-6(c). However, the asymmetric vortices of the sphere have the
freedom to rotate or oscillate around a central axis in the main flow direction behind a
sphere. The reaction force to a momentum change by the unsteady vortex flow is the
main cause of the unsteady aerodynamic force on a sphere.

(a)lmage obtained by Taneda?' of flow around a smooth sphere at the supercritical Re
number, Re=3.8x10°. This flow is an integrated streak line of the surface boundary layer
into a Q-shaped or U-type vortex and two-line flows of the longitudinal vortices. (b)The
colour version was reproduced from the research notebook of Dr. Taneda with
permission from his bereaved family. This figure was dated at March 9, 1976.
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(c)Flow around delta wing in his sketch. This figure was dated at February 24, 1976.

(d)Typical twin longitudinal vortices as shown in a. U=26.0 m/s with 25 integrated frames
during a 0.1 s period.

Fig. 4-6 Q-shaped and two longitudinal vortices of a smooth sphere by Taneda?'

The other observation of flow behind the soccer ball, which is shown in Fig.4-6(d),

yields U=26.0 m/s, 250 fps and an integration of 25 frames during a 0.1 s period. The
integrated tuft images indicate clear twin vortices and show the longitudinal twin vortex

38



Second International Symposium on Flutter and its Application, 2020

flow.

Simultaneous observations of flow visualisation and unsteady force measurements
are shown in Fig.4-7(a) and (b), (the same series as that shown in Fig.4-4(a)). In the first
2 s, both amplitudes were small; then, they suddenly began to oscillate. The amplitudes
of unsteady lift force CLand the side force Cs were approximately 0.05, and the frequency
was not constant, ranging from 0.7 - 2.5 Hz. In both figures, the vertical red lines indicate
at t=6.80 s. Flow visualisation by the tuft method, with an integration of 25 frames during
a 6.75 - 6.85 s, is shown in Fig.4-7(c). The resultant force vector F of the unsteady lift
and side forces is oriented toward the upper and left direction as Fig.4-7(c). In this
instance, the longitudinal vortex is observed to be toward the right and downward
direction, which is just opposite to the direction of F.

In this relationship between the unsteady flow momentum and the aerodynamic forces,
a quasi-steady flow condition must be ensured as a precondition. The Strouhal number
is an index of this condition, being the order 0.01 (St=f - d/U, where: f=1.0 Hz, U=20 m/s
and d(ball diameter)=0.225 m). This small value indicates that the flow-phenomenon may
be treated as quasi-steady conditions.

The strange change in the flight trajectory of low-spinning soccer ball occurs for
masses in the range of 0.410 - 0.450 kg . The values of mass ratio m/(pV) = 64, for an
example, were suitable for these strange trajectory flight caused by the unsteady
aerodynamic forces. In this example value of 64, m is mass of the soccer ball (0.425 kg),
p is the air dencity (1.205 kg/m?®) under 1 atm and 20 degree, and V equals to the volume
of the soccer ball.
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(b) (c)
(a -b), Unsteady aerodynamic force coefficients (C. and Cs) at 4-8 s, in Fig. 4-4(a).
(b) The averaging flow pattern during 0.1 sec. (6.76-6.85 second) around the red line in
Figure 4-7 (a) and (b).
Figure 4-7 The relations between unsteady forces and flow direction around a soccer
ball.

In the case of spinning balls, the unsteady resultant lift and side forces may disappear
and an increase in the rotational speed of the ball generates the steady Magnus force,
which should result in a curved ball. The values N of the ball rotational speeds under the
conditions ranging from purely random conditions to nearly steady conditions, was
determined experimentally to be approximately 2 - 3 rotations per second®'. The other
hand, we observed that the free-fall experiments (in Fig.4-1(a)) showed only less than
1/8 rotation of the ball during 65m fall process, in which the Sp value equals 0.002. In
the machine shooting experiments (in Fig.4-2 (a) and (d)), we observed that the ball
rotates less than one round during 30 m flight, in which the value of Sp equals about
0.03.

Our results indicate that the random behaviour of the flight of low-spinning soccer balls
is mainly caused by the unstable movements of the Q vortex and the twin longitudinal
vortices behind the ball. Grooves on the surfaces of soccer balls promote the transition
of boundary layer from laminar flow to turbulent flow and yield a supercritical Re number
flow around soccer balls. Incidentally, we recognised that strangely behaving volleyballs
that undergo floater serve exhibits the same type of moving behaviour and aerodynamic
mechanism of the soccer balls. Scientific viewpoints regarding similar types of sports ball
phenomena have generally been ignored in literature, but this finding may evoke
scientific interests in sports science.

Fig. 4-7(c) shows the flow pattern observed in multiple images in 25 frames during the
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0.1 s period of 6.75-6.85 s centered around the red lines of (a) and (b). A longitudinal
vortex exists in the lower-right directions. The resultant aerodynamic force F, which is
indicated by the arrow in (c), was oriented the opposite direction of the vortex position at

the symmetrical position of the ball center axes.

5. Applied products by aerodynamic study of sports balls

5-1 By the golfball flight research
(1) Inspection of golf ball characteristics by aerodynamic experiment

The current method of qualifying the aerodynamic properties of golf balls is flight testing.
We suggest that public committees such as R & A and the USGA consider this wind
tunnel testing.

(2) Development of the hit ball analyzer Pythagoras?®

An analysis device called Pythagoras, which measures these initial conditions and
calculates the flight trajectory, has been developed?. This device has been delivered to
400 golf shops in Japan. It is used to assess the suitability of a club when a player
purchases it. Consistent results are reputed compared to existing devices because the
equations of motion are correctly incorporated.

(3) A learning device “Spin-Axis” is approved by the Japan Professional Golf
Association®.

Inspired the bank concept, Masafumi Wakao, a professional golfer, invented learning
equipment. This link device called the Spin-Axis is an excellent learning tool that can
visualize how the rotation axis of the ball banks when set the swing trajectory of the golf
club head and the normal direction of the club surface. The Spin-Axis has been certified
as an official teaching material of the Japan Professional Golf Association.

(3) NHK is trying to improve the accuracy of robots’ camera work by predicting the orbit
with this theory.

5-2 By the baseball research
(1) Development of MA-Q 53

Mizuno has embedded various acceleration sensors in a model baseball ball. A sensor
ball has been developed that can detect the pitching speed U, rotation speed N, and
three-dimensional direction of the rotation axis. Among them, the three-dimensional
direction of the rotation axis is obtained by detecting the earth's magnetism with a high-
sensitivity magnetic sensor. Although MA-Q is this product name, it has the same
pronunciation as "MAKYU: Magic Ball" in Japanese.
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(2) Advanced Topgun: Pneumatic launcher % equipped with changing ball generation
function

A study of the magic ball of a baseball has revealed the initial conditions (initial speed,

rotation speed N, direction of the rotation axis, the direction of ball advance, and the

seam) immediately after the pitcher's hand is released. We are conducting R & D to make

it possible with launchers. A gyro-rotating ball launching device has already been

patented®®.

5-3 By the soccer ball erratic flight research

The only way to create this magic ball is to kick the soccer ball with a slight spin. Shoes
for that were developed®®. Wearing these shoes (Wave Ignitus by MIZUNO Co.), Keisuke
Honda had shot a historic ball*” at the 2010 FIFA World Cup (Japan 2-1 Denmark), in
South Africa.

6. Conclusions
Aerodynamic studies of a sports ball flying will have three main implications.

1) Creates even more mysterious excitement for audiences and TV watchers.
2) Improving the performance and early recovering from damages.
3) Related goods developments.
The main conclusions of this study are as follows.
1) 3D trajectory formulation of golf ball flight

Instead of the concept of side spin for over 100 years, we introduced the concept of a
bank of rotating axes. A three-dimensional trajectory equation has been constructed. The
technology to measure aerodynamic three-component force and aerodynamic torque in
a wind tunnel experiment has been completed. These results have been verified by
outdoor experiments under the influence of still air and natural wind. A device called
Pythagoras that can analyze the trajectory of a ball and a learning machine for players
have been developed.
2) Research of baseball erratic flight

The aerodynamic mechanism of the strange changing ball of a baseball thrown by a
pitcher has been studied in relation to ball speed, rotation speed, direction of rotation
axis, and seams. A technique has been developed to accurately measure the
aerodynamic three-component force and aerodynamic torque applied to a baseball ball
rotating in a wind tunnel airflow.

The mechanism of the rolling knuckle ball and yawing knuckle ball is flutter expressed

by quasi-stationary theory. Knuckler, however, has chosen a ball that moves more
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irregularly. The effect of friction torque is not so great. SFF balls, called front door balls
or back door balls, could be described experimentally in relation to the axis of rotation
and seams. Until now, it had been said that no hopping ball, but recent pitcher skills have
made it possible to hop higher than one ball height.
3) The erratic behaviour of slowly spinning soccer ball

The strange flight of a slowly spinning soccer ball is caused by a change in the position
of the bound vortex and the subsequent vertical vortex. This is a purely random flutter,
similar to the supercritical Re number smooth sphere studied by Taneda?'. The
simultaneous measurement of the unsteady force and the unsteady flow pattern around

the soccer ball revealed these mechanisms.
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Abstract

Classical descriptions of nonlinear flutter phenomena are based on bifurcation theory, as de-
scribed in the nonlinear dynamic literature. These descriptions generally involve the occurrence
of a subcritical or supercritical Hopf bifurcation, followed by one ore more fold bifurcations
of limit cycles. The behaviour of simple aeroelastic models with basic nonlinearities conforms
perfectly with this description of nonlinear flutter. However, real aeroelastic systems gener-
ally display more complex and, sometimes, surprising behaviour. This work presents four wind
tunnel experiments on nonlinear aeroelastic systems, featuring aerodynamic and/or structural
nonlinearity. It is shown that one of the systems conforms indeed to the classical description of
nonlinear flutter. The other three feature more complex behaviour, such as the abrupt appear-
ance of nonlinear oscillations in the absence of a linear aeroelastic instability, or a two-parameter
bifurcation that can change the nature of the flutter from subcritical to supercritical.

Keywords: Nonlinear Aeroelasticity, Flutter, Limit Cycle Oscillations, Bifurcation, Wind Tunnel
Experiments

1 Introduction

Over the last 40 years, nonlinear aeroelasticity has become an increasingly important area of
research. Nonlinear aeroelastic systems exhibit much more complex behaviour than their linear
counterparts, including the existence of multiple solutions at the same parameter values, as
well as the phenomenon of Limit Cycle Oscillations (LCO). Hence, nonlinear flutter is not
understood or described as well as linear flutter. Typical theoretical descriptions of nonlinear
flutter (Lee et al. , 1999; Dowell, 2004; Dimitriadis, 2017) are inspired from the nonlinear
dynamic literature (e.g. Kuznetsov (1998); Guckenheimer & Holmes (1983)) and analyse the
phenomenon using bifurcation theory. Nonlinear flutter is therefore presented as the result of
a Hopf bifurcation, which can be subcritical or supercritical and can lead to high amplitude
LCOs at subcritical conditions or low amplitude LCOs at supercritical conditions, respectively.
Dowell has categorised these phenomena using the terms ‘bad LCO’ for the subcritical case
and ‘good LCO’ for the supercritical case. Furthermore, simple nonlinear aeroelastic models
(typically 2D airfoils with pitch and plunge degrees of freedom and with cubic stiffness) conform
to this description of nonlinear flutter, although they can sometimes also display richer and more
complex behaviour.

Experimental investigations of nonlinear aeroelastic systems can also conform to the classical
description of nonlinear flutter. However, in many cases the phenomena observed in practice are
more complex and more difficult to categorise. The purpose of the present paper is to present
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four examples of wind tunnel experiments on nonlinear aeroelastic systems and to discuss how
the behaviours observed differ from the typical Hopf analysis. The nonlinearities featured in
these experiments can be due to structural stiffness effects, structural damping effects or aero-
dynamic effects. Furthermore, some of these nonlinearities, particularly the structural damping
are not designed for, they are just natural byproducts of the mechanics of the system (e.g.
friction in bearings). The paper starts with a discussion of classical nonlinear flutter theory and
then presents the experimental test cases.

2 Classical nonlinear dynamics for fluid-structure interaction

A general form of the flow equations can be written as

P P pu
5 | P +V- pu@u+pl—T =Q (1)
pE puE +~pu—17-u—rVT

where t is the time, p is the flow density, u = [u v w]7 is the flow velocity vector, E is the
total energy, p is the pressure, T is the viscous stress tensor, k is the thermal conductivity, T
is the temperature and Q is a generic source term. Furthermore, V is the gradient operator,
V- is the divergence operator and ® is the vector outer product. For a Newtonian fluid, the
viscous stress tensor is written as

7=p(Vu+Vu') (2)

and, for gas flows, closure can be achieved by use of the gas state equation.

The flow equations can be simplified by assuming incompressible and/or inviscid flow. They
can also be written in the Random Averaged Navier-Stokes (RANS) form by averaging them
in time in order to remove the effect of small turbulent fluctuations. Whichever form of the
equations is used, it is solved numerically by discretising the flow domain into i = 1,2, ..., nf
nodes. Writing the flow state vector at the ith node as

Pi
Xi= | piui
piEi
we can assemble the complete flow state vector
X1
X2
X =
Xp,

and reformulate the semi-discretized flow equations as
Xr = fr(X¢) (3)

where f¢ is a vector of nonlinear functions. In expression 3 the source term has been set to
zero, the gas state equation has been implemented and viscosity has been assumed constant.
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The reason for discretising equations 1 in space but not in time is to show that the flow
equations can be written in the form of a first order nonlinear dynamical system. The flow
can be specified in more detail by defining the free stream flow velocity U, density p,, and
pressure p... Equations 3 then can feature these parameters

Xs = fr(Xf, Uso, Poor Poo) (4)

The structural deformation equations can be semi-discretised in the same way, using finite
element modelling for example, leading to equations of motion of the form

Xs - fs(xs) (5)

where X. is the vector of structural states at the n, structural nodes and f. is a vector of
nonlinear functions.

In typical fluid-structure interaction problems the flow applies loads to the structure and
the structure deforms, such that that the flow boundary changes and so do the fluid loads. A
general form of a fluid structure interaction equation is then

X =f(X, Us, Poos Poo) (6)

X
(X))
and f is another set of nonlinear functions that reflect flow physics, structural physics and

fluid-structure coupling physics. Equations 6 can be studied using standard nonlinear dynamic
analysis (Dimitriadis, 2017). Consider the fixed point Xg, for which

where the combined state vector is

f(XE' Uoovpom poo) =0

The nonlinear function can be linearised around this fixed point by applying a Taylor expansion,
such that

of
f(Xe + %, Uso, poc, o) & F(XE, Usc, pocs Poc) + 73| X
X |x,
where |x| << |Xg|. Substituting back into equation 6 we obtain
x = AU, Poo, Poo)X (7)
where of
A UOO! o1 Po) = Gw
(Uoc, pocs Poc) = 5o .

is the system’s Jacobian around fixed point Xg. The parameters U, poo, Poo are bifurcation
parameters that govern the stability of the system. Equation 7 is a linear Ordinary Differential
Equation with solution

x(t) = Z vietite (8)
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where m is the total number of states, v; and \; are the eigenvectors and eigenvalues of A
respectively and ¢; is the ith element of vector ¢ = V7'x(0), V = [v; ... v,] being the
eigenvector matrix of A and x(0) being initial conditions.

Flutter is usually defined on linear systems of the form of equation 7. The critical flutter

condition is the combination of parameters U, poo, Pso for which one pair of complex conju-
gate eigenvalues of A becomes purely imaginary. At this condition, the steady state response
of equation 8 is purely harmonic, with frequency |\|, the magnitude of the pair of imagi-
nary eigenvalues. The critical flutter condition splits the possible values of the system's flow
parameters into two sets:

Ty

e At subcritical conditions the fixed point attracts response trajectories and the system is
said to be stable as it undergoes damped oscillations whose amplitude decays towards the
fixed point. This situation is displayed in the phase-plane plot of figure 1(a), which plots
the velocity response of a system, x;(t) = %»(t), against its displacement, x,(t). The
response trajectory starts at the initial condition x;(0) = 0, x2(0) = 0.1 and spirals inwards
around the phase plane, all the while approaching the fixed point lying on x; = x, = 0.

e At supercritical conditions the fixed point repels response trajectories and the system is
unstable, undergoing oscillations whose amplitude increases exponentially with time. This
situations is exemplified in the phase-plane plot of figure 1(b). The initial condition is
the same as in figure 1(a) but this time the response trajectory spirals outwards, moving
faster and faster away from the fixed point.

3000(
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Figure 1: Stable and unstable oscillatory responses of a linear system.

Nonlinear systems behave in a similar manner very close to the fixed point but display more

complex behaviour further away from this point. The term nonlinear flutter is usually applied
to the Hopf bifurcation, whose critical condition is identical to the linear flutter condition.
Nonlinear systems are characterised by the fact that they can have more than one solutions at
the same parameter values, hence their steady state response depends on the initial conditions.
As the parameters are varied, these solutions also vary and form solution branches. A bifurcation
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is the intersection of two or more such solution branches. A Hopf bifurcation is the intersection
of a branch of static solutions (the fixed point) with a branch of oscillatory solutions, known as
a limit cycle branch. Limit cycles can attract or repel response trajectories in the same way that
fixed points do. Responses that decay onto a limit cycle are oscillations with limited amplitude,
known as Limit Cycle Oscillations (LCO). This type of response is displayed in the phase plane
plot of figure 2(a), where response trajectories starting either outside or inside the limit cycle
spiral towards the latter. An unstable limit cycle causes the exact opposite behaviour, as shown

in figure 2; response trajectories starting either inside or outside the limit cycle spiral away from
the latter.

T
€1

X9 )

() (b)

Figure 2: Stable and unstable limit cycle oscillations.
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Figure 3: Supercritical (left) and subcritical (right) Hopf bifurcations.

At the Hopf bifurcation point, the fixed point still exists but its stability changes. Further-
more, a limit cycle starts to grow around it. Two major cases of Hopf bifurcation exist:
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1.5¢

0.5

Supercritical Hopf bifurcation: The fixed point is stable at parameter values lower than
the Hopf condition and unstable at higher parameter values. A stable limit cycle branch
emanates from the Hopf point in the direction of increasing parameter value. This phe-
nomenon is demonstrated in figure 3(a), where the limit cycle amplitude r is plotted
against the bifurcation parameter V. As the Hopf condition and the linear flutter condi-
tion are identical, it follows that a linear flutter analysis can predict the parameter value
at which LCOs will begin.

Subcritical Hopf bifurcation: The fixed point is again stable at parameter values lower
than the Hopf condition and unstable at higher parameter values. An unstable limit cycle
branch emanates from the Hopf point in the direction of decreasing parameter value.
This phenomenon is demonstrated in figure 3(b). A linear flutter analysis can still predict
the Hopf point but the usefulness of such a prediction is limited, as the system can be
unstable at airspeeds below the flutter condition, if the initial condition lies outside the
unstable limit cycle.
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Figure 4: Folds after supercritical (left) and subcritical (right) Hopf bifurcations.

Hopf bifurcations can sometimes be followed by fold bifurcations of limit cycles. These
phenomena cause the limit cycle branch to change its stability and to reverse its direction.
Figure 4 demonstrates two examples of such folds:

In figure 4(a) a supercritical Hopf bifurcation is followed by two fold bifurcations. The
limit cycle branch is initially stable and propagates towards the right. After the first fold
the branch becomes unstable and propagates towards the left. After the second fold,
the branch becomes stable again and propagates towards the right. In the parameter
range between V = 4.2 and 6.2 the system’s response trajectories can undergo either a
low-amplitude or a high-amplitude LCO, depending on the initial conditions.

In figure 4(b) a subcritical Hopf bifurcation is followed by a single fold bifurcation. The
limit cycle branch is initially unstable and propagates towards the left. After the fold

33



Second International Symposium on Flutter and its Application, 2020

the branch becomes stable and propagates towards the right. This means that high-
amplitude LCOs are possible at parameter values significantly lower than Hopf condition.
Linear analysis cannot predict the occurrence of such LCOs.

LCOs can occur as a result of other types of bifurcation, such as the grazing bifurcation oc-
curring in systems featuring non-smooth nonlinear functions. Furthermore, LCOs can have very
small amplitude or can even be suppressed in the presence of high damping. Hence, the occur-
rence of a Hopf bifurcation is not necessarily catastrophic in the linear flutter sense. Nonlinear
flutter is much more complex than linear flutter and it is not easy to split the possible values of
the flow parameters into safe and unsafe categories. The following experimental examples will
demonstrate that real nonlinear aeroelastic systems can conform to the Hopf/fold bifurcation
model describe above but they can also display surprising and more complex behaviour.

3 Cantilever flat plate wing

The first example concerns a cantilever flat plate wing installed vertically in the wind tunnel (De
Oro Fernandez et al. , 2020). It is a flat plate made from aluminium with a thickness of 1 mm.
The Aspect Ratio is 2.11, the span b = 0.96 m and the taper ratio A = 0.82. Figure 5 shows
a photograph of the wing installed in the aeronautical working section of the wind tunnel fo
the University of Liége. The wing was placed on a flat steel base lifted 0.3 m off the floor of
the working section by means of a steel support rod in order to ensure that the wind tunnel's
boundary layer will not affect the flow. The wing was secured to the steel base using two right
angle sections, one on each side. Two SICK laser sensors (OD2-P250W150U0) were used to
measure the vibrations of the wing's surface with a sampling frequency of 1 kHz.

Eternal excitation was administered by tugging on a string attached to the wingtip's trailing
edge. The response signals were assumed to be impulse responses and were analysed using
an in-house version of the Least-Squares Complex Frequency-Domain (LSCF) modal parameter
estimator, commercially known as PolyMAX (Peeters et al. , 2004). As this type of excitation
cannot provide enough energy to the higher modes of vibration, only 2-3 modes could be
identified, depending on the airspeed. The modal parameters of the first three wind-off modes
of vibration are tabulated in table 1.

Table 1: Wind off modal parameters

Mode 1 Mode 2 Mode 3
Frequency (Hz)  3.29 9.91 16.69
Damping (%) 2.6 22 2.1

The wing was tested at a range of airspeeds, from U,, = 0 to 24.4 m/s. Figure 6 plots the
time responses of the laser sensors at four of the airspeeds. It can be seen that the damping is
increased significantly by the effect of the aerodynamics, up to an airspeed of 22.9 m/s when
the wing starts to undergo limit cycle oscillations with a small amplitude of around 0.03 cm.
LCOs also occur at all higher airspeeds. The decays of the signals at subcritical airspeeds are
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Figure 5: Cantilevered flat plate wing in wind tunnel

exponential, as predicted by equation 8 for systems whose eigenvalues have all negative real
parts.

Figures 7(a) and 7(b) plot the variations of the natural frequency and damping ratios of the
first two modes of the wing for all the tested airspeeds. Both experimental data and predictions
obtained from an aeroelastic model based on the Vortex Lattice Method (Dimitriadis et al.
, 2018) are plotted. The natural frequencies of the first and second modes (corresponding
to the first bending and first torsion modes) approach each other as the airspeed increases.
Furthermore, the damping ratio of the bending mode becomes very big, while that of the
torsion mode drops to zero. This is a classical binary flutter mechanism involving the first
bending and first torsion modes. Figure 7(c) plots the variation of the LCO amplitude with
airspeed. The first limit cycles appear at 22.9 m/s and their amplitude is small; the amplitude
increases steadily over the next three airspeeds. This behaviour is typical of a supercritical Hopf
bifurcation.

The nonlinearity present in the system is thought to be mostly dependent on geometric stiff-
ening effects due to high displacements. Some amount of dynamic stall may also be occurring,
particularly since the leading edge is rectangular and not rounded off. The results obtained
from the cantilevered flat plate wing conform to the classical theory of nonlinear flutter:

e The subcritical behaviour of the system around its fixed point is equivalent to that of the
underlying linear aeroelastic system. A typical bending-torsion flutter mechanism brings
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Figure 6: Time response of cantilevered flat plate wing at different airspeeds.

about the loss of stability.

e At supercritical airspeeds, small amplitude oscillations appear but their amplitude in-
creases with airspeed.

It should be noted that many other flat plate wings of the same thickness but with different
geometries were tested in the wind tunnel. The bifurcation behaviour was qualitatively the
same, even though the LCO critical speeds, frequencies and amplitudes were different.

4 Pitch-plunge wing

This example concerns a finite wing with pitch and plunge degrees of freedom tested in the
wind tunnel of the University of Liége. The wing was installed vertically on a support structure
that consisted of a base plate (lifting the wing outside the wind tunnel's boundary layer) and a
spring assembly that provided restoring loads in the pitch and plunge degrees of freedom. The
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Figure 7: Frequency, damping and amplitude variation with airspeed.

wing had a mass m = 3.3 kg, a NACA 0012 section, a chord ¢ = 0.146 m and a span b = 0.47
m, leading to an aspect ratio of 3.2. The mean angle of attack was set to zero. Figure 8 shows
a photo of the wing and its support structure installed in the wind tunnel.

The pitch axis lay at 0.3c and the spring supports were designed such that the plunge
and pitch degrees of freedom had wind off frequencies of 4 Hz and 8 Hz respectively. Three
accelerometers were placed on the wing's surface to measure its motion, two near the wingtip's
leading and trailing edges and one on the pitch axis near the root. The accelerometer signals
were acquired with a sampling frequency of 1 kHz using a National Instruments Data Acquisition
system managed by the Labview software package. The wing was excited by pulling a string
attached to the pitch axis under the root. The response signals were assumed to be impulse
responses and were again analysed using the LSCF modal parameter estimator. The modal
parameters of the first four wind off modes are tabulated in Table 2. The first two modes are
the plunge and pitch degrees of freedom; the next two modes could be harmonics of the plunge
or they could be additional modes due to undesigned flexibility.
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Figure 8: Pitch-plunge wing in wind tunnel

Table 2: Wind off modal parameters

Mode 1 Mode 2 Mode 3 Mode 4
Frequency (Hz)  3.96 7.81 11.64  16.26
Damping (%) 6.8 8.0 3.3 4.4

The wing was tested at airspeeds ranging from U,, = 0 to 10.4 m/s; figure 9 plots the time
responses of the three accelerometers at three different airspeeds. The responses damp out in
figures 9(a) to 9(c) for Uy, =0, 7.1 and 7.5 m/s respectively. Note that, unlike the flat plate
wing case, the decays are not exponential, the decay envelopes are in fact nearly triangular,
particularly at the lowest airspeeds. These decays cannot be predicted by equation 8; this
phenomenon is probably due to friction in the bearings. At U,, = 7.5 m/s the response could
decay, as shown in figure 9(c), but could also undergo LCOs, as shown in figure 9(d). This was
also the case for U,, = 7.8 m/s. At all higher airspeeds only LCOs were encountered.

All the responses were analysed using the LSCF method, noting that at least four excitations
were applied at each airspeed. Figure 10 plots the variation of the natural frequencies and
damping ratios of the first four modes of the system, as well as the variation of the LCO
amplitude recorded by the three accelerometers, with airspeed. Several aspects of these graphs
are interesting:

e The natural frequencies vary very little with airspeed (see figure 10(a)). As mentioned
previously, the usual binary flutter mechanism dictates that two of the frequencies must
approach each other in order to cause flutter. This is clearly not the case here.

e The damping ratios all decrease with airspeed and jump abruptly to zero when the LCOs
start (figure 10(b)). Again, this phenomenon is incompatible with the classical binary
flutter mechanism, whereby one of the damping ratios goes to zero while the other
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Figure 9: Time response of pitch-plunge wing at different airspeeds.

becomes very high. Note that the damping ratios are very high at wind-off conditions,
which is compatible with the previous observation that there may be significant friction
in the bearings.

e The first limit cycles encountered at U,, = 7.5 have a finite, non-negligible amplitude
(figure 10(c)). Furthermore, at two airspeeds both stable and LCO responses are encoun-
tered. It can be concluded that the LCOs are a result of a subcritical Hopf bifurcation.

The nonlinearity causing the LCOs is not known. Clearly, high amplitude oscillations can lead
to dynamic stall and, hence, stall flutter. This could be the case here, as there is no discernible
flutter mechanism at subcritical airspeeds. However, significant friction is also present and
further undesigned structural nonlinearity cannot be excluded. In any case, the aeroelastic
instability observed in figure 10 appears to bypass the classical Hopf mechanism. This could
mean that stall flutter (if that is truly the phenomenon occurring here) does not require a
classical flutter mechanism to occur; dynamic stall can cause LCOs on an otherwise stable
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Figure 10: Frequency, damping and amplitude variation with airspeed.

aeroelastic system far from its flutter speed. Nevertheless, at airspeeds U,, > 8.3 m/s, stable
responses are no longer possible; only LCOs can occur. This could mean that the Hopf point
lies at this airspeed but that the frequency coalescence phenomenon is hidden by the fact that
the wing already undergoes LCOs at airspeeds above U,, = 7.8 m/s. Nevertheless, it is also
possible that the non-standard subcritical behaviour seen in figure 10 is due mostly to the high

amounts of friction present in the system.

5 4:1 rectangular cylinder undergoing torsional oscillations

This experiment investigated the LCO behaviour of a rectangular cylinder with aspect ratio 4:1
and a pitch degree of freedom (Andrianne & Dimitriadis, 2013). The rectangle had a chord
¢ = 0.08 m, height d = 0.02 m and span b = 1 m. The pitch axis passed through the centre of
the rectangle and the pitching motion was measured by means of two accelerometers installed
on an adaptor arm. Figure 11 shows a photo of the rectangular cylinder installed horizontally
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in the wind tunnel. The root of the cylinder was adjacent to an end-plate while the tip was
adjacent to the wind tunnel's wall, ensuring quasi-2D flow. The spring assembly providing a
restoring moment in the pitch direction was chosen such that the wind-off natural frequency
of the system was 8.15 Hz while the wind-off damping ratio was 2.6%. The critical airspeed
for vortex-induced vibrations was much lower than the airspeeds at which LCOs occurred. The
nonlinearity in this system is mostly due to dynamic separated flow and, in particular, associated
with the shedding of a Motion Induced Vortex. Some structural nonlinearity occurs at angles
higher than the highest LCO amplitude recorded during the experiments but this does not
preclude other types of undesigned structural nonlinearity, including friction in the bearing.

Figure 11: 4:1 rectangular cylinder in wind tunnel

The cylinder was tested at airspeeds between U,, = 0 and 14.6 m/s. Initial condition
excitation was imposed; the rectangle was held at initial pitch angles between 1° and 10° and
then released. Figure 12 plots the variation of the LCO amplitude and frequency with airspeed.
LCOs first occurred at U,, = 6.7 m/s. However, the system needed an initial pitch angle of
at least 3° in order to start undergoing LCOs at this airspeed; lower initial pitch angles led to
decaying responses. At 6.9 m/s an initial pitch angle of 2° was sufficient to cause LCOs while
at higher airspeeds up to 13.9 m/s the LCOs were started using an initial pitch angle of 1°.
Nevertheless, at all these airspeeds the system remained stable if the initial pitch angle was 0°.
The only airspeed at which LCOs were obtained even with a 0° initial condition is the highest
airspeed that was tested, U,, = 14.6 m/s. Figure 12(a) plots the initial conditions necessary
for LCO responses as black circles. It can also be seen that the LCO amplitude variation with
airspeed is discontinuous at 9.4 m/s, where the amplitude jumps up by about 5°. The variation
of the LCO frequency (in Hz) with airspeed is plotted in figure 12(b). Unlike the amplitude,
there is no discontinuity in the frequency. Furthermore, plotting period against amplitude in
figure 12(c) we can see that all the points lie on a straight line and that the period increases
with amplitude or, equivalently, that the frequency is inversely proportional to the amplitude.
This means that the nonlinearity in this system is softening; such systems are usually associated
with subcritical bifurcations that lead to static instability. This is clearly not the case here.

The behaviour of figure 12 could be explained in terms of classical nonlinear dynamics, if
it is assumed that a subcritical Hopf bifurcation takes place at U,, = 14.6 m/s. The unstable
limit cycle branch would then propagate down to 6.7 m/s before folding, becoming stable and
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Figure 12: LCO amplitude and frequency variation with airspeed.

reversing direction. The amplitude jump at 9.4 m/s could be the result of a second fold.
However, the behaviour could also be explained as the effect of friction in the bearing. It could
be that a supercritical Hopf bifurcation occurs at U,, = 6.7 m/s but, if the initial condition
is too low, the friction is sufficient to dissipate the energy absorbed from the flow and the
response will decay. Then, at U,, = 14.6 m/s excitations due to the wind tunnel’s natural
turbulence and due to vortex shedding from the rectangle would become sufficient to overcome
the dissipative effect of the friction and to start the LCOs.

6 Fully suspended finite wing

The previous examples included one case without bearings (the cantilevered flat plate wing) and
two cases with at least one bearing. The case without bearings exhibited a classical nonlinear
flutter behaviour while the cases with bearings had more complicated bifurcations. However,
the present example will demonstrate that this is not a general case; it concerns a rectangular
wing with a NACA 0018 section suspended horizontally from 8 extension springs, as shown in
figure 13 Abdul Razak et al. (2013). The pitch axis lay at 37% of the chord. The wing's chord
was 0.36 m and its span 1 m, resulting in an aspect ratio of 2.78. The wing was hollow and
contained 16 pressure tappings in its mid-span position, connected to 16 piezoresistive pressure
transducers. The wing's motion was measured by means of four accelerometers attached to the
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spring adaptor arms and sampled at 1 kHz. A time-resolved Particle Image Velocimetry (PIV)
system was used to visualise sections of the flow on the upper surface. The equilibrium angle
of attack of the wing, a., was set to different angles, from 11° to 16° and the wing was tested
at airspeeds between 0 m/s and 26 m/s.

Supports

Arm Wing

(@)

Figure 13: Fully suspended finite wing in the wind tunnel.

As the wing was fully suspended, it had 6 degrees of freedom but its motion was nearly ex-
clusively in the pitch direction, around the pitch axis. The nonlinearity was purely aerodynamic,
as the spring assembly behaved in a linear manner throughout the tested extension range and
there were no bearings. The interesting aspect of this experiment was that the bifurcation
behaviour of the system changed both quantitatively and qualitatively as the equilibrium angle
of attack was varied. The complete bifurcation diagram can be seen in figure 14. lts most
important characteristics are the following:

o At aeqy = 11° the wing underwent a very abrupt bifurcation at 25.2 m/s, which changed
the nature of the response from stable to very high amplitude LCOs. The amplitude
increased even more at 25.5 m/s, at which speed the test was terminated to preserve the
structural integrity of the system. The highest amplitude measured was 15°.

o At aeg = 12° small amplitude LCOs appeared at 20.8 m/s but the amplitude increased
abruptly at 21.2 m/s. It increased further with airspeed before the test was terminated.
Clearly, two regions of LCO were encountered, a short low-amplitude region and a longer
high-amplitude region.

e At aieg = 13° the behaviour was qualitatively similar to the 12° case but all the LCOs
appeared at lower airspeed and the low-amplitude region was longer with respect to the
high-amplitude region. Furthermore, there was an airspeed range in which both low- and
high-amplitude LCOs were possible.
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o At (eq = 14° the bifurcation behaviour was changed again, as the jump in amplitude ob-
served in the two previous cases disappeared. Now the LCO amplitude changed smoothly
from zero to the highest value of around 10°, although there were three inflection points
at around 15, 16 and 18 m/s.

o Finally, at aeg = 16°, the number of inflection points in the LCO amplitude-airspeed
graph was reduced to one. The critical airspeed was the lowest encountered throughout
the tests.

5L

LCO amplitude in pitch (degrees)
o
T

_15 I I I I I I I ]
10 12 14 16 18 20 22 24 26

Airspeed (m/s)

Figure 14: Complete bifurcation diagram for the fully suspended rectangular wing

Interestingly, the fundamental LCO frequency remained nearly constant at all airspeeds
and angles of attack, between 5.5 Hz and 6 Hz. The two-parameter bifurcation observed
in figure 14 can be described in terms of the Generalised Hopf bifurcation presented in the
nonlinear dynamics literature. As the equilibrium angle of attack is increased, the nature of
the bifurcation changed from subcritical to sub-critical. At aq = 11° the bifurcation results
in nearly linear flutter; it can be idealised as a subcritical Hopf undergoing a fold at high
amplitudes. At aeq = 12° and g = 13° the bifurcation is supercritical but the limit cycle
branch undergoes a fold, resulting in high amplitude LCOs. At higher equilibrium pitch angles
the fold disappears.

In this test case, the bifurcation behaviour is governed completely by dynamic stall. PIV
measurements demonstrated that a Leading Edge Vortex is generated near the leading edge
and shed over the surface of the wing during the LCOs, at least for ae;, = 13°. Nevertheless,
it is not clear exactly which aspect of the dynamic stall phenomenon causes the bifurcation
between low- and high-amplitude LCOs and how the equilibrium angle of attack changes the
bifurcation from subcritical to supercritical.

64



Second International Symposium on Flutter and its Application, 2020

7 Conclusions

This work has presented four wind tunnel tests on nonlinear aeroelastic systems. The nonlin-
earities were either aerodynamic (dynamic stall) or structural (geometric stiffening or friction).
The cantilever flat plate wing conformed to the classical description of nonlinear flutter, which
involves a supercritical or subcritical Hopf bifurcation, sometimes followed by one or more fold
bifurcations of limit cycles. For the cantilever wing, mostly linear subcritical behaviour turned
into LCOs of increasing amplitude at supercritical conditions. However, the pitch-plunge wing
system displayed marked differences with classical theory. The subcritical behaviour did not
betray the existence of a flutter mechanism, the damping ratios all decreased abruptly to zero
and non-zero amplitude limit cycle oscillations appeared abruptly. In classical subcritical Hopf
cases, the underlying linear system still features a flutter mechanism; here, there was no evi-
dence of such a mechanism. The bifurcation behaviour of the 4:1 rectangular cylinder could be
described as a subcritical Hopf followed by three folds. However, the unstable part of the limit
cycle branch would then have a constant and very low amplitude, which is incompatible with
the classical quadratic variation of limit cycle amplitude close to a Hopf point. Finally, the fully
suspended finite wing demonstrates a two-parameter bifurcation behaviour, whereby the nature
of the Hopf and the existence of folds depend on the chosen value of the equilibrium angle of
attack.
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Abstract

Because of the extraordinary light weight and flexible structure, the large aspect ratio wing
may induce large elastic deformations when undergoing aerodynamic loads and present
notable geometric nonlinearity. Thus, the structural stiffness and dynamic characteristics
may vary under different aerodynamic loads and deformations, and then the flutter
characteristics may change and also present nonlinearity. In this paper, nonlinear flutter will
be analyzed under large structural deformation for flexible wings. The analysis results
indicate that the flutter speed obtained by nonlinear analysis is much lower than the linear
case and even the flutter coupling modes changed. The horizontal bend mode obviously
contains twist component and contribute to the unsteady aerodynamics and causes the
decline of flutter speed according to the investigation of nonlinear flutter. So the nonlinear
flutter analysis can clearly reflect the structural dynamics under large deformation and
becomes inevitable.

Keyword: flexible wing, geometric nonlinearity, nonlinear flutter

1 Introduction

The chase for extraordinary flight performance and the wide application of composite
materials in aircraft design make the structure flexible and then the flexible aircrafts
continue to come forth, such as large-aspect-ratio UAVs, solar-powered UAVs and flying
wing UAVs. The flexible aircrafts often utilize large aspect-ratio wing to obtain the good
lift-drag ratio and flight performance but the wing may induce large deformations under
aerodynamic loads and present notable geometric nonlinearity. The traditional linear
aeroelastic analysis based on small deformation hypotheses is no longer suitable and the
nonlinear aeroelastic stability and response analysis for flexible aircraft considering the
geometric nonlinearity is urgently demanded.

The geometric nonlinear aeroelasticity means the structural large elastic deformations and
loads conditions make the structure present notable geometric nonlinearly and change the
aircraft configuration. Thus the aircraft stiffness and dynamic characteristics may vary
under different deformation and change the flutter characteristics. So for flexible wings the
nonlinear flutter speed often lower than the linear flutter speed and make the nonlinear
flutter analysis necessary and essential.

Due to the discussions above, the geometrically nonlinear flutter analysis methods are
established in this paper. The structural quasi-modes, obtained under nonlinear equilibrium
state are combined with unsteady aerodynamic based on deformed configuration to form
the flutter equations in frequency domain and solve the critical flutter speed and coupling
style. This nonlinear flutter analysis methods can well consider the effect of deformation
and loads condition on structural geometric stiffness and stress stiffness and obtain the
geometrically nonlinear flutter characteristics. This flutter analysis is much closer to the real
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physical scene and get more accurate flutter results.
2 Theory

2.1 Structural geometric nonlinearity

Because of the light weight and weak stiffness, the flexible wing may induce large bend and
twist deformations and make the linear small deflection hypotheses vanished. The
structural geometric nonlinearity roots form the nonlinear geometric equation, which
includes the quadric term of the displacement differential, and requires the nonlinear force
equilibrium equation established on the deformed state of the structure. Meanwhile, the
linear stress-strain constitutive relationship is still applicable. Structural geometrically
nonlinear problems are often solved by the nonlinear incremental finite element methods
In this paper the Updated Lagrange Formula is adopted in this study, and the primary
equations are presented briefly below.

The relationship between the nonlinear Lagrange/Green strain and displacement is

t<9ij :%(tui,j + tuj,i +'Uy tuk,j) (1)
Despite large elastic deformations, the material remains within the elastic limitation for a
small strain. So the final element-governing equation can be expressed as:

(tKN+tKNL)u:t+AtQ+tF )
The stiffness matrix in Eq.(2) can be decomposed into a linear part and nonlinear part. The
linear part is only related to the structure itself, whereas the nonlinear part is related to the
deformed configuration, load condition and strain quality, each of which should be updated
in each computation step.
For aeroelastic stability problems, an assumption of small-amplitude vibration around the
nonlinear static equilibrium state is suitable for many dynamic problems, including dynamic
stability flexible aircraft:

u=u+x 3)
the vibration equation of the system and the linearized structural quasi-mode can be
obtained by generalized diagonalization,

M X+K.x=0 4)
Despite the hidden nonlinear relations, the form the equations is consistent with the linear
free vibration equations, thus the classical solving methods can be adopted. The mode
shapes and frequencies under different equilibrium states can be deduced from Eq.(4). The

modes get through the linearized dynamic equation is called “quasi-modes”, and that can
be utilized in nonlinear flutter analysis.

2.2 Non-planar Doublet Lattice Method(NDLM)

To meet the demand of non-planar aerodynamic computations, mesh dividing should be
determined on the deformed surface and updated along with the structure deflection, as
shown in Figure 1. In addition to the spatial lattices, local coordinates should be established
to reflect the exact non-planar configuration of the wing. The non-planar effect not only is
reflected geometrically but also should be contained in the kernel unction [J. In this section,
the DLM code is extended into non-planar cases to account for the 3D unsteady loads of
large-aspect-ratio wings with large deflections and can be successively applied in
engineering practice.
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Figure 1: Captions should be centered below figures and above tables.

Figurel Typical non-planar lattice on a curved lifting surface

doulet-lattice line

normal wash

Figure2 Non-planar lattice and the normal wash direction

The kernel function can be expressed as

K= Iimi{e‘i“’x’uw J'; 0 [ 1 @il MR)M, }d,}l} (5)

" an o R

The critical problem of NDLM is the implementation of exact geometric boundary conditions.
The local normal wash velocity can be is computed spatial distributed doublet lattice via
kernel function and the boundary condition should be determined by geometrically
nonlinear curve lifting surface. Unlike traditional doublet-lattice methods, the local normal
wash should be concerned and the linearized model shape obtained around nonlinear
equilibrium state should be introduced in unsteady aerodynamic computation in frequency
domain. Since the linearized modals may be vary under different equilibrium states, so the
unsteady aerodynamics may also be vary and present different characteristics.

Due to the large deformation, the wing can not be treated as vibrating around xy plane, the
actual curved boundary condition should be taken into account. n is the normal vector of
lifting surface S(x,y,2)=0, (n,x),(n,y),(n,z)are the angles between normal vector and
coordinate axis, the motion of lifting surface can be written asS :Sem, so the normal
motion velocity can be expressed as

(Un)S:(%j cos(n,x)+£%j cos(n,y)+£%) cos(n,z) (6)

All these geometrically nonlinear managements make it quite different from traditional DLM.
Also, the NDLM aerodynamics can be expressed as follows:

w = DAc, @)

D is the spatial doublet-lattice influence coefficient matrix. Solve the equations above the
unsteady pressure can be obtained,
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PK method, which is also utilized for flutter analysis, combined with NDLM can be used to
implement the nonlinear flutter analysis for very flexible wings to obtain the nonlinear flutter
boundary considering the large structural effects.

2.3 Nonlinear flutter analysis

Small disturbance hypotheses are adopted around the nonlinear equilibrium state and
“quasi-modes” are introduced in the dynamic equations, then we got:

Mg+Kq=Q (8)

Using p-k method to solve the equations, it can be rewritten as

[(pZM p2 Q! +(K—%pV2QR)}q ~0

2k
b 9)
k=—{Im(p)
Slmp)
The geometrically nonlinear flutter analysis flow chart is shown below, in can be concluded
as:
. . Quasi-mode analysis
Confirm the Structure and Nonlinear static
calculate state - aerodynamic modeling ‘ aeroelastic analysis ‘ undﬁr dgfonned
equilibrium state
N Unsteady aerodynamic
Outguitthe norﬁmear - Scle ftliut'ter - calculation under deformed
utter results equation conﬁguration
Figure 3Nonlinear flutter analysis flow chart
1) First, conduct the geometrically nonlinear static aeroelastic analysis to get the
structural deformation, aerodynamic loads under deformed configuration and the
linearized dynamic mass and stiffness matrix.
2) Linearized dynamic vibration analysis around nonlinear equilibrium state to get the
“‘quasi-mode”.
3) Unsteady aerodynamic calculation wunder deformed configuration with
“‘quasi-mode”.
4) Establish the aeroelastic flutter equations and solve it with p-k methods in
frequency domain.
5) Obtain the nonlinear flutter speed and flutter characteristics for very flexible wings.
3 Example

The calculated example wing is constructed with 3 main beams located at front, middle and
back, 17 ribs, 4 stringers and skin. While in the FEM model, they are modeled with beam
elements and shell elements shown in Figure 4. The detailed calculation conditions are
listed in Table 1.
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Figure 4 Wing model
Table 1 Calculate conditions

Altitude ‘ Mach ‘ Angle of attack
5000m | 0.5 1°

3.1 Linear flutter analysis

The linear flutter analysis is only related with linear structural modes and unsteady
aerodynamics but nothing on deformations and load conditions. The linear structural modes
and interpolated unsteady aerodynamic modes are shown in Table 2.

Table 2 Linear structural modes
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Solving the flutter equations with p-k method can get the varying tendency of mode
frequency and damping with the increase of speed. When the mode damping turns to
positive from negative, that indicate the flutter occurs and the critical flutter speed
corresponding to the zero damping. Here are the linear flutter analysis results.
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Figure 5 Linear flutter V-g and V-F curve
The analysis results in Figure 5 indicate that the wing presents a typical bend/twist coupling
flutter( 1st vertical bend coupled with 1st twist) in linear analysis. With the increase of speed,
the 1st twist mode tends to unstable under the speed of 179m/s, with the frequency at
19.6Hz.

3.1 Nonlinear flutter analysis

Before the nonlinear flutter analysis, the geometrically nonlinear static aeroelastic analysis
should be conducted first. Apply the aerodynamic load on the flexible wing and use the
updated Lagrange formula to get the nonlinear structural deformation, which is shown
below.

Figure 6 Nonlinear static deformation
Table 3 Wingtip deflections

o . . ) Relative vertical deflection
Wingtip X-axis y-axis Z-axis

Compared with semispan

deflections
49.81mm | 1638.83mm | 187.51mm 14.89%

The nonlinear static analysis indicate that the vertical deflection of wingtip is
1638mm(almost 15% of the semispan), and the chordwise(x-axis) and spanwise(z-axis)
deflections are also significant, which can not be reflected and often ignored in linear
analysis. However, it is quite important in nonlinear analysis and has a big influence on
structural dynamic characteristics.

After the nonlinear static analysis, the linearized dynamic characteristics are analyzed and
the obtained “quasi-mode” are shown below.
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Table 4 The linearized “quasi-mode”

Frequency o Aerofdynamic
description Mode shape
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Figure 7 Nonlinear flutter V-g and V-F curve
In nonlinear flutter analysis, there are two modes across the critical damping line and
become unstable, which is quite different from the linear analysis results. The lowest flutter
speed is 97m/s, at the frequency of 10.2Hz, which is coupled with 1st vertical bend and 1st
horizontal bend. The second flutter speed is 203m/s at the frequency of 22.5Hz. It can be
concluded that because of the geometric nonlinearity not only the flutter speed is
decreased but the flutter coupled modes are also changed. The traditional bend/twist
coupling form are not typical and instead the horizontal bend mode participate and become
the key mode in flutter, changing the flutter coupling style and decreasing the flutter speed.

Conclusion

Nonlinear flutter analysis method in frequency domain considering the geometric
nonlinearity caused by large deformation for very flexible wing is established in this paper
and an example flexible wing are analyzed to validate the method and demonstrate the
nonlinear flutter characteristics. The analysis results indicate that the large structural
deformation may change the stiffness and dynamic characteristics, and as a consequence,
the flutter characteristics are changed. Because of the structural large deformation and
geometric nonlinearity, the linearized horizontal bend modes frequencies declined and the
modes shape contain twisting components, thus the flutter speed and flutter coupling form
are both changed. The coupling form is changed from typical bend/twist coupling form,
which is usually presented in linear flutter, to vertical bend modes coupled with horizontal
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bend modes. Additionally, the nonlinear flutter speed decreases dramatically. Therefore, the
nonlinear flutter analysis considering about the structural large deformations and geometric
nonlinearity is inevitable and it can prevent the flight performance decline and the defect of
flight envelope.
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The unsteady transonic aerodynamics is very important in the sense that the swept back
wing experiences the sharp drop of the flutter speed in transonic region. In this paper, the
accuracy and reliability of the turbulence models, that are indispensable for the prediction of
the unsteady transonic aerodynamic forces at high Reynolds numbers using the RANS (Reynolds
Averaged Navier-Stokes) code, are extensively examined. The turbulence models examined are
the Baldwin and Lomax algebraic model and the SST k — w model. The detailed comparisons
of the unsteady pressure distributions and the aerodynamic forces with the experimental data
obtained for the NACA64A010 at Reynolds number 1.2x107 are conducted. Both the models
give satisfactory agreement with those of the experiment as far as the boundary layer is attached.
However, the B & L model shows poor agreement with the experimental data obtained at
Re = 1.2x107 in the case where the shock induced flow separation occurs, while the SST k —w
model shows a fair agreement with those of the experiment. In Fig. 1, the typical flow patterns
(iso-density contours) around the NACA64A010 airfoil oscillating in pitch around the quarter
chord point at Mach=0.80 and the mean angle of attack of 4 degree, that are computed using
the B & L model and the SST k — w model, are shown as an example of the computations.
As seen in the figures, both the models predict the shock induced flow separation. However
the B & L model predicts too strong and too aft-positioned shock wave compared with that
of the SST k — w model which gives better agreement of the shock pattern with that of the
experiment.

Baldwin & Lomax model SST k-o model

Figure 1: Flow pattern (iso-density contour) around oscillating NACA64A010 airfoil. (M, =
0.80, o = 4° + 1°sin(kt), k = 0.204, Re = 1.2x107).
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The work aimed to initiate the investigation of aeroelastic risks of interflap seals. The latters -
located between the inboard and outboard flaps - suffered from aeroelastic phenomena during the first
test flights performed by the aircraft manufacturer. A methodological study was therefore carried out
to identify the features which can be at the origin of the vibrations the seals suffered from.

To do so, a two-dimensional CFD analysis at low-subsonic conditions was first performed by means
of unsteady RANS simulations. The analysis revealed the shedding of vortices at the trailing-edge of
the flap. This is illustrated in Fig. 1. The vortex shedding causes periodic aerodynamic load oscillations
on the flap which may induce the seals to vibrate.
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Figure 1: Vorticity contours at different time instances in a period of oscillation.

Once modal analyses of the structure were computed, a qualitative comparison between the re-
sults from the CFD analysis and the modal properties was made to briefly introduce and discuss the
potential aeroelastic risks the structure may encounter in the nominal flight conditions. The evolution
of the aerodynamic forces on the flap reported non-negligible amplitudes of oscillation with respect
to the time-averaged values, especially considering flexible bodies such as the investigated seals. The
excitation frequency (shedding frequency) was found particularly close to the resonance frequencies of
two modes of a particular stacking version. The excitation mechanism finally confirmed the possibility
for those modes to be excited.

Note that an experimental set-up will be developed to reproduce the aeroelastic behaviour of the

seals in a wind tunnel. The experimental measurements will therefore serve as validation data for
further numerical simulations.
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Abstract

Due to its excellent performance, the propeller aircraft plays an important role in the military filed. As
a matter of fact, high-speed rotation of the propeller produces slipstream. The slipstream has complex mutual
aerodynamic interference with other parts of the aircraft, such as wing and tail. Flutter is a dynamic
aeroelastic instability, which is an undesirable phenomenon in aircraft. The propeller slipstream effect on
elastic wing aerodynamics and flutter is one of the most important issues in the research of aecrodynamic
layout design of propeller aircraft!!!l],

The aerodynamic load is calculated by unsteady vortex lattice method(UVLM). As shown Fig.1, we
get the aerodynamic model of propeller and slipstream. Now, we are developing a rapid computational
method to predict the propeller slipstream-elastic wing aerodynamic interaction. All calculations in this

paper will be based on this aerodynamic global coordinate system.

< o

Figure 1 propeller aerodynamic model

As shown in Fig.2, we use the “elastic wing / propeller” model to develop the flutter characteristics.

! N
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Figure 2 Structure of the “Elastic Wing / Propeller” system
The work presented here uses UVLM for aerodynamic modeling and FEM for elastic wing/propeller
system modeling. A method to predict elastic wing flutter in the time domain based on unsteady vortex

lattice is in processing. In final paper, completed flutter analysis will be illustrated.

[1] Agostinelli C,Liu C H,Allen C B,et al. Propeller-flexible wing interaction using rapid computational
methods, AIAA-2013-2418[R].San Diego:AIAA,2013.

[2] Ognev V, Rosen A . Influence of Using Various Unsteady Aerodynamic Models on Propeller Flutter
Prediction[J]. Journal of Aircraft, 2011, 48(5):1708-1721.
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Even though the progress in CFD-development is very rapid, unsteady and aperiodic phe-
nomena in fluid mechanics are still mostly the domain of experiments, since the numerical
results are either not precise enough, the calculations demand too many resources or both ap-
plies. Consequently important effects on fighter aircraft such as buffeting, control reversal and
force-motion hysteresis ask for thoroughly planned wind tunnel experiments, which binds a lot of
personnel and financial resources. Accompanying the planning of the investigated flight regime
and the wind tunnel model’s sensor instrumentation by numerical calculations is a mandatory
task. Preliminary investigations decrease the resulting risks for the experiment dramatically,
while they increase its effectiveness through adapted parameter settings.

An upcoming wind tunnel test campaign with a next generation fighter jet planform DLR-
F23, which runs in scope of the DLR-project "Diabolo", shall be investigated on beforehand
numerically with the usage of a grid adaptation technique. The implementation of this technique
leads to skipping the laborious process of grid design almost completely?.

1 Zastrow, J. (2019). Characterizing a Multi Delta Wing for Aeroelastic Wind Tunnnel Experiments.
International Forum on Aeroelasticity and Structural Dynamics 2019.
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Abstract

This paper deals with the aeroelastic stability assessment of the empennage section of the
hybrid-electric motor glider FVA 30. Because of its integrated propulsion units at the tips it is
prone to a special kind of aeroelastic instability called whirl flutter. This instability of the V-tail
involves the whirl modes of the propellers. Parameter studies regarding the most important
structural parameters are carried out to evaluate the design space and identify critical flutter
modes. The models are also checked for empennage flutter and ground resonance. Due to the
early design phase this is done by numerical studies with simplified models using the in-house
flutter process, PySTAB, and strip theory propeller aerodynamics. The investigations show the
possibility of a V-tail flutter due to insufficient mass balance of the combined elevator/rudder
control surface. In contrast, the empennage structure shows large margins regarding whirl
flutter of the tailplane structure itself. The pylon and engine mount are assumed to be rigid
though due to lacking design data. Ground resonance of the elastic propeller blades is prohibited
by the dynamic couplings due to blade twist.

Keyword: aeroelastic stability, motor glider, V-tail, whirl flutter

1 Introduction

The FVA 30 is a hybrid-electric motor glider which is currently being designed by the FVA, a

student association based in Aachen, Germany. The aircraft will be a two-seated touring motor

glider (TMG) in side-by-side configuration and powered by two electric motors at the two tips
of a V-tail (shown in Fig. 1). To speed up the design, the front part of the fuselage as well

as the wings are adopted from the eGenius, an

aircraft built by the university of Stuttgart (Schu-

o mann 2018). The project is now moving towards

the critical design review (CDR) and the configu-

/i ration shall be evaluated for its aeroelastic stability

’ beforehand. Due to the large propellers mounted

at remote locations this evaluation especially in-

volves instability phenomena caused by these pro-

pellers, namely whirl flutter and ground resonance.

This is done before the CDR to account for any

necessary changes in the design.

Figure 1: Design of the hybrid electric mo-
tor glider FVA 30
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2 Methods

Before moving on to the model of the FVA 30 empennage and the stability results, an intro-
duction into the theory and used methods is given. This includes the basic whirl flutter theory
as well as its integration into the in-house flutter process, PySTAB. As the theory and stability
analysis for ground resonance differ from this, it will be summarised separately. For a more
detailed discussion of the methods refer to Koch et al. (2019).

2.1 Theory of (whirl-) flutter analysis

A rotating propeller in a flexible engine bed is subjected to gyroscopic whirl modes. Due to the
aerodynamic forces these whirl modes can become unstable (Cecrdle 2015). This phenomenon
is called whirl flutter. A simple model to describe this behaviour is shown in Fig. 2. This
system consists of a rigid propeller on a shaft with a yaw and pitch degree of freedom (cf. top
of Fig. 3). The yaw and pitch modes merge to a forward and backward whirl mode due to
gyroscopic coupling under rotation. Considering the aerodynamic forces caused by this whirling
motion the backward whirl mode eventually becomes unstable (Cecrdle 2015).

P, M,

(b)

(d)

P,

Figure 2: Rigid propeller with two tilting- Figure 3. Basic behaviour of a propeller in
DOF a flexible engine bed

Considering a linear strip theory one can describe the propeller aerodynamics by stiffness and
damping terms for the propeller hub point (Houbolt and Reed 11l 1962). In Eq. 1 these terms
are expressed as non-dimensional derivatives. G, for example is the non-dimensional pitching
moment m due to a yaw angle v. In general these depend on the forward and rotational speed.
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To analyse more complex systems than the one in Fig. 2, the propeller aerodynamics has
to be coupled with a structural model (e.g. the empennage structure of the FVA 30). This
is done by adding the stiffness and damping terms of the propeller to the structural model in
physical coordinates (Rodden and Rose 1989). To reduce the number of degrees of freedom for
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the stability analysis, the complete model is transformed into modal coordinates. This results
in Eq. 2:

) 1
MgenG + Keeng = ¢ Kpdq + ¢ Dppg + 5P VZ Qun(k) (2)

Mgen and Kge, represent the modal mass and stiffness matrix of the base structure, phi is
the modal matrix transforming physical into modal coordinates q. Kp and Dp represent the
propeller terms from Eq. 1 including the gyroscopic terms. The last part of Eq. 2 allows for
the inclusion of frequency-domain aerodynamics for the remaining part of the aircraft. Quu(k)
represents the generalized aerodynamic forces, that depend on the reduced frequency k. In this
case, the aerodynamics for the tailplane and the control surface are calculated by an unsteady
acceleration potential method, ZONA6 (Chen et al. 1993). If these are included in the stability
analysis, the problem changes from a set of explicit eigenvalue problems (first terms in Eq. 2
are only velocity-dependant) to an implicit flutter problem. These can be solved e.g. using the
g-method for flutter solutions (Chen 2000). The solution of Eq. 2 in different varieties is a very
common problem for aircraft flutter application and is therefore automated in the in-house tool
PySTAB.

2.2 Linear Frequency Domain Flutter Process : PySTAB

To analyse aircraft configurations w.r.t their flutter stability in the linear frequency domain, a
python environment is used to automate the flutter analysis process. This environment uses
the commercial software ZAERO as a core and allows for the consideration of different as-
pects like engine gyroscopic loads, in-plane aerodynamic forces, propeller forces or even more
sophisticated generalized aerodynamic forces (GAF) from the CFD Solver TAU-LFD (cf. Fig.
4). By switching to state-space formulation, aeroservoelastic calculations can be carried out.
Depending on the needs of the configuration to be analysed, the user can decide which effects
to be included. In the case of the FVA 30 empennage section, propeller gyroscopic and aerody-
namic loads are considered, while the aerodynamics for the tailplane are the standard ZONA6
aerodynamics, as flight speeds and Mach numbers are moderate.
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Figure 4: PySTAB: linear frequency do- Figure 5: PySTAB software architecture
main stability process
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As the flutter assessment of an aircraft usually needs a lot of parameter studies (Mach num-
ber, density, mass cases, control system, structural parameters,...), PySTAB uses a three-layer
architecture (cf. Fig. 5). A underlying database stores all data for the different configurations
and analysis steps, while a functional layer manages all the tasks during the analysis. Finally,
control scripts and a GUI provide easy access and control over the simulations and results.

2.3  Ground Resonance

If flexibility of the rotor blades is considered, there is the possibility of another instability
phenomenon called ground resonance, which is of completely different nature. While (whirl-
)flutter involves aerodynamic forces, ground resonance is a pure mechanical instability (Bielawa
1992). It is well known in the field of helicopter dynamics, but can also become relevant in
case of very flexible propeller blades.

The mechanism causing this instability is an energy transfer from the drive system through
a rotating blade mode into the support (Cardinale et al. 1969). The rotor mode involved is
the so called regressive cyclic mode. The blades oscillate with a 120 deg phase shift in this
mode. For a lead-lag-degree of freedom, this is shown in Fig. 6. This phase shift leads to a
whirling motion of the rotor center of gravity around the hub. In the regressive cyclic mode,
this whirling motion is inverse to the direction of rotation, which also affects the frequency
characteristics with increasing rotational velocity. Looking at the eigenfrequencies of a simple
rotor on an elastic support, one can observe the regressive rotor mode dropping in frequency
(branch labelled |w: —£2| in Fig. 7) till it reaches a point of zero frequency. From this rotational
speed on the rotation of the whirling motion changes to forward. This low frequency forward
cyclic mode (also called supercritical cyclic mode) can now couple with the underlying support,
leading to the described instability called ground resonance (coupling regions are marked with
dashed circles in Fig 7).
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Figure 6: Regressive cyclic lead-lag mode Figure 7: Example for a Campbell-diagram
shape with shifted rotor-CG with two regions of ground resonance

To assess a system for ground resonance, a coupled dynamic description of the rotor blades
and the support structure is needed. Johnson (1974) developed a dynamic description of a
flexible rotor at the tip of a wing structure. The model includes two degrees of freedom per
blade, one lead-lag and one flap mode, as well as the first three eigenmodes of the wing structure
(in- and out-of-plane-bending as well as torsion).
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If more degrees of freedoms shall be incorporated or a more sophisticated dynamic descrip-
tion of the model is necessary, numerical multi-body-simulations (MBS) can be used to capture
more effects (cf. Arnold and Waitz (2018)). In this case, the MBS-software SIMPACK is used
to couple a modal description of the propeller blades with the flexible tailplane structure. The
MBS-model is linearised at different rotational speeds and the resulting state space model is
subjected to an eigenvalue analysis. Beforehand the rotating blade degrees of freedom have
to be transformed into rotor degrees of freedom in the non-rotating frame. This is done using
multi-blade coordinate transformation (Bir 2008).

3 Models

After summing up the theory and methods used to analyse the empennage structure, a brief
introduction into the modelling of that structure will be given before moving on to the results.
The basic structural layout of one side of the V-tail consists of a box beam stiffened by four
stringers and five ribs (cf. Fig. 8 left). A control surface takes up the trailing 35 % of the
lifting surface. The rotational degree of freedom around the hinge axis has no stiffness and
the control surface can therefore rotate freely. The main structure will be manufactured from
carbon composite and is modelled as a finite-element shell-model in MSC.NASTRAN.

The electric propulsion unit is mounted in
front of the leading edge at the tip of the V-
tail (marked with a b